Bielefeld University	Symmetries in Physics	Prof. Dr. Jürgen Schnack
Faculty of Physics	WS 2025/2026	jschnack@uni-bielefeld.de

4 Problem sheet

4.1 IN CLASS: Subgroup of the symmetric group

Let $f \in \mathcal{S}_6$ be the permutation

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 6 & 5 \end{pmatrix} = (132)(56) . \tag{3}$$

- a. What is the smallest subgroup G of S_6 containing f?
- b. What is the order of G?
- c. What is the inverse of f?

4.2 AT HOME: Unit circle

The group O(2) consists of rotations r_{α} and reflections m_{α} which act on $S = \{Z \in \mathbb{C}, |z| = 1\}$ as

$$r_{\alpha}(e^{i\phi}) = e^{i(\phi + \alpha)}$$
 , $m_{\alpha}(e^{i\phi}) = e^{i(2\alpha - \phi)}$. (4)

- a. Explain in words what these transformations do.
- b. What would be a sensible range for α ?
- c. Express $r_{\alpha}m_{\beta}$, $m_{\beta}r_{\alpha}$, and $m_{\alpha}m_{\beta}$ as a single rotation or reflection.
- d. Express the conjugate elements $r_{\alpha}^{-1}m_{\beta}r_{\alpha}$, $m_{\beta}^{-1}r_{\alpha}m_{\beta}$, and $m_{\beta}^{-1}m_{\alpha}m_{\beta}$ as a single rotation or reflection.
- e. Let D_k be the group generated by $r_{2\pi/k}$ and m_0 , i.e., the smallest group containing these elements. What are the elements of D_k and what is the order of the group?

4.3 AT HOME: A representation for C_{3v}

Plot an equilateral triangle into a two-dimensional coordinate system and derive a faithful representation for this group.