Theoretical formation of carbon nanomembranes under realistic conditions using classical molecular dynamics

Jürgen Schnack

Department of Physics – University of Bielefeld – Germany http://obelix.physik.uni-bielefeld.de/~schnack/

Seminar, TU Wien, 22 November 2022

Disclaimer

This talk may contain parts of an earlier talk "What we do <u>not</u> understand about carbon nanomembranes".

Introduction

Introduction

There are various well-known carbon-based nanostructures ...

Regular, crystalline, sp² carbon.

Jürgen Schnack, CMD for CNM 3/35

... and carbon-based cross-linked SAMs = CNM (I)

A. Turchanin, A. Gölzhäuser, Advanced Materials 28, 6075-6103 (2016).

Introduction

... and carbon-based cross-linked SAMs = CNM (II)

A. Turchanin et al., Advanced Materials 21, 1233 (2009); I. Amin et al., Small 6, 1623 (2010).

- (A) Whereas water translocates through CNMs with extraordinary performance, other small molecules or gases are practically blocked.
- (B) Topographical closeup to a nanopore with an artistic overlay drawing of the pore by laterally crosslinking seven TPT molecules.
- (C) Statistical analysis of the nanopore diameter distributions (0.7 nm with 0.1 nm standard deviation) extracted from the acquired AFM images.

Y. Yang *et al.*, ACS Nano **12**, 4695 (2018).

← ← → → □ ? **×**

Problems for theory

Problems for theory

- Systems contain very many carbon atoms.
- Structure very likely irregular. Holes! Huge holes!
- CNMs very soft: Young's module ca. 10 GPa, graphene 1000 GPa.
- Quantum methods, even DFT, cannot deal with such systems.
- Goal: realistic modelling of CNM formation with correct proeprties.
- Can we model water translocation?

Contents for you today

1. Carbon nanomembranes $\sqrt{}$

- 2. Classical molecular dynamics
- 3. Mechanical properties
- 4. Structure of CNMs
- 5. Open problems

Classical Molecular Dynamics

Classical Molecular Dynamics

- CMD can model very large systems $(\sim 10.000.000 \text{ particles}).$
- CMD can find ground states and model dynamics.
- But how should this be realistic for carbon-based compounds, where the chemical bond is of quantum nature?

$\ensuremath{\mathit{sp}}$ hybridization modes

sp, sp^2 , and sp^3 hybridization modes.

wikipedia: orbital hybridization

CMD

Very sophisticated classical carbon potential

$$H(\vec{r}_1, \vec{p}_1; \vec{r}_2, \vec{p}_2; \dots) = \sum_{i=1}^N \frac{\vec{p}_i^2}{2m} + V(\vec{r}_1, \vec{r}_2, \dots)$$
$$V(\vec{r}_1, \vec{r}_2, \dots) = \sum_{i \neq j}^N U_2(|\vec{r}_i - \vec{r}_j|, Z_i) + \sum_{i \neq (j < k)}^N U_3(|\vec{r}_i - \vec{r}_j|, |\vec{r}_i - \vec{r}_k|, \Theta_{ijk}, Z_i)$$

 Θ_{ijk} – dehedral angles, Z_i continous coordination number.

D. W. Brenner *et al.*, J. Phys.: Cond. Mat. **14**, 783 (2002). N. A. Marks, Phys. Rev. B **63**, 035401 (2000).

Dependence on coordination number Z_i

Coordination influences strength and direction of bonding. Mocks sp^n binding modes.

N. A. Marks, Phys. Rev. B **63**, 035401 (2000). A. Mrugalla, Master thesis (2013)

What can be achieved realistically?

- Structure calculations.
- Dynamical self-organization (1).
- Mechanical properties, such as vibrational spectra and response to mechanical stress.
- Sorry, no electronic properties, such as conductance or heat conductance or XPS spectra.
- (1) R. C. Powles, N. A. Marks, and D. W. M. Lau, Phys. Rev. B 79, 075430 (2009).

Mechanical properties (Young's modulus)

Question

What is the predictive power of classical carbon potentials for structure and moduli for known carbon materials?

... before we start to investigate unknown materials!

Ground state distances for graphene, CNT, and diamond

Table 1: Ground-state dimensions in Å of graphene, CNT, and diamond for the investigated potentials (LAMMPS).

(* No proper ground state structure found; † anisotropic.)

potential	graphene	CNT	diamond				
	C-C distance	C-C distance	lattice const.				
EDIP	1.42	1.42	3.56				
REBO-II	1.42	1.42	3.58				
ABOP	1.42	1.424, 1.417 †	3.46				
Tersoff 89	1.46	1.46	3.57				
<u>T</u> ersoff 90	* ,	*	3.56				
Tersoff 94	1.55	*	3.56				
Tersoff BNC	1.44	1.44					
Tersoff EA	1.48	1.48	3.57				
AIREBO+LJ+I	1.40	1.41	3.58				
AIREBO+LJ			3.58				
AIREBO+t			3.58 3.58				
	1.40	1.40	3.30				
experimental	1.42	1.42	3.567				

Young's modulus for graphene

Young's modulus of graphene for various sizes and potentials. N denotes the number of atoms in the approximately square graphene sheets. Open boundary conditions are applied.

Experimental value: 1000 GPa.

Young's modulus for CNT

Young's modulus of a (20,20) CNT with armchair geometry along the tube, taken as x-direction, for various sizes and potentials. N denotes the number of atoms of the tube. Open boundary conditions are applied.

Experimental value: 1000 GPa.

Young's modulus for diamond

Structure and directions as well as Young's modulus of diamond taken in various directions on the northern hemisphere around the positive x-direction for N = 8631 and the EDIP potential. Open boundary conditions are applied.

Experimental values: 1.05 TPa ... 1.21 TPa

Conclusion

For the investigated observables (bond length & Young's modulus) and the chosen carbon materials EDIP and REBO-II perform overall well.

Structure

How to find the

Structure of CNMs?

Questions

- **The** structure or **a** structure?
- Structure very likely a metastable state, a local energy minimum. Many equivalent structures possible.
- How to model? Initial conditions, cooling, role of initial correlations, ...?
- Which structures are correct? Observables?
- X-ray structure determination impossible!
- Two approaches so far: Bielefeld and Australia.

Bielefeld approach: Initialization with initial molecular correlations

Model: includes only carbon atoms (+ surface potential);

Initial state: randomized carbon positions in SAM, vertical force field;

Cooling: Nose-Hoover or alike;

LAMMPS: EDIP and analytical forces included in our local version.

Examples of CMNs 1

J. Ehrens, F. Gayk, P. Vorndamme, T. Heitmann, N. Biere, D. Anselmetti, Xianghui Zhang, A. Gölzhäuser, J. Schnack, Phys. Rev. B **103** (2021) 115416

Examples of CMNs 2

J. Ehrens, F. Gayk, P. Vorndamme, T. Heitmann, N. Biere, D. Anselmetti, Xianghui Zhang, A. Gölzhäuser, J. Schnack, Phys. Rev. B **103** (2021) 115416

Examples of CMNs 3

Abbildung 26: DFT Struktur (links); $k = 60 \frac{\text{eV}}{\text{Å}}, T = 300 \text{ K}$ auf DFT Struktur (rechts)

Randomized and cooled DFT structure (1).

(1) P. Cabrera-Sanfelix, A. Arnau, and D. Sanchez-Portal, Phys. Chem. Chem. Phys. **12**, 1578 (2010). (2) F. Gayk, Master Thesis, Bielefeld University (2018)

Structure

Examples of CMNs

CNM have got holes (pores)! In simulations this depends on initial conditions: more violence \Rightarrow more holes.

Young's modulus of CMNs

Abbildung 13: Aufbau des Beulentests [44]

Tabelle 7.2: E-Module (bezüglich: Boxvolumen|Oberflächennetzvolumen)

	$E_x\ /\ {\rm GPa}$	$E_y\ /\ {\rm GPa}$
TPT (T=700 K, $k = 30 \frac{\text{eV}}{\Lambda}$)	436 847	334 649
TPT (T=700 K, $k = 200 \frac{\text{eV}}{\Lambda}$)	215 448	220 457
TPT (T=300 K, $k = 60 \frac{\text{eV}}{\Lambda}$)	325 987	316 960
TPT (T=1100 K, $k = 60 \frac{\text{eV}}{\text{\AA}}$)	351 866	339 838
BPT (T=700 K, $k = 60 \frac{\text{eV}}{\Lambda}$)	202 736	191 695
NPTH (T=700 K, $k = 60^{\circ} \frac{\text{eV}}{\text{A}}$)	536 1367	500 1277

precursor molecules	thickness of SAM [Å]	structure of SAM	area per molecule [Å ²]	carbon density [nm ⁻³]	Young's modulus [GPa]
BPT	10	2×2	28.7	42	9.9
TPT	12	$\sqrt{3} \times \sqrt{3}$	21.6	64	9.0
NPTH	6	$\sqrt{3} \times \sqrt{3}$	21.6	77	18.6

Abbildung 14: E-Module aus Beulentest [44]

Theoretical Young's moduli closer to graphene; factor 10 ... 50 bigger than experiment.

J. Ehrens, F. Gayk, P. Vorndamme, T. Heitmann, N. Biere, D. Anselmetti, Xianghui Zhang, A. Gölzhäuser, J. Schnack, Phys. Rev. B **103** (2021) 115416 X. Zhang, C. Neumann, P. Angelova, A. Beyer, and A. Gölzhäuser, Langmuir **30**, 8221 (2014).

Australian approach: random carbon gas with excluded volume

(1) F. Vukovic, N. Marks, private communication.

- Initial excluded volumes at random future hole positions; number of carbons preserved.
- No initial molecular correlations.
- Cooling and dynamical selforganization.
- Realistic Young's moduli! Holes.

Outlook: Water permeation

- Frozen CNM, TIP3P water.
- Single file motion? Preorganization?
- Problem: Time scales!
- Large pressure necessary.

J. Ehrens, Ph.D. Thesis, Bielefeld University (2022).

Summary

- Classical Molecular Dynamics can be set up for carbon systems using effective many-body carbon potentials.
- Ground-state geometries can be determined with great accuracy (exception graphite).
- CNMs with reasonable characteristics can be achieved when a holes are introduced *a priori*.
- Can we understand and model the formation of holes?
- Just to remember: electronic properties cannot be modeled.

Many thanks to

Professor Nigel Marks, Curtin University, Australia

Thank you very much for your

attention.

The end