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à áá à p ? 6 Typicality

Simplified remarks on typicality
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à áá à p ? 6 Typicality I

Typicality bill of rights – FOR 2692

“All” non-equilibrium states relax equal

• C. Bartsch, J. Gemmer, Dynamical typicality of quantum expectation values, Phys. Rev. Lett., 102, 110403 (2009)
• P. Reimann, J. Gemmer, Why are macroscopic experiments reproducible? Imitating the behavior of an ensemble by

single pure states, Physica A 552, 121840 (2020)
• T. Heitmann, J. Richter, D. Schubert, R. Steinigeweg, Selected applications of typicality to real-time dynamics of

quantum many-body systems, Zeitschrift für Naturforschung A 75, 421 (2020)

“All” similar Hamiltonians produce equal time-evolution

• P. Reimann, Typical fast thermalization processes in closed many-body systems, Nat. Commun. 7, 10821 (2016)
• L. Dabelow, P. Reimann, Relaxation Theory for Perturbed Many-Body Quantum Systems versus Numerics and Ex-

periment, Phys. Rev. Lett. 124, 120602 (2020)

“All” random states are equal(ly hot)

• A. Hams, H. De Raedt, Fast algorithm for finding the eigenvalue distribution of very large matrices, Phys. Rev. E 62,
4365 (2000)

• J. Schnack, J. Richter, R. Steinigeweg, Accuracy of the finite-temperature Lanczos method compared to simple
typicality-based estimates, Phys. Rev. Research 2, 013186 (2020)

S. Lloyd@arXiv:1307.0378: Pure state quantum statistical mechanics and black holes, submitted to PRB in 1988 but
rejected by one sentence referee report: “There is no physics.”
Deutsch, Srednicki, Goldstein, Lebowitz, Tumulka, Zanghi, Popescu, Short, Winter, Sugiura, Shimizu, . . .
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à áá à p ? 6 Typicality II

If states or Hamiltonians do not behave like this,
they are considered an exception and called

atypical.

If you do not want to be mainstream look for
atypical stuff.
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à áá à p ? 6 Contents for you today

Yes, we can!
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1. A flash on magnetic molecules

2. Typicality approach to equilibrium

3. Stability of clock transitions

4. Synchronization of spins

We are the sledgehammer team of matrix diagonalization.
Please send inquiries to jschnack@uni-bielefeld.de!
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à áá à p ? 6 Molecule Magnets

We investigate

magnetic molecules

J. Schnack, Contemporary Physics 60, 127-144 (2019)
Jürgen Schnack, Magnetismus im Molekülmaßstab, Physik-Journal 4, 37 (2017)
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à áá à p ? 6 Problem

You have got a molecule!

S = 60!
Congratulations!

Powell group: npj Quantum Materials 3, 10 (2018)
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à áá à p ? 6 Problem

You want to build a quantum
computer!

Very smart!

Wernsdorfer group: Phys. Rev. Lett. 119, 187702 (2017)
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à áá à p ? 6 Problem

You want to achieve quantum
coherence!

COLLETT, SANTINI, CARRETTA, AND FRIEDMAN PHYSICAL REVIEW RESEARCH 2, 032037(R) (2020)

FIG. 1. Energy level diagram for a single Cr7Mn molecule,
showing the zero field avoided crossing between |m = ±1〉 states,
creating the |±〉 clock states. Solid lines show dependence on a field
along the easy-axis (z) direction. Dashed (dotted) lines correspond
to the dependence on field along the hard (medium) axis. Inset:
molecular structure of Cr7Mn.

enabling single- and two-qubit operations to be implemented
while preserving the immunity of the system to field fluctu-
ations. Recent work on dimers of Ti atoms has shown the
efficacy of clock transitions in reducing decoherence in dimer
systems with exchange coupling [25,26], though that work
involved a single two-state clock transition. In contrast, the
dimers described herein present a manifold of four states
connected by clock transitions, thus providing a two-qubit
system.

An effective Hamiltonian for an isolated S = 1 Cr7Mn
molecule is

Hi = −DiS2
iz + Ei

(
S2

ix − S2
iy

)
+ giµB #Si · #B. (1)

The Di term represents the system’s axial (easy-axis)
anisotropy, while the Ei term corresponds to the trans-
verse anisotropy. Here the subscript i designates a particular
molecule. Such a Hamiltonian can be justified as the low-
energy approximation resulting from an ab initio treatment of
the ring [27,28]. In addition, numerous experimental results
confirm the validity of this effective Hamiltonian at low tem-
peratures [13,29]. We can identify the Szi eigenstates by their
m value: |m = 0〉 ≡ |0〉 and |m = ±1〉 ≡ |±1〉. At zero field,
the energy eigenstates are |0〉 and |±〉 = (|+1〉 ± |−1〉)/

√
2.

The latter two states exhibit an avoided crossing with a “tunnel
splitting” of 2Ei. Figure 1 shows the energy eigenstates for
this system as a function of field applied along the easy (z),
medium (y), and hard (x) axial directions. The figure illus-
trates that the zero-field transition between the two lowest-
energy states is independent to first order to any component
of the magnetic field and thus constitutes an atomic-clock
transition, with a significant transition matrix element for the
Sz operator: 〈+| Sz |−〉 = 1. Through variations in synthesis,
molecules with different values of parameters (Di and Ei) can
be produced; notably the so-called green and purple variants
of Cr7Mn [22].

When coupled together, a pair of molecules with different
parameters form a supramolecular heterodimer [20]. Interac-

tions between the spins in the dimer can be modeled as a
bilinear exchange interaction:

HJ = #S1 · J · #S2 = #S1 · J̃ · #S2 + JzzS1zS2z. (2)

We isolate the Jzz term here (and implicitly define the J̃
tensor) because it is the only term that directly couples any of
the four lowest-energy states to each other. As a consequence,
this term is responsible for an error in the implementation
of single-qubit rotations, as will be discussed below. It is
important to note that molecules within the dimer need not
have any simple relative orientation and, thus, each of the
principal (easy, medium, and hard) axes of the two spins may
have any relative orientation. Thus, the components of J do
not necessarily refer to specific directions in space but to
couplings between different axial directions of each spin; e.g.,
Jxz describes the coupling between the hard-axis component
of spin 1 and the easy-axis component of spin 2.

The total zero-field Hamiltonian for the system is

H = H1 + H2 + HJ. (3)

When the Di are much larger than all the other energy parame-
ters (Ei, Ji j ), the subspace of the four lowest-energy states acts
as a system of two coupled effective S = 1/2 spins. For J̃ =
0 and the realistic case of Ei ' Jzz, the lowest and highest
energy states in the subspace are to a good approximation
|++〉 and |−−〉, with energies E±± = 2(−D̄ ± Ē ), where
D̄ = (D1 + D2)/2 and Ē = (E1 + E2)/2. The two middle-
energy states can be represented as

|↑↓〉 = cos θ |+−〉 + sin θ |−+〉,
|↓↑〉 = − sin θ |+−〉 + cos θ |−+〉, (4)

where tan 2θ = 2Jzz
"E , with energies E↑↓

↓↑
= −2D̄ ±

√
"E2 + J2

zz, respectively, defining "E = E1 − E2. Since
the states are constructed from clock states, near zero field
all four of these states are barely affected by a magnetic
field along any direction, as illustrated for the z component
of field in Fig. 2, unlike real coupled S = 1/2 spins. For
implementation of quantum-computing protocols we use the
energy eigenstates as the logical basis, labeling these with
vertical arrows, e.g., |↑↓〉.

Certain transitions within the four-state manifold are de-
generate, e.g., |++〉 ↔ |↑↓〉 is degenerate with |↓↑〉 ↔
|−−〉. These degeneracies are broken by the J̃ term in
Eq. (2). For simplicity, we consider the case in which J̃ is
diagonal such that

HJ = J⊥(S1xS2x + S1yS2y) + JzzS1zS2z. (5)

(Other forms of J̃ give qualitatively similar results.) To
second order in J⊥, the |++〉 and |−−〉 states become, re-
spectively, the states |↑↑〉 and |↓↓〉:

∣∣↑↑
↓↓

〉
=

(
1 − J2

⊥
2E2

±±

)
|±±〉 + J⊥

E±±
|00〉

± J2
⊥

(E−− − E++)E±±
|∓∓〉 (6)

032037-2

Desperately needed!

Friedman group: Phys. Rev. Research 2, 032037(R) (2020)
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à áá à p ? 6 Problem

You want to deposit your
molecule!

Next generation magnetic storage!

Xue group: Phys. Rev. Lett. 101, 197208 (2008)
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à áá à p ? 6 Problem

You want molecular
magnetocalorics!

Cool!

Brechin group: Angew. Chem. Int. Ed. 51, 4633 (2012)
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à áá à p ? 6 Problem

You have got an idea about the modeling!

‡ ·· ‡ p ? 6 Problem

You have got an idea about the modeling!

Heisenberg Zeeman

H⇠ = �2
X

i<j

Jij~s⇠(i) ·~s⇠(j) + g µB B
NX

i

s⇠z(i)

Jürgen Schnack, Magnetic molecules 7/67
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à áá à p ? 6 Schrödinger equation

You have to solve the Schrödinger equation!

H∼ |φn 〉 = En |φn 〉
Eigenvalues En and eigenvectors |φn 〉

• needed for spectroscopy (EPR, INS, NMR);

• needed for thermodynamic functions (magnetization, susceptibility,
heat capacity);

• needed for time evolution (pulsed EPR, simulate quantum computing,
thermalization).
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à áá à p ? 6 Matrix

In the end it’s always a big matrix!

⇒
(−27.8 3.46 0.18 · · ·

3.46 −2.35 −1.7 · · ·
0.18 −1.7 5.64 · · ·... ... ... · · ·

)
⇒

FeIII
10: N = 10, s = 5/2, dim(H) = (2s+ 1)N

Dimension=60,466,176. Maybe too big?
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à áá à p ? 6 Typicality approach

Can we evaluate the partition function

Z(T,B) = tr
(

exp
[
−βH∼

])

without diagonalizing the Hamiltonian?
Yes, with magic!
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à áá à p ? 6 Typicality approach to molecular magnetism

Typicality approach to molecular
magnetism
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à áá à p ? 6 Trace estimators

Solution I: trace estimators

tr
(
O∼

)
≈ 〈 r |O∼ | r 〉 =

∑

ν

〈 ν |O∼ | ν 〉+
∑

ν 6=µ

rνrµ〈 ν |O∼ |µ 〉

| r 〉 =
∑

ν

rν | ν 〉 , rν = ±1

• | ν 〉 some orthonormal basis of your choice;
not the eigenbasis of O∼, since we don’t know it.

• rν = ±1 random, equally distributed. Rademacher vectors.

• Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).
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à áá à p ? 6 Trace estimators

Solution II: Krylov space representation

exp
[
−βH∼

]
≈ 1∼− βH∼ +

β2

2!
H∼

2 − · · · βNL−1

(NL − 1)!
H∼
NL−1

applied to a state | r 〉 yields a superposition of

1∼ | r 〉, H∼ | r 〉, H∼
2 | r 〉, . . . H∼

NL−1 | r 〉 .

These (linearly independent) vectors span a small space of dimension NL;
it is called Krylov space.

Let’s diagonalize H∼ in this space!
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à áá à p ? 6 Trace estimators

Partition function I: simple approximation

Z(T,B) ≈ 〈 r | e−βH∼ | r 〉 ≈
NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

Or(T,B) ≈
〈 r |O∼e

−βH∼ | r 〉
〈 r | e−βH∼ | r 〉

=
〈 r | e−βH∼/2O∼e

−βH∼/2 | r 〉
〈 r | e−βH∼/2e−βH∼/2 | r 〉

• Wow!!!

• One can replace a trace involving an intractable operator by an expectation value
with respect to just ONE random vector evaluated by means of a Krylov space
representation???

• Typicality = any random vector will do: | r 〉 ≡ (T =∞)

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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à áá à p ? 6 Trace estimators

Partition function II: Finite-temperature Lanczos Method

ZFTLM(T,B) ≈ 1

R

R∑

r=1

NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

• Averaging over R random vectors is better.

• |n(r) 〉 n-th Lanczos eigenvector starting from | r 〉 (Rademacher vectors).

• Partition function replaced by a small sum: R = 1 . . . 100, NL ≈ 100.

• Use symmetries!

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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à áá à p ? 6 FTLM

FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) SU(2) & D2: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).

(3) SU(2) & CN : T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)
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à áá à p ? 6 FTLM

FTLM 2: icosidodecahedron

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535 (2010).
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à áá à p ? 6 FTLM

FTLM 3: sawtooth chain

|J2/J1| = 0.45 – near critical, |J2/J1| = 0.50 – critical.

Frustration, technically speaking, works in your favour.
(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020)

(2) J. Schnack, J. Richter, T. Heitmann, J. Richter, R. Steinigeweg, Z. Naturforsch. A 75, 465 (2020)
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à áá à p ? 6 FTLM

FTLM 4: kagome

Specific heat of kagome with N = 42 – role of low-lying singlets,
and magnon crystalization at high field.

(1) J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018)

(2) J. Schnack, J. Schulenburg, A. Honecker, J. Richter, Phys. Rev. Lett. 125, 117207 (2020)
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à áá à p ? 6 Clock transitions

Stability of clock transitions

Decoherence is typical, clock transitions are atypical.

⇒ Patrick Vorndamme
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à áá à p ? 6 Context

Context

Investigation of decoherence of a
subsystem if the combined system
(including bath) is evolved via the
time-dependent Schrödinger equa-
tion.

Employed measure of decoherence: reduced density matrix

ρ
∼

system = Trbath

(
ρ
∼

)

Typicality: unitary-time evolution of pure state approximates dynamics in environment.
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à áá à p ? 6 Clock transitions 1

Clock transitions

B

E

0

Fluctuations produce little ef-
fect on dynamics of superposi-
tion since ∆E of clock transition
is independent of field at B = 0,
at least to some order of a Tay-
lor expansion.

Jürgen Schnack, Exact quantum spin dynamics 26/38



à áá à p ? 6 Clock transitions 2

Perfect clock transitions

B

E

0

Fluctuations produce very
small effect on superposition
since ∆E of transition is totally
independent of field.
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à áá à p ? 6 Decoherence of clock transition

numberm by ± 1, as given in the schematic energy diagram (Fig. 1D).
The peak heights are proportional to the difference in thermal occupa-
tion of the initial and final states (29); thus, the two tallest peaks corre-
spond to transitions out of the ground state. The difference between
resonance frequencies ( f T0Tþ

" f ST"
or, equivalently, f STþ

" f T0T"
) di-

rectly gives themagnetic interaction energy J between the two spins (29),
which is 0.77 ± 0.02 GHz for this dimer spacing (fig. S5). Because the
interaction energy J is smaller than the Zeeman energy, the |T−〉 state
becomes the ground state.

We find that the TiO-TiB dimer can be positioned close enough to
yield coupling strengths sufficiently strong to shift the singlet state down
in energy to become the ground state (Fig. 1E). This interaction strength
was not accessible for the TiO-TiO dimers (29). Decreasing the spacing
of the atoms in the TiO-TiB dimer to r = 0.72 nm (Fig. 1C) results in
three ESR peaks in our measurement range (5 to 30 GHz). In addition
to the two triplet-triplet transitions ( f T0Tþ

and f T0T"
), the singlet-triplet

(S-T0) transition is now visible as resonance at f ST0
≈ 29GHz.Here, the

resonance frequency f ST0
directly gives the value of Jwhen the detuning

(see below) is negligible.
While a traditional ESRmeasurement applies a radio frequency (RF)

magnetic field, in the ESR-STM technique used here, the RF magnetic
field at the Ti atom arises from the modulation of the atom’s position
(32) in the nonuniform magnetic field Btip (29, 33) generated by the
STM tip. This enables the ESR transition of Dm = 0, ± 1. The triplet-
triplet transitions in the dimer are driven by a gradient in Bx

tip , the
component perpendicular toBext. This is the same component required
for driving the |0〉 to |1〉 transition for an individual Ti atom (Dm = ± 1;
section S6). In contrast, driving the S-T0 transition (Dm = 0) requires a
gradient inBz

tip, the component of Btip parallel to Bext (12). In this work,
we chose a tip having both spatial components of Btip, which therefore
can drive the transitions of Dm = 0, ± 1 in the dimer.

Heisenberg exchange coupled spin-1/2 Ti atoms
From the ESR peak splitting, we determined the magnetic interaction
energy J for 30 dimers with different separations and orientations (sec-
tion S3). To exclude the effects of Btip on the resonance frequencies, we
measured the ESR spectra as a function ofBtip and determined the value
of J from the fit based on the spin Hamiltonian (section S4). The
measured values of J are given in Fig. 2A as a function of atomic separa-
tions (r, ranging from 0.72 to 1.3 nm).We find that for atomic distances
of less than 1 nm, the TiO-TiB dimers are dominantly coupled by the
Heisenberg exchange interaction JS1 ⋅ S2, where S1 and S2 are the spin
operators. Moreover, the interaction is found to be isotropic (fig. S3).

The exchange interaction generally shows exponential dependence
on the separation between spins (34). Given the isotropic interaction
energy J = J0 exp[− (r − r0)/d] (34) and taking r0 = 0.72 nm, we obtain
for TiO-TiB dimers a decay constant d = 64.6 ± 4.9 pm and a prefactor
J0 = 28.9 ± 1.3 GHz. The decay constant matches well with reported
values for exchange interactions across a vacuum gap (29, 33, 35).
For TiO-TiO and TiB-TiB dimers, we obtain d = 40.0 ± 2.0 pm (29)
and 94.0 ± 0.3 pm (fig. S3D), respectively. This difference in decay
constant between the dimer types indicates the sensitivity of the ex-
change interaction to either the orbitals being involved in the inter-
action or the spatial distribution of spin density (36), resulting from
the different interaction potentials (34) and the different magnetic
ground states (29). As determined from the intensity of peaks in
the ESR spectra (fig. S3) (27, 29), J is positive, and thus, the coupling
between Ti atom spins is antiferromagnetic.

Energy detuning of superposition states
While the nonuniform magnetic field arising from the STM tip is
necessary to drive the spin resonance, this tip magnetic field also
provides a means to control the quantum states by applying a local

Fig. 1. Spin resonance for two coupled spin-1/2 Ti atoms. (A) Schematic of the ESR-STM setup with the topographic image of a pair of Ti atoms on 2 ML MgO, where
the Ti atoms are separated by r = 0.92 nm. The two species appear with different apparent heights in the STM image: ~1 Å for Ti at the O binding site of MgO (TiO) and
~1.8 Å for Ti at a bridge site (TiB) (VDC = 40 mV, I = 10 pA, T = 1.2 K). The external magnetic field is applied almost parallel to the surface. (B and C) ESR spectrum
measured on TiO in a TiO-TiB dimer with (B) r = 0.92 nm and (C) r = 0.72 nm [VDC = 40 mV, T = 1.2 K, Bext = 0.9 T; (B) I = 10 pA, VRF = 30 mV; (C) I = 20 pA, VRF = 15 mV].
Insets: STM images of the TiO-TiB dimer used to measure each ESR spectrum. The grid intersections indicate the positions of oxygen atoms of the MgO lattice. The mark
“x” shows the position of the tip in the ESR measurement. (D and E) Schematic energy level diagrams for two coupled spin-1/2 atoms. In (D), the Zeeman energy is
larger than the interaction energy J between two atoms, leading to the triplet state as the ground state. In (E), the singlet state becomes the ground state when J is
larger than the Zeeman energy. The resonance peaks in (B) and (C) are marked by the same colors as transition labels in (D) and (E), respectively.
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P. Vorndamme, J. Schnack, Phys. Rev. B 101, 075101 (2020)

Y. Bae, K. Yang, P. Willke, T. Choi, A. J. Heinrich, and C. P. Lutz, Sci. Adv. 4, eaau4159 (2018)
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à áá à p ? 6 Decoherence of clock transitions

Decoherence of clock transitions III

Single-particle/mean-field pic-
ture only valid for small cou-
plings to a few bath spins.

Initial product state entangles
in the course of time. Eigen-
states of the full Hamiltonian
loose clock property.

P. Vorndamme, J. Schnack, Phys. Rev. B 101, 075101 (2020)
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à áá à p ? 6 Synchronization of spins

Synchronization of spins

Synchronization is atypical.

⇒ Patrick Vorndamme

Jürgen Schnack, Exact quantum spin dynamics 30/38



à áá à p ? 6 Synchronization I

Synchronization – Heisenberg model

H∼ = −
N∑

j=1

Jj~s∼j
· ~s∼j+1

−
N∑

j=1

hj s∼
z
j , |ψ(t = 0) 〉 =

N⊗

j=1

1√
2

(
| ↑ 〉+ eiθj | ↓ 〉

)

P. Vorndamme, H.-J. Schmidt, Chr. Schröder, J. Schnack, New J. Phys. 23, 083038 (2021).
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à áá à p ? 6 Synchronization II

Synchronization – Heisenberg model with random JsNew J. Phys. 23 (2021) 083038 P Vorndamme et al

Figure 3. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj ∈ [1.6, 2.4], hj = −1 ∀j, N = 25. The video for (a) (https://stacks.iop.org/NJP/23/083038/mmedia) are provided in the
supplementary data.

Figure 4. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj = 2 ∀j without (a) and with magnetic field (b).

3.2. Initial state |ψB〉
Figure 3 shows almost the same as figure 2, but this time for initial state |ψB〉. Initially the individual spin
expectation values are spread out by 180 degrees, but during time evolution they align. This astonishing
phenomenon can be nicely observed in the video provided on the web page of the published article [30].

During time evolution and synchronization the spins entangle as much as the conservation of "S
∼

2 and

Mtrans allows. Interestingly, the spins stay entangled and do not fan out again (apart from finite size effects
such as revivals at very late times). This statement becomes stronger with increasing system size, which is
further addressed in appendix A. We interpret this phenomenon as quantum mechanical equilibration
process under the restricting influence of conserved quantities [29].

The synchronization can be rationalized for spin systems where all spins are equivalent, i.e. ring systems
with translational invariance (Jj = J, hj = h ∀j) since then equilibration should result in the same
single-spin expectation value at every site. This concerns magnitude and direction of the spin vector. The
somewhat unexpected result of our investigation is that the direction of all spins continues to synchronize
also for settings where spins are no longer equivalent, i.e. if the Heisenberg interactions are drawn at
random from a distribution.

Figure 3(c) shows the purity of the individual reduced density operators ρ
˜

j (equation (10)). Since the

couplings Jj are different for different j, not all spins are equal. This does not prevent the spins from
synchronizing their directions, but they do not all entangle to the same extent.

5

• Spins synchronize under unitary time evolution!

• ρ
∼
j = Tr⊗

k 6=j
Hk

( |ψ 〉〈ψ | ),

purity Tr
(
ρ
∼
2
j

)
: = 1 (not entangled), = 0.5 (maximally entangled).
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à áá à p ? 6 Synchronization III

Transient synchronization – XYZ model

H∼XY Z = −J
N∑

j=1

s∼
x
j s∼

x
j+1 − (J − δ)

N∑

j=1

s∼
y
j s∼

y
j+1 − (J − 2δ)

N∑

j=1

s∼
z
j s∼

z
j+1 − h

N∑

j=1

s∼
z
j .
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Figure 9. Time evolutions of initial state |ψB〉 w.r.t. Hamiltonian equation (14) for two values of δ, and N = 24, J = 2, h = −1.
Videos of (a) and (c) are provided in the supplementary data.

Figure 10. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (15) with parameters N = 24, J = 0.1 and h = −1.
The video of (a) is provided in the supplementary data.

or by interactions between the spins that are not of isotropic Heisenberg type. In section 4.1 we choose XYZ
interactions and in section 4.2 XX interactions as two examples with different outcomes. In appendix B we
show the effect of inhomogeneous magnetic fields (appendix B.1) and of dipolar interactions between all
spins (appendix B.2).

4.1. XYZ interaction
We begin with the XYZ interaction which is close to the isotropic Heisenberg case if the interaction in the
three spatial directions is not too different. In this case, the synchronization between the spins still occurs.
The Hamiltonian in this subsection is defined as

H
∼ XYZ

= − J
N∑

j=1

s
˜

x
j s
˜

x
j+1 − (J − δ)

N∑

j=1

s
˜

y
j s
˜

y
j+1 − (J − 2δ)

N∑

j=1

s
˜

z
j s
˜

z
j+1 − h

N∑

j=1

s
˜

z
j . (14)

We use the parameter δ to tune the difference of the interaction in the three spatial directions.
Figure 9 shows time evolutions for initial state |ψB〉 and two different values of δ. The magnetization is

not a conserved quantity anymore and will therefore decay toward its equilibrium value, which is zero in
the xy-plane for a magnetic field in z-direction. Our investigations reveal that the larger δ the faster the
spins decay. However, we clearly observe that while decaying the spins still synchronize, see especially
figure 9(a). One could say, that the synchronization is a transient phenomenon in such cases since the time
scale of synchronization is shorter than that of the unavoidable decay.
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No synchronization – XX model
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j=1

(
s∼
x
j s∼
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j s∼
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j+1

)
− h∑N

j=1 s∼
z
j .

New J. Phys. 23 (2021) 083038 P Vorndamme et al

Figure 9. Time evolutions of initial state |ψB〉 w.r.t. Hamiltonian equation (14) for two values of δ, and N = 24, J = 2, h = −1.
Videos of (a) and (c) are provided in the supplementary data.

Figure 10. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (15) with parameters N = 24, J = 0.1 and h = −1.
The video of (a) is provided in the supplementary data.

or by interactions between the spins that are not of isotropic Heisenberg type. In section 4.1 we choose XYZ
interactions and in section 4.2 XX interactions as two examples with different outcomes. In appendix B we
show the effect of inhomogeneous magnetic fields (appendix B.1) and of dipolar interactions between all
spins (appendix B.2).

4.1. XYZ interaction
We begin with the XYZ interaction which is close to the isotropic Heisenberg case if the interaction in the
three spatial directions is not too different. In this case, the synchronization between the spins still occurs.
The Hamiltonian in this subsection is defined as
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˜
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˜
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We use the parameter δ to tune the difference of the interaction in the three spatial directions.
Figure 9 shows time evolutions for initial state |ψB〉 and two different values of δ. The magnetization is

not a conserved quantity anymore and will therefore decay toward its equilibrium value, which is zero in
the xy-plane for a magnetic field in z-direction. Our investigations reveal that the larger δ the faster the
spins decay. However, we clearly observe that while decaying the spins still synchronize, see especially
figure 9(a). One could say, that the synchronization is a transient phenomenon in such cases since the time
scale of synchronization is shorter than that of the unavoidable decay.
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Summary

• Magnetic molecules for storage, q-bits, MCE,
and since they are nice.

• Typicality – potentially powerful concept: Fun-
damental Aspects of Statistical Mechanics and
the Emergence of Thermodynamics in Non-
Equilibrium Systems (FOR 2692).

• Synchronization of spin systems. SU(2) symme-
try needed?
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Thank you very much for your
attention.

The end.
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Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.
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