Dr. Jürgen Schnack Universität Osnabrück, FB Physik
D-49069 Osnabrück

Nuclear liquid gas phasetransition of oxygen-16
Time averaging together with Fermionic Molecular Dynamics is used to obtain the thermodynamic equlibrium properties. The time evolution in coordinate space is presented in terms of the single-particle density. The density is cut at 1/10 of the nuclear matter saturation density (magenta) representing the liquid phase and at 1/100 (blue) representing the vapour phase.


Excitation energy: 2.1 AMeV

t= 0 fm/c :

picture

t=1000 fm/c :

picture

t=2000 fm/c :

picture

t=3000 fm/c :

picture

t=4000 fm/c :

picture

t=5000 fm/c :

picture

t=6000 fm/c :

picture

t=7000 fm/c :

picture

t=8000 fm/c :

picture

t=9000 fm/c :

picture

t=10000 fm/c :

picture

t=11000 fm/c :

picture

t=12000 fm/c :

picture

t=13000 fm/c :

picture

t=14000 fm/c :

picture

t=15000 fm/c :

picture

t=16000 fm/c :

picture

t=17000 fm/c :

picture

t=18000 fm/c :

picture

t=19000 fm/c :

picture

t=20000 fm/c :

picture


Excitation energy: 3.5 AMeV

t= 0 fm/c :

picture

t=1000 fm/c :

picture

t=2000 fm/c :

picture

t=3000 fm/c :

picture

t=4000 fm/c :

picture

t=5000 fm/c :

picture

t=6000 fm/c :

picture

t=7000 fm/c :

picture

t=8000 fm/c :

picture

t=9000 fm/c :

picture

t=10000 fm/c :

picture

t=11000 fm/c :

picture

t=12000 fm/c :

picture

t=13000 fm/c :

picture

t=14000 fm/c :

picture

t=15000 fm/c :

picture

t=16000 fm/c :

picture

t=17000 fm/c :

picture

t=18000 fm/c :

picture

t=19000 fm/c :

picture


Excitation energy: 7.0 AMeV

t=0 fm/c :

picture

t=1000 fm/c :

picture

t=2000 fm/c :

picture

t=3000 fm/c :

picture

t=4000 fm/c :

picture

t=5000 fm/c :

picture

t=6000 fm/c :

picture

t=7000 fm/c :

picture

t=8000 fm/c :

picture

t=9000 fm/c :

picture

t=10000 fm/c :

picture

t=11000 fm/c :

picture

t=12000 fm/c :

picture

t=13000 fm/c :

picture

t=14000 fm/c :

picture

t=15000 fm/c :

picture

t=16000 fm/c :

picture

t=17000 fm/c :

picture

t=18000 fm/c :

picture

t=19000 fm/c :

picture

t=20000 fm/c :

picture

t=21000 fm/c :

picture

t=22000 fm/c :

picture

t=23000 fm/c :

picture

t=24000 fm/c :

picture

t=25000 fm/c :

picture

t=26000 fm/c :

picture

t=27000 fm/c :

picture

t=28000 fm/c :

picture

t=29000 fm/c :

picture


Excitation energy: 9.8 AMeV

t=0 fm/c :

picture

t=1000 fm/c :

picture

t=2000 fm/c :

picture

t=3000 fm/c :

picture

t=4000 fm/c :

picture

t=5000 fm/c :

picture

t=6000 fm/c :

picture

t=7000 fm/c :

picture

t=8000 fm/c :

picture

t=9000 fm/c :

picture

t=10000 fm/c :

picture

t=11000 fm/c :

picture

t=12000 fm/c :

picture

t=13000 fm/c :

picture

t=14000 fm/c :

picture

t=15000 fm/c :

picture

t=16000 fm/c :

picture

t=17000 fm/c :

picture

t=18000 fm/c :

picture

t=19000 fm/c :

picture

t=20000 fm/c :

picture

t=21000 fm/c :

picture

t=22000 fm/c :

picture

t=23000 fm/c :

picture

t=24000 fm/c :

picture

t=25000 fm/c :

picture

t=26000 fm/c :

picture

t=27000 fm/c :

picture

t=28000 fm/c :

picture

t=29000 fm/c :

picture


Excitation energy: 11 AMeV

t=0 fm/c :

picture

t=1000 fm/c :

picture

t=2000 fm/c :

picture

t=3000 fm/c :

picture

t=4000 fm/c :

picture

t=5000 fm/c :

picture

t=6000 fm/c :

picture

t=7000 fm/c :

picture

t=8000 fm/c :

picture

t=9000 fm/c :

picture

t=10000 fm/c :

picture

t=11000 fm/c :

picture

t=12000 fm/c :

picture

t=13000 fm/c :

picture

t=14000 fm/c :

picture

t=15000 fm/c :

picture

t=16000 fm/c :

picture

t=17000 fm/c :

picture

t=18000 fm/c :

picture

t=19000 fm/c :

picture

t=20000 fm/c :

picture

t=21000 fm/c :

picture

t=22000 fm/c :

picture

t=23000 fm/c :

picture

t=24000 fm/c :

picture

t=25000 fm/c :

picture

t=26000 fm/c :

picture

t=27000 fm/c :

picture

t=28000 fm/c :

picture

t=29000 fm/c :

picture


The URL of this site is http://obelix.physik.uni-osnabrueck.de/~schnack/. © J.Schnack, 18.09.2000