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à áá à p ? 6 The Bielefeld conspiracy

The Bielefeld conspiracy

The story goes that the city of BIELEFELD in the
German state of North Rhine-Westphalia DOES
NOT actually EXIST. Rather, its existence is merely
propagated by an entity known only as THEM,
which has conspired with the authorities to create
the illusion of the city’s existence.

The origins of and reasons for this conspiracy are
not a part of the original theory. Speculated origi-
nators jokingly include the CIA, Mossad, or aliens
who use Bielefeld University as a disguise for their
spaceship.

Do you know anybody from Bielefeld?

https://en.wikipedia.org/wiki/Bielefeld Conspiracy
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Kagome lattice antiferromagnet – the problem

• Thermodynamic functions, in particular heat ca-
pacity and susceptibility.

• Magnetization curve, in particular thermal stabil-
ity of plateau atMsat/3.

• Method: Finite-temperature Lanczos.

• Comparison with tensor-network calculations.

J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98 (2018) 094423
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Model Hamiltonian

H∼ = J
∑
i<j

~s∼i ·~s∼j + g µBB

N∑
i

s∼
z
i

Heisenberg Zeeman
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Finite-temperature Lanczos Method I

Z(T,B) =
∑
ν

〈 ν | exp
{
−βH∼

}
| ν 〉

〈 ν | exp
{
−βH∼

}
| ν 〉 ≈

∑
n

〈 ν |n(ν) 〉 exp {−βεn} 〈n(ν) | ν 〉

Z(T,B) ≈ dim(H)

R

R∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν) | ν 〉|2

• |n(ν) 〉 n-th Lanczos eigenvector starting from | ν 〉

• Partition function replaced by a small sum: R = 1 . . . 10, NL ≈ 100.

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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Finite-temperature Lanczos Method II

Z(T,B) ≈
∑

Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν,Γ) | ν,Γ 〉|2

• Approximation better if symmetries taken into account.

• Γ denotes the used irreducible representations;
often this is just the S∼

z symmetry, i.e. Γ ≡M

J. Schnack and O. Wendland, Eur. Phys. J. B 78 (2010) 535-541
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Icosidodecahedron s = 1/2

Exp. data: A. M. Todea, A. Merca, H. Bögge, T. Glaser, L. Engelhardt, R. Prozorov, M. Luban, A. Müller, Chem. Commun.,
3351 (2009).
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Icosidodecahedron s = 1/2

• The true spectrum will be much denser. This is miraculously compensated for by
the weights.

Z(T,B) ≈ dim(H)

R

R∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν,Γ) | ν,Γ 〉|2
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Kagome 42 – heat capacity

• Low-T peak moves to higher T with increasing N .

• Density of low-lying singlets seems to move to higher excitation energies.

J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98 (2018) 094423
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Kagome 42 – entropy

• Rise of entropy for higher T with increasing N .

J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98 (2018) 094423
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Kagome 42 – susceptibility

• Singlet-triplet gap shrinks very slowly with increasing N .

(1) A. Laeuchli, J. Sudan, and R. Moessner, arXiv:1611.06990.
(2) J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98 (2018) 094423
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Kagome 42 – magnetization

• Plateaus and jump; asymmetric melting of the plateau atMsat/3.

(1) S. Capponi, O. Derzhko, A. Honecker, A. M. Laeuchli, J. Richter, Phys. Rev. B 88, 2 144416 (2013).
(2) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002).
(3) H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 83, 104710 (2014).
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Kagome – tensor network calculations

• Tensor network calculations for the infinite system (1).

(1) Xi Chen, Shi-Ju Ran, Tao Liu, Cheng Peng, Yi-Zhen Huang, Gang Su, Science Bulletin 63, 1545 (2018).
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Error estimates of FTLM for the kagome calculations
MAGNETISM OF THE N = 42 KAGOME LATTICE … PHYSICAL REVIEW B 98, 094423 (2018)

FIG. 9. Approximation of the specific heat for a kagome lattice
with N = 30 for various settings of control parameters; see text.

more accurate the larger the dimension of the underlying
Hilbert space is. But also for a random vector whose com-
ponents are not ± 1 this approximation is valid, an insight
that derives from the concept of typicality [96– 100]. Using
more than one random vector, i.e., R > 1, improves the
approximation.

In the context of the investigated kagome lattice this means
that one needs a smaller number of random vectors for a larger
quantum system.

The second control parameter NL determines how good
the exponential is approximated by its representation in the
Krylov space constructed from the random vector. Here the
gathered numerical experience in the field of Lanczos diag-
onalization suggests that NL ! 100 already delivers rather
accurate results. The reason is that the low-lying levels are
very accurate in Lanczos procedures which renders the low-
temperature behavior accurate [74]. The high-temperature
behavior is also bound to be correct since—growing with
NL —many coefficients of high-temperature series expansions
are evaluated correctly [79,80]. The largest deviations of
thermodynamic observables as functions of temperature oc-
cur for characteristic intermediate temperatures, e.g., T ≈
|J |/kB in unfrustrated single-J spin Hamiltonians [74] or
the Néel temperature, etc. Larger NL , of course, improve
the approximation. The appearance of numerical ghost states
does not spoil the calculation, since these contribute with
weight zero to the partition function Eq. (2). In our cal-
culations we chose as minimal convergence criterion that
the first excited Lanczos eigenvalue should acquire max-
imal numerical accuracy which leads to NL safely larger
than 250.

In the following we demonstrate how the FTLM results
depend on the two control parameters for kagome lattices
of size N = 30 as well as for N = 42. Figure 9 shows the
results of various calculations varying R (different colors).
The red curve displays the result for a calculation using
only S

∼
z symmetry and R = 100 as well as NL = 250. Using

further symmetries such as the point-group symmetries of the
system should improve calculations on very general grounds.

FIG. 10. Approximation of the specific heat for a kagome lattice
with N = 42 for various settings of control parameters; see text. The
curves are nearly indistinguishable.

The following SPINPACK calculations use a translation that is
expressed as a cyclic group. One notices:

(i) For small R = 2 (green curves) the results differ for
different sets of random vectors for small temperatures drasti-
cally in their amplitude. Nevertheless, the features (e.g., min,
max) appear always at (almost) the same temperatures.

(ii) For R = 5 (blue curves) results change drasti-
cally when including an additional spin-flip symmetry for
the subspaces with M = 0 (labeled ud). When compar-
ing with the converged result (black solid curve) one no-
tices that the inclusion of this symmetry improves the
approximation.

(iii) For R = 10 (magenta curves) we varied NL by requir-
ing that higher-lying excited states should also be numerically
converged (conv 2 = two lowest levels converged, etc.). Since
NL ! 250 anyway, a further increase does not modify the
result.

(iv) We consider our final calculation for R = 50 (black
solid curve) as converged and virtually exact.

The outlined procedure corresponds to the typical practical
approach in Monte Carlo calculations. One increases the
number of samples, etc., until the result does not further
improve.

For N = 42, on the other hand, such an approach is not
possible since the calculations even for small R consume
several millions of CPU hours. We thus chose the rather large
R = 10 for all subspaces with M = 0 since the ground state
and many low-lying states are contained in these subspaces,
for which in addition the spin-flip symmetry was employed.
The subspaces for M = 1, that lack spin-flip symmetry, there-
fore turned out to be the largest. We thus had to restrict our
calculations to small R. In order to gain some control we
performed two independent simulations with R = 2 each. As
one can see in Fig. 10 the result varies only very little for
temperatures around 0.1J . We conclude that for N = 42 the
large dimension of the Hilbert subspaces (for small M) work
in our favor. For the smaller subspaces belonging to larger M
we again used larger R.

094423-7

FTLM more accurate for larger dimensions of Hilbert space.
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Summary

• Largest FTLM calculation for a spin system so far
(5 Mio. core hours).

• Unexpected N -dependence of low-T peak of
heat capacity.

• B-dependence of density of states leads to
asymmetric melting of plateaus.
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Thank you very much for your
attention.

The end.
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Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.
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