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10 Problem sheet

10.1 IN CLASS (finish at home): Block structure of Hamilto-
nian, neutron scattering

Consider the product Hilbert space for three spins si = 1 and the following Heisenberg
Hamiltonian

H⇠ = J1~s⇠1 · ~s⇠2 + J2
⇣
~s⇠2 · ~s⇠3 + ~s⇠3 · ~s⇠1

⌘
. (17)

a. Explain, why we call this Hamiltonian rotationally invariant. How can we express
this property mathematically?

b. Repeat how we decompose the product representation into irreps

D(s1) ⌦ D(s2) ⌦ D(s3) =
M

S

nSD
(S) (18)

and provide the total spin quantum numbers as well as their multiplicities.

c. Write down the coupling scheme you used both as a tree and as ket basis states.

d. How could one show that these states form an ONB?

e. Make a graphical sketch that explains into how many blocks the Hamiltonian matrix
decays. Label these blocks and explain.

f. Now calculate the entries of all blocks. Recall the properties of the basis states of
your coupling scheme. Of which operators are these states eigenstates? Although
you can choose every coupling scheme you like, there is a more practical coupling
scheme in this case.

g. Determine the energy eigenvalues.
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!1/2, 1, 3/2, and 5/2. A first inspection shows what will turn
out to be a main result of this work: With increasing spin
lengths the spectrum of S0

z (! ,T) develops a universal and
rather simple structure "compare Figs. 1#c$ and 1#d$%.
For an interpretation of Fig. 1 it is useful to first consider

the energy spectrum for the case Si!5/2, shown in Fig. 2.
Three well developed bands can be identified at low ener-
gies. The lowest band is formed by the S-ground states being
&0'- or &3'-singlets "Fig. 2#b$%. Their energies are well de-
scribed by the Landé rule ES ,L! 1

2 (0S(S"1), with (0
)E1,0#E0,0 . Therefore, this band will be denoted as Landé
band, or short as L-band. The second band #which will be
named E-band$ starts with S!1 and consists of the quasi-
degenerate &1,5'- and &2,4'- doublets for each S "Fig. 2#b$%.
The energy difference of the two doublets is quite small, but
increases monotonously with increasing S. Remarkably, the
mean energy of the E-band evolves in parallel to the L-band,
i.e., ES ,E!(1#(0"ES ,L . The third band is of less impor-
tance for the following. Actually, it will be regarded as the
lower boundary line of a quasi-continuum of states. The term
quasi-continuum #QC$ serves to denote all states which do

not belong to the L- or E-band. The deeper meaning of this
definition will become clear below. It should be noted that
here ‘‘band’’ refers to a band in an energy versus S plot and
not to the more familiar energy versus q bands. Since the
energy dependence on S is that of a rigid rotator, these bands
are called rotational bands.16,18
Figure 2#b$ also presents the total oscillator strengths for

some transitions. For the S!0-ground state only transitions
to the next S!1-ground state or to the two S!1 doublets of
the E-band have considerable oscillator strength. The total
spectral weight of all remaining transitions is less than
0.35% of F(0,0). Examining the oscillator strengths for the
other S-ground states shows that it generally holds that only
transitions to the next S-ground state or to the E-band have
significant oscillator strengths. Although increasing monoto-
nously with S, the total spectral weight of transitions from an
S-ground state into the QC is only a very small fraction of
the total spectral weight F(S ,0) "less than 1% of F(S ,0) in
Fig. 2#b$%. Thus, these transitions can be safely neglected.
This actually justifies the division of the energy spectrum
into L-band, E-band, and QC: The L-band has strong transi-
tions only within itself or into the E-band. Transitions from
the L-band into the QC are negligibly small.
These transitions may be classified as LS, ES#, ES, and

ES" "see Fig. 2#b$%. LS-transitions are S→S"1 transitions
within the L-band at frequencies !L(S)!(0(S"1). Their
oscillator strengths approximately increase as f 0

LS! f 0
L0(S

"1). ES-transitions are upward S→S! transitions from the
L-band into the E-band #the prime at S! indicates the
E-band$. Their transition energies are !E(S)!(1#(0 inde-
pendent of S. The next type of transitions are those from S
→(S"1)!, named ES", at frequencies !E"(S)!(1"(0S .
Finally, ES#-transitions are characterized by S→(S#1)!
with !E#(S)!(1#(0(S"1). Clearly, for E-transitions the
additional subscripts " and # indicate the ‘‘direction’’ S!
#S!$1 of the transition.
Now all essential features of S0

z (! ,T) visible in Figs. 1#c$
and 1#d$ are easily recognized. At low temperatures (T
*0.1) two peaks at frequencies (0 and (1 arise due to the
L0- and E0"-transitions. With increasing temperature higher
Landé spin levels successively get populated. Thus transi-
tions with larger and larger S arise leading to the two char-
acteristic structures related to the L- and E-peaks. The tem-
perature dependence of their intensities is controlled as
usually by the Boltzmann factor e#ES ,+ /T/Z(T). With further
increasing temperature, the states of the E-band and the QC
start to get populated #at T,1). Transitions from the E-band
into the QC and within the QC set in leading to the evolution
of a peak at !!0 and a broad featureless background. For
temperatures above T-3 transitions within the E-band and
the QC dominate and the characteristic L- and E-peaks dis-
appear.
The apparently simple shape of the spectrum for Si-3/2

can be related to four properties: #1$ The energetically low-
lying spin levels form two bands which both obey the Landé
rule. #2$ For the E-band, the splitting of the two &1,5'- and
&2,4'-doublets is small. #3$ Most important, transitions from

FIG. 2. #a$ Energy spectrum of the N!6, Si!5/2 ring. #b$
Detailed view of the low energy states. For the spin levels of the L-
and E-band q is given in brackets followed by the energy. Arrows
indicate strong transitions from the L-band. Associated numbers
give the total oscillator strength f 0. The notation of the transitions is
discussed in the text. For each S-ground state the total spectral
weight of transitions into the QC is given in percents of F(S ,0).
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Figure 3: Low-energy part of the energy spectrum of a spin ring with N = 6 spins
with si = 5/2. The arrows show some transitions, many transitions do not exist (jargon
“are forbidden”), compare Oliver Waldmann, Spin dynamics of finite antiferromagnetic
Heisenberg spin rings, Phys. Rev. B 65, 024424 (2001).

h. Inelastic neutron scattering (INS) can be used to determine the energy di↵erences
between eigenenergies. In an INS spectrum peaks occur at such energies called
resonance energies (or frequencies). However, not all such di↵erences are measurable
since the transition matrix element between initial and final state might be zero.
DUE TO SYMMETRY.

The transition operator is proportional to the spin vector operators in the system
(or a linear combination of them). Please explain which states can in principle
be reached from an eigenstate of a rotationally invariant Hamiltonian if the initial
state is |SM ; quantum numbes of coupling scheme i and we consider s(↵)q as the
transition operator.

i. We did not speak much about the M quantum number, nor much about q in s(↵)q .
Could you make a statement about them? Consider the Clebsch-Gordan coe�cients
for your argument.

j. Read Section II of the paper by Oliver Waldmann. It should ring in your head.
Many times. Congratulate yourself for attending this course. ;-)

Merry Christmas & Happy New Year
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