Universität Bielefeld	Theoretische Physik I	Prof. Dr. Jürgen Schnack
Fakultät für Physik	WS 2021/2022	jschnack@uni-bielefeld.de

Aufgabenblatt 10

10.1 Feld eines Plattenkondensators

Unter einem Plattenkondensator versteht man ein System von zwei zueinander parallel angeordneten Metallplatten mit dem Abstand d und der Fläche A. Damit die Effekte am Rand des Kondensators vernachlässigbar bleiben, muss $d \ll \sqrt{A}$ sein.

Beide Platten tragen homogen verteilt jeweils die entgegengesetzt gleich große Ladung, d.h., $Q_1 = -Q_2 = Q$. Definieren und verwenden Sie die Größe Flächenladungsdichte.

- a. Betrachten Sie zuerst eine Kondensatorplatte. In welche Richtung wird das \vec{E} -Feld aus Symmetriegründen zeigen (1 P.)?
- b. Nutzen Sie die integrale Formulierung der ersten Maxwell-Gleichung, legen Sie ein quaderförmiges Integrationsvolumen um einen Plattenausschnitt und leiten Sie auf diese Weise die elektrische Feldstärke ab. Wie lautet sie (2 P.)?
- c. Führen Sie die gleiche Prozedur für die andere Platte durch. Geben Sie das resultierende Feld der beiden Platten an (2 P.).
- d. Wie lautet das zugehörige Potential (2 P.)?
- e. Die Spannung zwischen den Kondensatorplatten ergibt sich als Potentialdifferenz der Platten. Wie groß ist sie (2 P.)?
- f. Es sei Q=C U die Beziehung zwischen Spannung und Ladung. Geben Sie die Kapazität C als Funktion der Systemgrößen an (1 P.).

10.2 Homogen geladene Kugel

Eine Kugel vom Radius R sei homogen geladen, die Gesamtladung betrage Q. Das Koordinatensystem sei so gewählt, dass der Ursprung im Mittelpunkt der Kugel liegt.

- a. Berechnen Sie das elektrostatische Potential der Kugel. Stellen Sie die radiale Abhängigkeit graphisch dar.
 - Hinweis: Im Integral kommen zwei Koordinaten \vec{r} für $\phi(\vec{r})$ und \vec{r}' für $\rho(\vec{r}')$ vor. Arbeiten Sie in Kugelkoordinaten und legen Sie die z-Achse entlang \vec{r} . Es ist günstig, wenn Sie nicht über $d\vartheta$, sondern über $d\cos(\vartheta)$ integrieren. Unterscheiden Sie weiterhin zwischen Innen- und Außenbereich.
- b. Berechnen Sie die elektrische Feldstärke und stellen Sie deren Betrag als Funktion des Abstandes graphisch dar.

10.3 Zusatzaufgabe: Potential und elektrische Feldstärke einer Linienladung

Auf dem Abschnitt der z-Achse $-l \leq z \leq l$ sitze eine konstante Linienladungsdichte γ . Es seien r, ϕ, z die üblichen Zylinderkoordinaten. Man gebe die z-Koordinate und die r-Koordinate der elektrischen Feldstärke formelmäßig an.

Hinweis 1: Man schreibe die Integraldarstellung des elektrostatischen Potentials so um, dass die Koordinaten, nach denen zu differenzieren ist, in den Integrationsgrenzen stehen. Hinweis 2: r ist hier nicht der Betrag von \vec{r} (Zylinderkoordinaten)! Die sonst übliche Bezeichnung als ρ verbietet sich in der Elektrodynamik aus offensichtlichen Gründen leider auch. Sie könnten diese Zylinderkoordinate r_{\perp} nennen.

Hier kann ein zusätzlicher Ankreuzpunkt gewonnen werden, wenn man die Aufgabe (überprüfbar) versucht hat.

10.4 Mathematische Fingerübungen III

Zeigen Sie mit ein paar Zwischenschritten, was bei den folgenden Relationen herauskommt.

a.

$$\frac{\partial}{\partial \vec{r}} \frac{1}{r} . \tag{1}$$

b.

$$\frac{\partial}{\partial \vec{r}} \, \frac{1}{r^3} \, . \tag{2}$$

c.

$$\vec{r}' \cdot \frac{\partial}{\partial \vec{r}} \frac{1}{r}$$
 (3)

d.

$$\left(\vec{r}' \cdot \frac{\partial}{\partial \vec{r}}\right) \left(\vec{r}' \cdot \frac{\partial}{\partial \vec{r}}\right) \frac{1}{r} \ . \tag{4}$$