### New Exact and Approximate Methods to Treat Spin Hamiltonians of Magnetic Molecules

Roman Schnalle and Jürgen Schnack

Department of Physics – University of Bielefeld – Germany http://obelix.physik.uni-bielefeld.de/~schnack/

> 1st TMS workshop Schloss Machern, 23. 10. 2010









#### Many thanks to my collaborators worldwide

- T. Englisch, T. Glaser, M. Höck, N.B. Ivanov, S. Leiding, A. Müller, S. Ratnabala, <u>R. Schnalle</u>, Chr. Schröder, J. Ummethum, O. Wendland (Bielefeld)
- K. Bärwinkel, H.-J. Schmidt, M. Neumann (Osnabrück);
- M. Luban (Ames Lab, USA); P. Kögerler (Aachen, Jülich, Ames); J. Musfeldt (U. of Tennessee, USA); R.E.P. Winpenny, E.J.L. McInnes (Man U, UK); L. Cronin (Glasgow, UK); H. Nojiri (Sendai, Japan); A. Postnikov (Metz, France)
- J. Richter, J. Schulenburg (Magdeburg); A. Honecker (Göttingen); U. Kortz (Bremen); A. Tennant, B. Lake (HMI Berlin); B. Büchner, V. Kataev, H.-H. Klauß (Dresden); P. Chaudhuri (Mühlheim); J. Wosnitza (Dresden-Rossendorf); J. van Slageren (Stuttgart); R. Klingeler (Heidelberg)

#### +•• ← → → □ ? X

#### **Contents for you today**



- 1. Magnetic molecules
- 2. Up to date theory modeling
- 3. SU(2) symmetry
- 4. Point group symmetry
- 5. Finite-temperature Lanczos
- 6. Anisotropic Magnetic Molecules

Magnetic Molecules

**★ ★ → → □** ? **×** 

# Magnetic Molecules

#### The beauty of magnetic molecules I



 $Mn_{12}$ 

- Inorganic or organic macro molecules, where paramagnetic ions such as Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni), Vanadium (V), Manganese (Mn), or rare earth ions are embedded in a host matrix;
- Pure organic magnetic molecules: magnetic coupling between high spin units (e.g. free radicals);
- Speculative applications: magnetic storage devices, magnets in biological systems, lightinduced nano switches, displays, catalysts, transparent magnets, qubits for quantum computers.



X

- Dimers (Fe<sub>2</sub>), tetrahedra (Cr<sub>4</sub>), cubes (Cr<sub>8</sub>);
- Rings, especially iron and chromium rings
- Complex structures (Mn<sub>12</sub>) drosophila of molecular magnetism;
- "Soccer balls", more precisely icosidodecahedra (Fe<sub>30</sub>) and other macro molecules;
- Chain like and planar structures of interlinked magnetic molecules, e.g. triangular Cu chain.

**★ ← → → □** ? **×** 

# Up to date theory modeling

#### Model Hamiltonian (spin only)

$$\begin{split} H &= \sum_{i,j} \vec{\underline{s}}(i) \cdot \mathbf{J}_{ij} \cdot \vec{\underline{s}}(j) + \sum_{i,j} \vec{D}_{ij} \cdot \left[ \vec{\underline{s}}(i) \times \vec{\underline{s}}(j) \right] + \mu_B \vec{B} \sum_{i}^{N} \mathbf{g}_i \vec{\underline{s}}(i) \\ & \mathsf{Exchange/Anisotropy} \quad \mathsf{Dzyaloshinskii-Moriya} \quad \mathsf{Zeeman} \end{split}$$

Isotropic Hamiltonian

$$\begin{array}{lll} H &=& -2\sum_{i < j} \,\, J_{ij} \,\, \vec{\underline{s}}(i) \cdot \vec{\underline{s}}(j) & + & g \, \mu_B \, B \, \sum_i^N \,\, \underline{\underline{s}}_z(i) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

### In the end it's always a big matrix!



**★ ↓ → → □** ? **×** 

#### Thank God, we have computers



**★ ↔ → → □** ? **×** 

### **Magnetic Molecules**



### possess symmetries! Use them!

# SU(2) and point group symmetry!

**★ ↔ → □** ? **×** 

SU(2) and point group symmetry



**★ ← → → □** ? **×** 

### Bielefeld ???



# SU(2) symmetry

#### Quantum chemists need to be much smarter since they have smaller computers!

(1) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993).

(2) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).

(3) B. S. Tsukerblat, *Group theory in chemistry and spectroscopy: a simple guide to advanced usage*, 2nd ed. (Dover Publications, Mineola, New York, 2006).

#### Irreducible Tensor Operator approach



X

Spin rotational symmetry:

- $H_{\sim} = -2 \sum_{i < j} J_{ij} \, \vec{\underline{s}}_i \cdot \vec{\underline{s}}_j + g \mu_B \vec{\underline{S}} \cdot \vec{B}$ ;
- $\left[ \underbrace{H}_{\sim}, \underbrace{\vec{S}^2}_{\sim} \right] = 0, \left[ \underbrace{H}_{\sim}, \underbrace{S}_{z}_{\sim} \right] = 0;$
- Irreducible Tensor Operator (ITO) approach;
- Free program MAGPACK (2) available.

(1) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993).

(2) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).

#### Idea of ITO

$$\begin{array}{lll} \underset{\sim}{H} \text{Heisenberg} &=& -2\sum_{i < j} J_{ij} \; \vec{s}_i \cdot \vec{s}_j \\ &=& 2\sqrt{3} \sum_{i < j} J_{ij} \; \vec{T}^{(0)}(\{k_i\}, \{\overline{k}_i\} | k_i = k_j = 1) \end{array}$$

#### Irreducible Tensor Operator approach

- Express spin operators and functions thereof as ITOs;
- Use vector coupling basis  $| \alpha S M \rangle$  and recursive recoupling;
- (1) Gatteschi, Tsukerblat, Coronado, Waldmann, ...
- (2) R. Schnalle, Ph.D. thesis, Osnabrück University (2009)

#### Idea of ITO: dimer

$$\left\{ \mathbf{s}^{(1)}(1) \otimes \mathbf{s}^{(1)}(2) \right\}^{(0)} = \sum_{q_1, q_2} C_{q_1 q_2 0}^{1 \ 1 \ 0} \cdot \underline{s}^{(1)}_{q_1}(1) \underline{s}^{(1)}_{q_2}(2)$$

$$= \frac{1}{\sqrt{3}} \left( \underline{s}^{(1)}_{\sim -1}(1) \cdot \underline{s}^{(1)}_{1}(2) + \underline{s}^{(1)}_{1}(1) \cdot \underline{s}^{(1)}_{-1}(2) - \underline{s}^{(1)}_{0}(1) \cdot \underline{s}^{(1)}_{0}(2) \right)$$

$$= -\frac{1}{\sqrt{3}} \mathbf{s}^{(1)} \cdot \mathbf{s}^{(2)}$$

$$\underset{\sim}{H}_{\text{dimer}} = -2J \underbrace{\mathbf{S}}(1) \cdot \underbrace{\mathbf{S}}(2) = 2J \sqrt{3} \left\{ \underbrace{\mathbf{S}}^{(1)}(1) \otimes \underbrace{\mathbf{S}}^{(1)}(2) \right\}^{(0)}$$

#### Idea of ITO: trimer

$$\mathbf{\underline{T}}^{(k)}_{\ldots}(k_1,k_2,k_3,\overline{k}_1) = \left\{ \left\{ \mathbf{\underline{s}}^{(k_1)}(1) \otimes \mathbf{\underline{s}}^{(k_2)}(2) \right\}^{(\overline{k}_1)} \otimes \mathbf{\underline{s}}^{(k_3)}(3) \right\}^{(k)}$$

$$\begin{split} H_{\triangle} &= -2J \left( \underbrace{\mathbf{s}}(1) \cdot \underbrace{\mathbf{s}}(2) + \underbrace{\mathbf{s}}(2) \cdot \underbrace{\mathbf{s}}(3) + \underbrace{\mathbf{s}}(3) \cdot \underbrace{\mathbf{s}}(1) \right) \\ &= 2J \sqrt{3} \left( \underbrace{T_{\triangle}^{(0)}(1, 1, 0, 0)}_{\simeq \therefore} + \underbrace{T_{\triangle}^{(0)}(1, 0, 1, 1)}_{\simeq \therefore} + \underbrace{T_{\triangle}^{(0)}(0, 1, 1, 1)}_{\simeq \cdots} \right) \end{split}$$

Vector coupling basis  $|\alpha S M\rangle$  needs to be constructed similarly:

$$|\alpha S M\rangle = |s_1, s_2, S_{12}, s_3, S, M\rangle$$

#### Idea of ITO: recoupling

$$\begin{aligned} &\langle \alpha_{1} \, s_{1} \, \alpha_{2} \, s_{2} \, S || \left\{ \mathbf{\underline{\chi}}^{(k_{1})} \otimes \mathbf{\underline{\chi}}^{(k_{2})} \right\}_{q}^{(k)} || \alpha_{1}' \, s_{1}' \, \alpha_{2}' \, s_{2}' \, S' \rangle \\ &= \\ &[(2S+1) \, (2S'+1) \, (2k+1)]^{\frac{1}{2}} \begin{pmatrix} s_{1} & s_{1}' & k_{1} \\ s_{2} & s_{2}' & k_{2} \\ S & S' & k \end{pmatrix} \langle \alpha_{1} \, s_{1} || \mathbf{\underline{\chi}}^{(k_{1})} || \alpha_{1}' \, s_{1}' \rangle \langle \alpha_{2} \, s_{2} || \mathbf{\underline{\chi}}^{(k_{2})} || \alpha_{2}' \, s_{2}' \rangle \end{aligned}$$

- Recursive evaluation of matrix elements recoupling of compound tensors using reduced matrix elements (WE theorem) and Wigner-9J symbols.
- Block diagonal structure; evaluation of  $\mathcal{H}(S, M = S)$  only.

# Point group symmetry

**★ ↔ → → □** ? **×** 

Point group symmetry

#### **Point Group Symmetry I**

$$|\alpha' S M \Gamma\rangle = \mathcal{P}^{(\Gamma)} |\alpha S M\rangle = \left(\frac{l_{\Gamma}}{h} \sum_{R} \left(\chi^{(\Gamma)}(R)\right)^* \tilde{G}(R)\right) |\alpha S M\rangle$$

#### **Point Group Symmetry**

- Projection on irreducible representations  $\Gamma$  (Wigner);
- Basis function generating machine (1);
- Orthonormalization necessary.
- (1) M. Tinkham, Group Theory and Quantum Mechanics, Dover.
- (2) O. Waldmann, Phys. Rev. B 61, 6138 (2000).
- (3) R. Schnalle, Ph.D. thesis, Osnabrück University (2009).
- (4) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403-452.

#### **Point Group Symmetry II**

$$\mathcal{G}(R) \mid \alpha \, S \, M \,\rangle_a = \sum_{\alpha'} \mid \alpha' \, S \, M \,\rangle_a \, {}_a \langle \, \alpha' \, S \, M \mid \alpha \, S \, M \,\rangle_b$$

- Serious problem: application of G(R), i.e. permutation of spins, leads to different coupling schemes;
- Solution: implementation of graph-theoretical results to evaluate recoupling coefficients  $_a\langle \alpha' S M | \alpha S M \rangle_b$ .

#### Point Group Symmetry III – example square



#### **Point Group Symmetry IV – binary trees**



- Recoupling coefficient  $\langle s_1 s_2 \overline{S}_1 s_3 \overline{S}_2 s_4 SM | s_3 s_4 \overline{S}_{1'} s_1 \overline{S}_{2'} s_2 SM \rangle$  can be evaluated by a graphical transformation of one binary tree into the orther (1,2).
- Exchange and flop operations generate a recoupling formula consisting of square roots, Wigner-6J symbols and sums over intermediate spins.
- Open: optimal coupling for a given symmetry? (3)
- (1) V. Fack, S. N. Pitre, and J. van der Jeugt, Comp. Phys. Comm. 86, 105 (1995).
- (2) V. Fack, S. N. Pitre, and J. van der Jeugt, Comp. Phys. Comm. **101**, 155 (1997).
- (3) M. Geisler, Bachelor Thesis (2010) Bielefeld University.

**★ ★ → → □** ? **×** 

Results

### Results

Jürgen Schnack, Methods for Spin Hamiltonians 26/52

#### **Results I: Cuboctahedron**



Cuboctahedron, s = 3/2, Hilbert space dimension 16,777,216; symmetry  $O_h$  (1). Evaluation of recoupling coefficients very time consuming (1,2).

(1) J. Schnack and R. Schnalle, Polyhedron **28**, 1620 (2009);

(2) R. Schnalle and J. Schnack, Phys. Rev. B **79**, 104419 (2009).

#### **Results II: Icosahedron**



Icosahedron, s = 3/2, Hilbert space dimension 16,777,216; symmetry  $I_h$ Evaluation of recoupling coefficients renders s = 3/2 in  $I_h$  impossible (1).

(1) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403-452.

#### **Results III: Fe**<sub>10</sub>



Spin ring, N = 10, s = 5/2, Hilbert space dimension 60,466,176; symmetry  $D_2$ Symmetry  $C_{10}$  would lead to more complicated recoupling coefficients & complex representation (1).

(1) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403-452.

#### Matrix theory goes on ...



#### ... at the Hessische Landesbank!

# Finite-temperature Lanczos for The icosidodecahedron s = 1/2DIMENSION = 1,073,741,824



#### The idea of thermal Lanczos

$$Z(T,B) = \sum_{\nu} \langle \nu | \exp\left\{-\beta H\right\} | \nu \rangle$$
$$\langle \nu | \exp\left\{-\beta H\right\} | \nu \rangle \approx \sum_{n} \langle \nu | n(\nu) \rangle \exp\left\{-\beta \epsilon_{n}\right\} \langle n(\nu) | \nu \rangle$$
$$Z(T,B) \approx \frac{\dim(\mathcal{H})}{R} \sum_{\nu=1}^{R} \sum_{n=1}^{N_{L}} \exp\left\{-\beta \epsilon_{n}\right\} |\langle n(\nu) | \nu \rangle|^{2}$$

- $|n(\nu)\rangle$  n-th Lanczos eigenvector starting from  $|\nu\rangle$
- Partition function replaced by a small sum:  $R = 1 \dots 10, N_L \approx 100$ .
- J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).

#### **Final form of thermal Lanczos**

$$Z(T,B) \approx \sum_{\Gamma} \frac{\dim(\mathcal{H}(\Gamma))}{R_{\Gamma}} \sum_{\nu=1}^{R_{\Gamma}} \sum_{n=1}^{N_{L}} \exp\left\{-\beta\epsilon_{n}\right\} |\langle n(\nu,\Gamma) | \nu,\Gamma \rangle|^{2}$$

- Approximation better if symmetries taken into account.
- $\Gamma$  denotes the used irreducible representations.

#### How good is thermal Lanczos?



- Works very well, see e.g. cuboctahedron and icosahedron.
- N = 12, s = 3/2: Considered < 100,000 states instead of 16,777,216.
- R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403-452
- J. Schnack and O. Wendland, Eur. Phys. J. B, submitted, arXiv:1009.2889

#### How good is thermal Lanczos?



- Large degeneracies and small subspaces problematic.
- Small subspaces can be included exactly.
- J. Schnack and O. Wendland, Eur. Phys. J. B, submitted, arXiv:1009.2889

#### lcosidodecahedron s = 1/2





#### **Icosidodecahedron** s = 1/2

![](_page_38_Figure_3.jpeg)

• The true spectrum will be much denser. This is miraculously compensated for by the weights.

$$Z(T,B) \approx \sum_{\Gamma} \frac{\dim(\mathcal{H}(\Gamma))}{R_{\Gamma}} \sum_{\nu=1}^{R_{\Gamma}} \sum_{n=1}^{N_{L}} \exp\left\{-\beta\epsilon_{n}\right\} |\langle n(\nu,\Gamma) | \nu,\Gamma \rangle|^{2}$$

**★ ← → → □** ? **×** 

# **Anisotropic Magnetic Molecules**

#### Anisotropic magnetic molecules I – Theory

$$\underline{H}(\vec{B}) = -\sum_{i,j} J_{ij} \vec{\underline{s}}(i) \cdot \vec{\underline{s}}(j) + \sum_{i} d_i \left(\vec{e}_i \cdot \vec{\underline{s}}(i)\right)^2 + \mu_B \vec{B} \cdot \sum_{i}^N \mathbf{g}_i \cdot \vec{\underline{s}}(i)$$

• 
$$\left[ \underset{\sim}{H}, \overset{\vec{S}^2}{\underset{\sim}{\sim}} \right] \neq 0$$
,  $\left[ \underset{\sim}{H}, \overset{\vec{S}_z}{\underset{\sim}{\sim}} \right] \neq 0$ ;

- You have to diagonalize  $H(\vec{B})$  for every field (direction and strength)!  $\Rightarrow$  Orientational average.
- If you are lucky, point group symmetries still exist. Use them!
- Easy: dim(H) < 30,000; possible: 30,000 < dim(H) < 140,000
- (1) J. Schnack, Condens. Matter Phys. 12, 323 (2009);

#### Anisotropic magnetic molecules II – Example

![](_page_41_Figure_3.jpeg)

#### What can be achieved? Mn<sub>3</sub>Cr:

- Two couplings: J<sub>1</sub> to central Cr, J<sub>2</sub> between Mn; Mn: s=5/2, g=2.0; Cr: s=3/2, g=1.95
- Model Mn anisotropy by local axis  $\vec{e}(\vartheta, \phi)$ . Due to  $C_3$  symmetry  $\vartheta_{Mn1} = \vartheta_{Mn2} = \vartheta_{Mn3}$ . Only relative  $\phi = 120^\circ$  determined.
- Model Cr anisotropy by local axis  $\vec{e}(\vartheta, \phi)$ . Due to  $C_3$  symmetry  $\vartheta_{Cr} = 0, \phi_{Cr} = 0$ .
- Result:  $J_1 = -0.29 \text{ cm}^{-1}$ ,  $J_2 = -0.08 \text{ cm}^{-1}$ ,  $d_{Mn} = -1.21 \text{ cm}^{-1}$ ,  $\vartheta_{Mn} = 22^\circ$ ,  $d_{Cr} = +0.17 \text{ cm}^{-1}$ .

M. Prinz et al., Inorg. Chem. 49, 607 (2010) 2093-2102.

#### **Mn<sub>3</sub>Cr III – Angular averaging**

![](_page_42_Figure_3.jpeg)

For a good fit you need several directions, at least 10.

V. I. Lebedev and D. N. Laikov, Dokl. Akad. Nauk 366, 741 (1999); and link to program on www.molmag.de

### $\mathbf{Mn}_{6}\mathbf{Fe}\ \mathbf{I}$

![](_page_43_Figure_3.jpeg)

- Rational design of strict C<sub>3</sub> symmetry of local easy axes (Thorsten Glaser): e.g. Mn<sub>6</sub>Cr (1), Mn<sub>6</sub>Fe (2)
- Mn<sub>6</sub>Fe:  $J_1$  between Mn in caps,  $J_2$  to central Fe; Mn anisotropy modeled by local axis  $\vec{e}(\vartheta, \phi)$  with  $\vartheta_{Mn1} = \vartheta_{Mn2} = \vartheta_{Mn3} = 36.5^{\circ}$ . Only relative  $\phi = 120^{\circ}$  determined.
- Mn: s=2, g=1.98; Fe: s=1/2, g-tensor.

 T. Glaser, M. Heidemeier, T. Weyhermüller, R. D. Hoffmann, H. Rupp, P. Müller, Angew. Chem.-Int. Edit. 45, 6033 (2006).
 T. Glaser, M. Heidemeier, E. Krickemeyer, H. Bögge, A. Stammler, R. Fröhlich, E. Bill, J. Schnack, Inorg. Chem. 48, 607 (2009).

#### **Mn<sub>6</sub>Fe II – Results**

![](_page_44_Figure_3.jpeg)

T. Glaser, M. Heidemeier, E. Krickemeyer, H. Bögge, A. Stammler, R. Fröhlich, E. Bill, J. Schnack, Inorg. Chem. **48**, 607 (2009).

#### $[V_4^{III}CI_6(thme)_2(bipy)_3]$

- 4  $V_4^{III}$  ions with s = 1; approximate  $C_3$  symmetry;
- 2 exchange interactions;
- Central V: axial anisotropy;
- Outer Vs: local anisotropy axis with azimuthal angle  $\vartheta$ .

#### • Powder average.

Ian S. Tidmarsh, Luke J. Batchelor, Emma Scales, Rebecca H. Laye, Lorenzo Sorace, Andrea Caneschi, Jürgen Schnack and Eric J.L. McInnes, Dalton Trans. (2009) 9402

![](_page_45_Picture_9.jpeg)

![](_page_46_Figure_2.jpeg)

Two equally good parameter sets.

 $V_4 \parallel \parallel$ 

![](_page_47_Figure_3.jpeg)

High fields could distinguish.

![](_page_48_Figure_2.jpeg)

Accuracy of measurement limits modeling.

### $V_4$ – Anisotropy tensors

![](_page_49_Picture_2.jpeg)

Cartoon of anisotropy tensors.

![](_page_50_Picture_1.jpeg)

### Summary

- Bielefeld does exist! It's a nice place for matrix diagonalization.
- One can indeed exploit SU(2) and point group symmetries together. Good for molecules, since they are of finite size.
- Problem: Recoupling coefficients.
- Finite-temperature Lanczos is a good approximate method for Hilbert space dimensions below  $10^{10}$ .
- Anisotropic Hamiltonians with several parameters can be accurately treated today.

### Thank you very much for your attention.

Information

### Molecular Magnetism Web

### www.molmag.de

Highlights. Tutorials. Who is who. Conferences.