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Imagine . . .
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à áá à p ? 6 Imagine . . .

Imagine someone tells you that
toroidal magnetic molecules

are superb building blocks
of quantum devices.
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à áá à p ? 6 Imagine . . .

Would you buy one?
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à áá à p ? 6 Imagine . . .

Or would you first check
such molecules?

And if, what would you
investigate?
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à áá à p ? 6 Imagine . . .

Quantum devices – figures of merit

E

Memory unit

- requires bistability

- problem quantum tunneling

Q-bit

- requires coherence

- problem decoherence
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à áá à p ? 6 Contents for you today

Yes, we can!
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1. Bistability and tunneling

2. Toroidal magnetic molecules

3. Clock transitions and decoherence

4. Bonus program: Some magic

We are the sledgehammer team of matrix diagonalization.
Please send inquiries to jschnack@uni-bielefeld.de!
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à áá à p ? 6 Bistability and tunneling

Bistability and tunneling
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à áá à p ? 6 Singel-ion anisotropy I

Single-ion anisotropy – single spin I

E M
321−1−2−3

E B

H∼ = D(s∼
z)2 + gµBBs∼

z

D < 0 easy axis, D > 0 hard axis;

eigenvectors: | s,m 〉

eigenvalues: Em = Dm2 + gµBBm , m = −s, . . . , s

IMPORTANT: [H∼ , s∼
z] = 0⇒ level crossings at B = 0
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à áá à p ? 6 Singel-ion anisotropy II

Single-ion anisotropy – single spin II

E M
321−1−2−3

E B

H∼ = D(s∼
z)2 + E

{
(s∼
x)2 − (s∼

y)2
}

+ gµBBs∼
z

|E| < |D| – major axes of the anisotropy tensor;

NO LONGER eigenvectors: | s,m 〉

eigenvalues are more complicated functions of
~B = B~ez: Eµ(B)

IMPORTANT: [H∼ , s∼
z] 6= 0⇒ avoided level crossings at

B = 0 for integer spins
(otherwise Kramers degeneracy)
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à áá à p ? 6 Singel-ion anisotropy III

Single-ion anisotropy – single spin III

E M
321−1−2−3

E M
321−1−2−3

H∼ = D(s∼
z)2 + E

{
(s∼
x)2 − (s∼

y)2
}

+ gµBBs∼
z

| s,m 〉 – m is NOT a good quantum number any longer

What do the spectra and the arrows mean?

Perturbation picture: spectra show eigenvalues of
dominant term D(s∼

z)2 with eigenstates | s,m 〉.

For the full H∼ these states are NOT stationary and thus
time-evolve (tunnel) into | s,−m 〉 after some time.
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à áá à p ? 6 Bistability I

Bistability – uniaxial system – S∼
z-symmetry

E B

γ

M

B

Goal: single-molecule magnets (SMM)

H∼ =
∑
iDi(s∼

z
i )

2 + µBB
∑
i gis∼

z
i +H∼ ferro int

IMPORTANT: [H∼ , S∼
z] = 0⇒ level crossings at B = 0

⇒ low-temperature TIME-DEPENDENT hysteresis

Side remark: For macroscopic systems in the ferro-
magnetic phase the relaxation time is HUGE, that’s
why we don’t experience it.
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à áá à p ? 6 Bistability II

Bistability – general system – NO S∼
z-symmetry

E B

M

B

problem!

H∼ =
∑
i~s∼i ·Di ·~s∼i + µBB

∑
i gis∼

z
i +H∼ ferro int

Di individual anisotropy tensors

⇒ low-temperature TIME-DEPENDENT hysteresis
closes at B = 0 – not bistable & bad for storage

REASON: branching at avoided level crossings;
strong dependence on tunneling gap and Ḃ;

slow change of B ⇒ system follows ground state,
compare Landau-Zener-Stückelberg
or slow/fast train at switch
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à áá à p ? 6 Bistability III

Bistability – state of the art

S
6

Cr

Mn

Today’s major goals:

ferromagnetic spin-spin interaction

uniaxial anisotropy tensors

symmetry that does not permit E-terms

IMPORTANT FOR TODAY: Anisotropy tensors that are
not uniaxial cause a tunneling gap for integer total spin
(non-Kramers systems)!!!

What about toroidal magnetic molecules?
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à áá à p ? 6 Toroidal magnetic molecules

Toroidal magnetic molecules
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à áá à p ? 6 Toroidal I

Torodial magnetic molecules I

Toroidal magnetic moment

~τ∼ =
∑
i ~ri × ~s∼i

Model Hamiltonian I

H∼ = −2
∑
i<j Jij~s∼i · ~s∼j +D

∑
i

(
~s∼i · ~e

3
i

)2

+µB g ~B ·
∑
i ~s∼i

Classical ground states with non-vanishing toroidal
moment

⇒ Leads to two zero-field split quantum ground states.
⇒ Reduced bistability, poor storage unit

(some hope: ∆ ↓ with S and D ↑)

D. Pister, K. Irländer, D. Westerbeck, and J. Schnack, Phys. Rev. Research 4, 033221 (2022).
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à áá à p ? 6 Toroidal II

Torodial magnetic molecules II

90
o

(a)

(b)

Model Hamiltonian I

H∼ = −2
∑
i<j Jij~s∼i · ~s∼j +D

∑
i

(
~s∼i · ~e

3
i

)2

+µB g ~B ·
∑
i ~s∼i

Can one distinguish (a) and (b)?

⇒ Collective rotation of the anisotropy axes (and field
direction) is a symmetry of the Hamiltonian!

⇒ Spectrum, magnetization not altered, but toroidal
moment.

⇒ Concept of toroidal moment does not constitute or
explain properties!!!

⇒ Open: Do anisotropic interactions help? Scale!

D. Pister, K. Irländer, D. Westerbeck, and J. Schnack, Phys. Rev. Research 4, 033221 (2022).
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à áá à p ? 6 Clock transitions

Stability of clock transitions
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à áá à p ? 6 Context

Context

Investigation of decoherence of a
subsystem if the combined system
(including bath) is evolved via the
time-dependent Schrödinger equa-
tion.

Employed measure of decoherence: reduced density matrix

ρ
∼system = Trbath

(
ρ
∼

)

Typicality: unitary-time evolution of pure state approximates dynamics in environment.
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à áá à p ? 6 Clock transitions 1

Concept of clock transitions

B

E

0

Fluctuations of B produce little
effect on dynamics of superpo-
sition since ∆E of clock tran-
sition is independent of field at
B = 0, at least to some order of
a Taylor expansion.
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à áá à p ? 6 Clock transitions 2

Perfect clock transitions

B

E

0

Fluctuations produce very
small effect on superposition
since ∆E of transition is totally
independent of field.
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à áá à p ? 6 Decoherence of clock transition

numberm by ± 1, as given in the schematic energy diagram (Fig. 1D).
The peak heights are proportional to the difference in thermal occupa-
tion of the initial and final states (29); thus, the two tallest peaks corre-
spond to transitions out of the ground state. The difference between
resonance frequencies ( f T0Tþ

" f ST"
or, equivalently, f STþ

" f T0T"
) di-

rectly gives themagnetic interaction energy J between the two spins (29),
which is 0.77 ± 0.02 GHz for this dimer spacing (fig. S5). Because the
interaction energy J is smaller than the Zeeman energy, the |T−〉 state
becomes the ground state.

We find that the TiO-TiB dimer can be positioned close enough to
yield coupling strengths sufficiently strong to shift the singlet state down
in energy to become the ground state (Fig. 1E). This interaction strength
was not accessible for the TiO-TiO dimers (29). Decreasing the spacing
of the atoms in the TiO-TiB dimer to r = 0.72 nm (Fig. 1C) results in
three ESR peaks in our measurement range (5 to 30 GHz). In addition
to the two triplet-triplet transitions ( f T0Tþ

and f T0T"
), the singlet-triplet

(S-T0) transition is now visible as resonance at f ST0
≈ 29GHz.Here, the

resonance frequency f ST0
directly gives the value of Jwhen the detuning

(see below) is negligible.
While a traditional ESRmeasurement applies a radio frequency (RF)

magnetic field, in the ESR-STM technique used here, the RF magnetic
field at the Ti atom arises from the modulation of the atom’s position
(32) in the nonuniform magnetic field Btip (29, 33) generated by the
STM tip. This enables the ESR transition of Dm = 0, ± 1. The triplet-
triplet transitions in the dimer are driven by a gradient in Bx

tip , the
component perpendicular toBext. This is the same component required
for driving the |0〉 to |1〉 transition for an individual Ti atom (Dm = ± 1;
section S6). In contrast, driving the S-T0 transition (Dm = 0) requires a
gradient inBz

tip, the component of Btip parallel to Bext (12). In this work,
we chose a tip having both spatial components of Btip, which therefore
can drive the transitions of Dm = 0, ± 1 in the dimer.

Heisenberg exchange coupled spin-1/2 Ti atoms
From the ESR peak splitting, we determined the magnetic interaction
energy J for 30 dimers with different separations and orientations (sec-
tion S3). To exclude the effects of Btip on the resonance frequencies, we
measured the ESR spectra as a function ofBtip and determined the value
of J from the fit based on the spin Hamiltonian (section S4). The
measured values of J are given in Fig. 2A as a function of atomic separa-
tions (r, ranging from 0.72 to 1.3 nm).We find that for atomic distances
of less than 1 nm, the TiO-TiB dimers are dominantly coupled by the
Heisenberg exchange interaction JS1 ⋅ S2, where S1 and S2 are the spin
operators. Moreover, the interaction is found to be isotropic (fig. S3).

The exchange interaction generally shows exponential dependence
on the separation between spins (34). Given the isotropic interaction
energy J = J0 exp[− (r − r0)/d] (34) and taking r0 = 0.72 nm, we obtain
for TiO-TiB dimers a decay constant d = 64.6 ± 4.9 pm and a prefactor
J0 = 28.9 ± 1.3 GHz. The decay constant matches well with reported
values for exchange interactions across a vacuum gap (29, 33, 35).
For TiO-TiO and TiB-TiB dimers, we obtain d = 40.0 ± 2.0 pm (29)
and 94.0 ± 0.3 pm (fig. S3D), respectively. This difference in decay
constant between the dimer types indicates the sensitivity of the ex-
change interaction to either the orbitals being involved in the inter-
action or the spatial distribution of spin density (36), resulting from
the different interaction potentials (34) and the different magnetic
ground states (29). As determined from the intensity of peaks in
the ESR spectra (fig. S3) (27, 29), J is positive, and thus, the coupling
between Ti atom spins is antiferromagnetic.

Energy detuning of superposition states
While the nonuniform magnetic field arising from the STM tip is
necessary to drive the spin resonance, this tip magnetic field also
provides a means to control the quantum states by applying a local

Fig. 1. Spin resonance for two coupled spin-1/2 Ti atoms. (A) Schematic of the ESR-STM setup with the topographic image of a pair of Ti atoms on 2 ML MgO, where
the Ti atoms are separated by r = 0.92 nm. The two species appear with different apparent heights in the STM image: ~1 Å for Ti at the O binding site of MgO (TiO) and
~1.8 Å for Ti at a bridge site (TiB) (VDC = 40 mV, I = 10 pA, T = 1.2 K). The external magnetic field is applied almost parallel to the surface. (B and C) ESR spectrum
measured on TiO in a TiO-TiB dimer with (B) r = 0.92 nm and (C) r = 0.72 nm [VDC = 40 mV, T = 1.2 K, Bext = 0.9 T; (B) I = 10 pA, VRF = 30 mV; (C) I = 20 pA, VRF = 15 mV].
Insets: STM images of the TiO-TiB dimer used to measure each ESR spectrum. The grid intersections indicate the positions of oxygen atoms of the MgO lattice. The mark
“x” shows the position of the tip in the ESR measurement. (D and E) Schematic energy level diagrams for two coupled spin-1/2 atoms. In (D), the Zeeman energy is
larger than the interaction energy J between two atoms, leading to the triplet state as the ground state. In (E), the singlet state becomes the ground state when J is
larger than the Zeeman energy. The resonance peaks in (B) and (C) are marked by the same colors as transition labels in (D) and (E), respectively.
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P. Vorndamme, J. Schnack, Phys. Rev. B 101, 075101 (2020)

Y. Bae, K. Yang, P. Willke, T. Choi, A. J. Heinrich, and C. P. Lutz, Sci. Adv. 4, eaau4159 (2018)
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à áá à p ? 6 Decoherence of clock transitions

Decoherence of clock transitions III

Single-particle/mean-field pic-
ture only valid for small cou-
plings to a few bath spins.

Initial product state entangles
in the course of time. Eigen-
states of the full Hamiltonian
loose clock property.

P. Vorndamme, J. Schnack, Phys. Rev. B 101, 075101 (2020)
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à áá à p ? 6 Clock transitions 3

Clock transitions with toroidal magnetic molecules

Model Hamiltonian II

H∼ = −2
∑
i<j Jij~s∼i · ~s∼j +D

∑
i

(
~s∼i · ~e

3
i

)2

+µB g ~B ·
∑
i ~s∼i +H∼ int +H∼ bath

Dipolar interactions with and among 8 . . . 10 bath spins.

Investigation as function of tilt angle

- various clock transitions of the spectrum,
- various arrangements of the decohering bath.

K. Irländer, J. Schnack, arXiv:2211.07281.
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à áá à p ? 6 Clock transitions 4

Clock transitions with toroidal magnetic molecules
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K. Irländer, J. Schnack, arXiv:2211.07281.
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à áá à p ? 6 Clock transitions 5

Clock transitions with toroidal magnetic molecules
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performed using only a single random bath. This is jus-
tified as the concrete values of the coherence times are of
no particular relevance to our findings and the relative
di↵erences between superpositions are very similar across
all random baths we used.
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Figure 10. Decoherence of all two-state superpositions of the
six lowest-lying energy eigenstates for nbath = 4 (top left),
nbath = 6 (top right), nbath = 8 (bottom left), nbath = 10
(bottom right), Bz = 0.05, and ✓ = 50.4�. Legend is displayed
in Fig. 4.

V. DEPENDENCE OF COHERENCE TIMES ON
THE MAGNITUDE OF J AND D

In this section, we aim to take a look at if and how
the ideal tilting angle of ✓ = 50.4� found for the chosen
J = �10 K and D = �50 K changes with J and D.
Figures 11 and 12 show the dependency in regards to J
and D, respectively.

There are some competing trends in the data but for
strongly anisotropic systems, the ideal angle is always at
around 50� while for systems with weaker anisotropies
D (compared to the exchange interaction J), this angle
may lie at or close to 90�. These results show the ex-
act opposite of what would be expected if the argument
for superpositions with strong toroidal moments having
long coherence times was right: The more anisotropic
the system, the more stable the toroidal states should
become. In our calculations, the configurations near
✓ = 90�, which contain superpositions with high toroidal
moments, are doing worse in terms of coherence times
when the strength of the anisotropy is increased.

VI. GAP SIZES AND COHERENCE TIMES

The size of the energy gap �E between the two su-
perposed states is an easily measured characteristic of a
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Figure 11. Coherence times vs. tilting angle for D = �50 K
and J = �5 K (top left), J = �10 K (top right), J = �15
K (bottom left), J = �20 K (bottom right) for a single bath
with nbath = 8. Legend is displayed in Fig. 4.
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Figure 12. Coherence times vs. tilting angle for J = �10 K
and D = �10 K (top left), D = �25 K (top right), D = �50
K (bottom left), D = �100 K (bottom right) for a single bath
with nbath = 8. Legend is displayed in Fig. 4.

clock transition. It is obvious that by scaling up J and
D, the spacing of the energy levels and therefore �E will
increase. It is also obvious that this will lead to longer co-
herence times when we leave the coupling to the bath A1

unchanged as this is akin to reducing A1 while keeping J
and D unchanged which is a situation which was already
investigated, see Section II. Therefore one might get to
the conclusion that large energy gaps �E always lead to
longer coherence times. To test if this is true, we investi-
gate how coherence times depend on �E by changing the
tilting angle ✓ instead of J and D. The clock transition
of the two lowest-lying states in the “toroidal” flat trian-
gle (✓ = 90�) configuration is chosen as an example. As
✓ is decreased, the upper superposition state sometimes

Decoherence as function of size of the bath (4, 6, 8, 10).

K. Irländer, J. Schnack, arXiv:2211.07281.
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à áá à p ? 6 Clock transitions 6

Clock transitions with toroidal magnetic molecules

=

=

Decoherence of toroidal magnetic molecules

• Toroidal structure irrelevant.

• Canted, near orthogonal anisotropy axes
often optimal.

• Dipolar interaction between system spins
does not alter the picture.

K. Irländer, J. Schnack, arXiv:2211.07281.

no time left – no magic
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à áá à p ? 6 Typicality approach to molecular magnetism

Typicality approach to molecular
magnetism

Jürgen Schnack, Toroidal magnetic molecules 27/43



à áá à p ? 6 Problem

You have got an idea about the modeling!

‡ ·· ‡ p ? 6 Problem

You have got an idea about the modeling!

Heisenberg Zeeman

H⇠ = �2
X

i<j

Jij~s⇠(i) ·~s⇠(j) + g µB B
NX

i

s⇠z(i)

Jürgen Schnack, Magnetic molecules 7/67
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à áá à p ? 6 Schrödinger equation

You have to solve the Schrödinger equation!

H∼ |φn 〉 = En |φn 〉
Eigenvalues En and eigenvectors |φn 〉

• needed for spectroscopy (EPR, INS, NMR);

• needed for thermodynamic functions (magnetization, susceptibility,
heat capacity);

• needed for time evolution (pulsed EPR, simulate quantum computing,
thermalization).
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à áá à p ? 6 Matrix

In the end it’s always a big matrix!

⇒
(−27.8 3.46 0.18 · · ·

3.46 −2.35 −1.7 · · ·
0.18 −1.7 5.64 · · ·... ... ... · · ·

)
⇒

FeIII
10: N = 10, s = 5/2, dim(H) = (2s+ 1)N

Dimension=60,466,176. Maybe too big?

Jürgen Schnack, Toroidal magnetic molecules 30/43



à áá à p ? 6 Typicality approach

Can we evaluate the partition function

Z(T,B) = tr
(

exp
[
−βH∼

])

without diagonalizing the Hamiltonian?
Yes, with magic!

Jürgen Schnack, Toroidal magnetic molecules 31/43



à áá à p ? 6 Trace estimators

Solution I: trace estimators

tr
(
O∼

)
≈ 〈 r |O∼ | r 〉 =

∑

ν

〈 ν |O∼ | ν 〉+
∑

ν 6=µ
rνrµ〈 ν |O∼ |µ 〉

| r 〉 =
∑

ν

rν | ν 〉 , rν = ±1

• | ν 〉 some orthonormal basis of your choice;
not the eigenbasis of O∼, since we don’t know it.

• rν = ±1 random, equally distributed. Rademacher vectors.

• Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).
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à áá à p ? 6 Trace estimators

Solution II: Krylov space representation

exp
[
−βH∼

]
≈ 1∼− βH∼ +

β2

2!
H∼

2 − · · · βNL−1

(NL − 1)!
H∼
NL−1

applied to a state | r 〉 yields a superposition of

1∼ | r 〉, H∼ | r 〉, H∼
2 | r 〉, . . . H∼

NL−1 | r 〉 .

These (linearly independent) vectors span a small space of dimension NL;
it is called Krylov space.

Let’s diagonalize H∼ in this space!
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à áá à p ? 6 Trace estimators

Partition function I: simple approximation

Z(T,B) ≈ 〈 r | e−βH∼ | r 〉 ≈
NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

Or(T,B) ≈
〈 r |O∼e

−βH∼ | r 〉
〈 r | e−βH∼ | r 〉

=
〈 r | e−βH∼/2O∼e

−βH∼/2 | r 〉
〈 r | e−βH∼/2e−βH∼/2 | r 〉

• Wow!!!

• One can replace a trace involving an intractable operator by an expectation value
with respect to just ONE random vector evaluated by means of a Krylov space
representation???

• Typicality = any random vector will do: | r 〉 ≡ (T =∞)

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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à áá à p ? 6 Trace estimators

Partition function II: Finite-temperature Lanczos Method

ZFTLM(T,B) ≈ 1

R

R∑

r=1

NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

• Averaging over R random vectors is better.

• |n(r) 〉 n-th Lanczos eigenvector starting from | r 〉 (Rademacher vectors).

• Partition function replaced by a small sum: R = 1 . . . 100, NL ≈ 100.

• Use symmetries!

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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à áá à p ? 6 FTLM

FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) SU(2) & D2: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).

(3) SU(2) & CN : T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)
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FTLM 2: icosidodecahedron

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535 (2010).
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FTLM 3: sawtooth chain

|J2/J1| = 0.45 – near critical, |J2/J1| = 0.50 – critical.

Frustration, technically speaking, works in your favour.
(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020)

(2) J. Schnack, J. Richter, T. Heitmann, J. Richter, R. Steinigeweg, Z. Naturforsch. A 75, 465 (2020)
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FTLM 4: kagome

Specific heat of kagome with N = 42 – role of low-lying singlets,
and magnon crystalization at high field.

(1) J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018)

(2) J. Schnack, J. Schulenburg, A. Honecker, J. Richter, Phys. Rev. Lett. 125, 117207 (2020)
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Summary

• Magnetic molecules for storage, q-bits, MCE,
and since they are nice.

• Toroidal magnetic molecules: perspectives not
clear.

• Magnetism is much richer and more complicated
than shown here. Talk focused on 3d ions with
weak spin-orbit interaction.

• Typicality is a powerful approach.

• I could address Kramers systems at the black-
board.
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Thank you very much for your
attention.

The end.
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Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.
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