Theoretical formation of carbon nanomembranes under realistic conditions using classical molecular dynamics

Jürgen Schnack

Department of Physics – University of Bielefeld – Germany http://obelix.physik.uni-bielefeld.de/~schnack/

Chexdyn Kickoff Meeting, TU Wien, Austria, 11 June 2025

Disclaimer

This talk may contain parts of an earlier talk "What we do <u>not</u> understand about carbon nanomembranes".

Solution in 2022:

Wien IX, Berggasse 19

Disclaimer

This talk may contain parts of an earlier talk "What we do <u>not</u> understand about carbon nanomembranes".

Solution in 2022:

Wien IX, Berggasse 19

Chexdyn

Introduction

Introduction

There are various well-known carbon-based nanostructures ...

Regular, crystalline, sp² carbon.

Jürgen Schnack, CMD for CNM 4/26

... and carbon-based cross-linked SAMs = CNM (I)

A. Turchanin, A. Gölzhäuser, Advanced Materials 28, 6075-6103 (2016).

W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Gölzhäuser, and M. Grunze, Appl. Phys. Lett. 75, 2401 (1999).

Introduction

... and carbon-based cross-linked SAMs = CNM (II)

A. Turchanin et al., Advanced Materials 21, 1233 (2009); I. Amin et al., Small 6, 1623 (2010).

... with amazing water filtration properties (to be discussed)

- (A) Whereas water translocates through CNMs with extraordinary performance, other small molecules or gases are practically blocked.
- (B) Topographical closeup to a nanopore with an artistic overlay drawing of the pore by laterally crosslinking seven TPT molecules.
- (C) Statistical analysis of the nanopore diameter distributions (0.7 nm with 0.1 nm standard deviation) extracted from the acquired AFM images.

Y. Yang *et al.*, ACS Nano **12**, 4695 (2018).

+ ← → → □ ? *

Problems for theory

Problems for theory

- Systems contain very many carbon atoms.
- Structure disordered/irregular. Holes! Holes? Huge holes! Huge?
- CNMs very soft: Young's module ca. 10 GPa, graphene 1000 GPa.
- Quantum methods, even DFT, cannot deal with such big systems.
- Goal: realistic modelling of CNM structure and even formation with correct properties.
- Can we model water translocation? Time scales!!!

Contents for you today

1. Carbon nanomembranes $\sqrt{}$

- 2. Classical molecular dynamics
- 3. Mechanical properties
- 4. Structure of CNMs \Rightarrow Levin & Fil
- 5. Open problems \Rightarrow Levin & Fil

Classical Molecular Dynamics

Classical Molecular Dynamics

- CMD can model very large systems $(\sim 10.000.000 \text{ particles}).$
- CMD can find ground states, local energy minima, and model dynamics.
- But how should this be realistic for carbon-based compounds, where the chemical bond is very much of quantum nature?

$\ensuremath{\mathit{sp}}$ hybridization modes

sp, sp^2 , and sp^3 hybridization modes.

wikipedia: orbital hybridization

Very sophisticated classical carbon potential

$$H(\vec{r}_1, \vec{p}_1; \vec{r}_2, \vec{p}_2; \dots) = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m} + V(\vec{r}_1, \vec{r}_2, \dots)$$
$$V(\vec{r}_1, \vec{r}_2, \dots) = \sum_{i \neq j}^{N} U_2(|\vec{r}_i - \vec{r}_j|, Z_i) + \sum_{i \neq (j < k)}^{N} U_3(|\vec{r}_i - \vec{r}_j|, |\vec{r}_i - \vec{r}_k|, \Theta_{ijk}, Z_i)$$

 Θ_{ijk} – dehedral angles, Z_i continous coordination number.

D. W. Brenner et al., J. Phys.: Cond. Mat. 14, 783 (2002).

N. A. Marks, Phys. Rev. B 63, 035401 (2000).

Dependence on coordination number Z_i

Coordination influences strength and direction of bonding. Mocks sp^n binding modes.

N. A. Marks, Phys. Rev. B **63**, 035401 (2000). A. Mrugalla, Master thesis (2013)

What can be achieved realistically?

- Structure calculations. Irregular = many structures correct!
- Dynamical self-organization (1).
- Mechanical properties, such as vibrational spectra and response to mechanical stress.
- Sorry, no electronic properties, such as conductance or heat conductance or UPS spectra.
 ⇒ Might be possible soon! Levin! + Andrei Postnikov
- (1) R. C. Powles, N. A. Marks, and D. W. M. Lau, Phys. Rev. B 79, 075430 (2009).

Mechanical properties (Young's modulus)

F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Physica E 99, 215 (2018).

L. Mihlan, J. Ehrens, and J. Schnack, Physica E 167, 116170 (2025).

Question

What is the predictive power of classical carbon potentials for structure and moduli for known carbon materials?

... before we start to investigate unknown materials!

Ground state distances for graphene, CNT, and diamond

Table 1: Ground-state dimensions in Å of graphene, CNT, and diamond for the investigated potentials (LAMMPS).

(* No proper ground state structure found; † anisotropic.)

<u> </u>			
potential	graphene	CNT	diamond
	C-C distance	C-C distance	lattice const.
EDIP REBO-II ABOP Tersoff 89 Tersoff 90 Tersoff 94 Tersoff BNC Tersoff EA AIREBO+LJ+t AIREBO+LJ AIREBO+t AIREBO+t AIREBO	1.42 1.42 1.42 1.46 1.46 * 1.55 1.44 1.40 1.40 1.40 1.40 1.40	1.42 1.42 1.424, 1.417 † 1.46 * 1.44 1.48 1.41 1.40 1.40 1.40 1.40	3.56 3.58 3.46 3.57 3.56 3.56 3.56 3.56 3.58 3.58 3.58 3.58 3.58 3.58
experimental	1.42	1.42	3.567

Young's modulus for graphene

Young's modulus of graphene for various sizes and potentials. N denotes the number of atoms in the approximately square graphene sheets. Open boundary conditions are applied.

Experimental value: 1000 GPa.

Young's modulus for CNT

Young's modulus of a (20,20) CNT with armchair geometry along the tube, taken as x-direction, for various sizes and potentials. N denotes the number of atoms of the tube. Open boundary conditions are applied.

Experimental value: 1000 GPa.

Young's modulus for diamond

Structure and directions as well as Young's modulus of diamond taken in various directions on the northern hemisphere around the positive x-direction for N = 8631 and the EDIP potential. Open boundary conditions are applied.

Experimental values: 1.05 TPa ... 1.21 TPa

Modulus

Young's modulus for CNMs – Howto?

Simulation method matters a lot! How would you do it?

L. Mihlan, J. Ehrens, and J. Schnack, Physica E 167, 116170 (2025).

Summary

- Classical Molecular Dynamics can be set up for carbon systems using effective many-body carbon potentials.
- Ground-state geometries and Young's moduli can be determined with great accuracy (exception graphite).
- CNMs are not carbon ground states! Disordered carbon systems constitute local energy minima. There are *zillions*.
- Levin and Fil can understand and model the formation CNMs including holes!

Outlook: Water permeation

- Frozen CNM, TIP3P water.
- Single file motion? Preorganization?
- Problem: Time scales!
- Large pressure necessary.

J. Ehrens, Ph.D. Thesis, Bielefeld University (2022).

Thank you very much for your

attention.

The end