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Start: experimental data
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Gd10Fe10 – How to rationalize the experimental data?
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Gd10Fe10 – structure = delta chain
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green: Fe (s = 5/2), purple: Gd (s = 7/2)
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Model Hamiltonian

H∼ = −2J1

∑
i

~s∼Gd,i ·
(
~s∼Fe,i +~s∼Fe,i+1

)
−2J2

∑
i

~s∼Fe,i ·~s∼Fe,i+1 + g µBB
∑
i

(
s∼
z
Gd,i + s∼

z
Fe,i

)

Dimension of Hilbert space
(2sGd + 1)10(2sFe + 1)10 ≈ 6.5 · 1016

What would you do?
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Gd10Fe10 – Methods

Methods: HTE, QMC, CMC, FTLM⇒ J1 = 1.0 K, J2 = −0.65 K

A. Baniodeh et al., npj Quantum Materials 3, 10 (2018)
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Summary: theory methods

• Complete diagonalization: exact; Dimension of largest Hilbert space < 105.

• High-temperature series expansion: O ≈∑µmax
µ=0 oµ T

−µ,
oµ known up to µmax = 6 for mixed spin systems; µmax = 11 otherwise [1].

• Finite Temperature Lanczos Method (FTLM): pseudo-spectrum, low-lying levels
good, approximation of partition function, time-evolution; DoH < 1010 [2].

• Quantum Monte Carlo (QMC): approximation of partition function, observables;
bad/no convergence for competing interactions (frustration) due to negative sign
problem; otherwise HUGE systems possible [ALPS].

• Classical Monte Carlo (CMC): spins are classical vectors; reasonable approxima-
tion for large spins such as s = 5/2 and s = 7/2.

[1] H.-J. Schmidt, A. Lohmann, J. Richter, Phys. Rev. B 84, 104443 (2011); Phys. Rev. B 89, 014415 (2014). [2] J. Jaklic
and P. Prelovsek, Phys. Rev. B 49, 5065 (1994); J. Schnack and O. Wendland, Eur. Phys. J. B 78 (2010) 535-541.
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Gd10Fe10 – S = 60

J
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⇒ S = 60, largest ground state spin of a molecule to date

⇒ αGd10Fe10 = |J2|/J1 = 0.65 What if J2 stronger?

Wei-Peng Chen, Jared Singleton, Lei Qin, Agustin Camon, Larry Engelhardt, Fernando Luis, Richard E. P. Winpenny,
Yan-Zhen Zheng, Quantum Monte Carlo simulations of a giant {Ni21Gd20} cage with a S = 91 spin ground state, Nature
Communications 9, 2107 (2018)
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Excursus: sawtooth (delta) chain
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⇒ special properties for J1 > 0 (ferro) and J2 < 0 (af) at certain αc
e.g. αc = |J2|/J1 = 0.5 if si = 1/2 ∀i

⇒ flat band of (multi-) magnon states; huge ground state degeneracy (1,2)

(1) V. Y. Krivnov, D. V. Dmitriev, S. Nishimoto, S.-L. Drechsler, and J. Richter, Phys. Rev. B 90, 014441 (2014).
(2) D. V. Dmitriev and V. Y. Krivnov, Phys. Rev. B 92, 184422 (2015).
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Excursus: sawtooth (delta) chain
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⇒ |F 〉 = |S = Smax,M = Smax 〉 fully polarized ferromagnetic state

⇒ |1 localized magnon at (2,3,4) 〉 = (s∼
−
2 + s∼

−
4 + 2s∼

−
3 ) |F 〉;

E = EF ,M = Smax − 1

⇒ Can be everywhere. Flat band in one-magnon space. Degenerate with |F 〉.

(1) V. Y. Krivnov, D. V. Dmitriev, S. Nishimoto, S.-L. Drechsler, and J. Richter, Phys. Rev. B 90, 014441 (2014).
(2) D. V. Dmitriev and V. Y. Krivnov, Phys. Rev. B 92, 184422 (2015).
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Excursus: sawtooth (delta) chain
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⇒ |2 localized magnons 〉; E = EF ,M = Smax − 2

⇒ Can be everywhere. Flat band in two-magnon space. Degenerate with |F 〉.

(1) V. Y. Krivnov, D. V. Dmitriev, S. Nishimoto, S.-L. Drechsler, and J. Richter, Phys. Rev. B 90, 014441 (2014).
(2) D. V. Dmitriev and V. Y. Krivnov, Phys. Rev. B 92, 184422 (2015).
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Excursus: sawtooth (delta) chain

J
2

J
1

1 3 5 7 9 11

2 4 6 8 10 12

⇒ |max. number of localized magnons 〉; E = EF ,M = Smax −N/2
⇒ Macroscopic number of localized magnons. Degenerate with |F 〉.
⇒ Extensive entropy.

(1) V. Y. Krivnov, D. V. Dmitriev, S. Nishimoto, S.-L. Drechsler, and J. Richter, Phys. Rev. B 90, 014441 (2014).
(2) D. V. Dmitriev and V. Y. Krivnov, Phys. Rev. B 92, 184422 (2015).
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Gd10Fe10 – QCP
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⇒ for s1 = 5/2 and s2 = 7/2: αc = 0.70

⇒ as function of α Quantum Phase Transition at αc

from S = 60 ground state to ground state with S = 54.

(∆S = N/4 + 1 in general)

A. Baniodeh et al., npj Quantum Materials 3, 10 (2018)
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Quantum Phase Transition
Non-analytic behavior of thermodynamic functions at T = 0 for

variation of another external parameter, e.g. field, pressure;
here α – maybe varied by pressure.
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Gd10Fe10 – T > 0
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⇒ although QPT and QCP at T = 0,

noticeable at elevated temperatures (arrow);

⇒ example isothermal entropy change:

little difference between α = 0.70 and α = 0.65.

A. Baniodeh et al., npj Quantum Materials 3, 10 (2018)
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Gd10Fe10 – heat capacity
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⇒ heat capacity assumes very large values

even down to lowest temperatures;

⇒ evaluated by means of FTLM for a smaller (hypothetical) system Gd6Fe6;

⇒ magnetic field separates S = 60 ground state, C drops.

A. Baniodeh et al., npj Quantum Materials 3, 10 (2018)
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Gd10Fe10 – Summary

• Sawtooth chain has a rich phase diagram: mag-
netization plateaux, magnetization jumps, flat
bands, quantum phase transitions.

• Gd10Fe10 is a lucky punch.

• Largest ground state spin of a single molecule to
date: S = 60.

• Quantum Phase Transition observable in a
molecule with structure of a sawtooth chain.

⇐ And yes, we use big computers.

A. Baniodeh, N. Magnani, Y. Lan, G. Buth, C.E. Anson, J. Richter, M. Affronte, J. Schnack, A.K. Powell, High Spin Cycles:
Topping the Spin Record for a Single Molecule verging on Quantum Criticality, npj Quantum Materials 3, 10 (2018)
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. . . is not the only number.

There is also . . .
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Magnetism of the N = 42 kagome lattice antiferromagnet
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For the paradigmatic frustrated spin-half Heisenberg antiferromagnet on the kagome lattice we performed
large-scale numerical investigations of thermodynamic functions by means of the finite-temperature Lanczos
method for system sizes of up to N = 42. We present the dependence of magnetization as well as specific
heat on temperature and external field and show in particular that a finite-size scaling of specific heat supports
the appearance of a low-temperature shoulder below the major maximum. This seems to be the result of a
counterintuitive motion of the density of singlet states towards higher energies. Other interesting features that we
discuss are the asymmetric melting of the 1/3 magnetization plateau as well the field dependence of the specific
heat that exhibits characteristic features caused by the existence of a flat one-magnon band. By comparison with
the unfrustrated square-lattice antiferromagnet the tremendous role of frustration in a wide temperature range is
illustrated.

DOI: 10.1103/PhysRevB.98.094423

I. INTRODUCTION

The spin-1/2 kagome Heisenberg antiferromagnet
(KHAF) is one of the most prominent and at the same
time challenging spin models in the field of frustrated
quantum magnetism. The first challenge concerns the nature
of the ground state (GS), on which a plethora of studies
exist; see, e.g., Refs. [1– 27]. Although consensus on the
absence of magnetic long-range order (LRO) is achieved,
the precise nature of the spin-liquid GS, with quantum
spin liquids and Dirac spin liquids as possible candidates
[23,28], is not yet understood. Large-scale density-matrix
renormalization group (DMRG) and exact diagonalization
(ED) studies [13– 15,22,23] suggest a tiny singlet-singlet
gap !s ∼ (0.01 . . . 0.05)J , where J denotes the exchange
coupling in the Heisenberg model, and a sizable singlet-triplet
gap !t ∼ (0.13 . . . 0.17)J . However, a very recent DMRG
study using adiabatic flux insertion provides indications
for a much smaller spin gap in agreement with variational
and other numerical techniques [12,17,23,24,26]. The very
existence of a gap is determinative for thermodynamics at
low temperatures T . In addition, a triplet gap leads to an
exponentially activated low-temperature behavior of the
susceptibility. On the other hand, indications were found
that a huge number of singlet states below the first triplet
state may exist [2,3,7,13,14,16,22,29], being relevant for the
specific heat C at low temperatures.

Besides the theoretical work there is also large activity on
the experimental side, see, e.g., Refs. [30– 46] and in particular
the review [28]. Among the spin-1/2 kagome compounds,

*jschnack@uni-bielefeld.de
†Johannes.Richter@physik.uni-magdeburg.de

Herbertsmithite ZnCu3(OH)6Cl2 seems to be a promising
candidate for a spin liquid [28,35– 39,41,46,47].

The second challenge concerns the thermodynamic prop-
erties of the quantum KHAF on which far fewer studies
exist [4,5,26,29,48– 59]. While systematic high-temperature
approaches [48,53,54,58] provide reliable insight into the
temperature dependence of physical quantities down to tem-
peratures T of about 40% of the exchange coupling J , a reli-
able picture of the temperature dependencies at 0 ! T ! 0.4J
is still missing. Various methods [48– 51,55,56,59] provide
indications for an additional low-temperature peak of the spe-
cific heat signaling an extra low-energy scale set by low-lying
singlets. However, instead of a true maximum a shoulderlike
hump may characterize the low-T profile of C (T ) [26,51].
Thus, the low-T behavior of the specific heat is another issue
(in some relation to the gaps) that is not yet settled.

The third challenge is given by the magnetization process
of the spin-1/2 KHAF [26,27,60– 68]. A series of magnetiza-
tion plateaus at 3/9(=1/3), 5/9, and 7/9 of the saturation is
found [26,65,66], among which the 1/3 plateau, already found
by Hida [60], is the widest. In addition to the above-mentioned
plateaus, there might be a tiny plateau at 1/9 [26,65]. The
magnetic ordering within the plateau is well described by
valence-bond states, i.e., the plateau states are of quantum
nature [63,65,66]. Moreover, there is a macroscopic jump
to saturation related to the existence of a huge manifold
of localized multimagnon states [61,69– 71]. At low enough
temperatures and for specific values of the magnetic field the
plateaus as well as the magnetization jump are well expressed
features of the magnetization curve. From the experimental
point of view the detection of these features at low tempera-
tures provides smoking gun evidence of the proximity of the
investigated magnetic kagome compound to the ideal KHAF
model.

2469-9950/2018/98(9)/094423(10) 094423-1 ©2018 American Physical Society
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In the present paper we discuss the thermodynamic proper-
ties of the spin-1/2 KHAF on a finite lattice of N = 42 sites.
These results were obtained by large-scale numerical calcula-
tions (5 million core hours) using the finite-temperature Lanc-
zos method (FTLM) [72– 77]. The extension to a lattice of
this size yields an improved insight into the low-temperature
physics of the model compared to previous ED and FTLM
studies restricted to significantly smaller lattices.

The paper is organized as follow. In Sec. II we introduce
the model and our numerical scheme. Thereafter in Sec. III
we present our results for the KHAF followed by a discussion
in Sec. IV.

II. HAMILTONIAN AND CALCULATIONAL SCHEME

The investigated spin systems are modeled by a spin-1/2
Heisenberg Hamiltonian augmented with a Zeeman term, i.e.,

H
∼

= J
∑

⟨i,j⟩
s⃗
∼i · s⃗

∼j + gµB B
∑

i

s
∼

z
i . (1)

Quantum-mechanical operators are marked by a tilde. In what
follows we set the antiferromagnetic nearest-neighbor ex-
change coupling to J = 1. The complete eigenvalue spectrum
of a spin system composed of spins s = 1/2 can be evaluated
for sizes of up to about N = 24 depending on the available
symmetries [78]. The resulting thermodynamic quantities are
then numerically exact.

For larger systems with Hilbert space dimensions of up to
1010 FTLM provides approximations of thermodynamic func-
tions with astonishing accuracy [74– 76]. FTLM approximates
the partition function in two ways [72,73,79,80]:

Z(T ,B ) ≈
!∑

γ=1

dim[H(γ )]
R

R∑

ν=1

NL∑

n=1

e− βϵ
(ν)
n |⟨ n(ν) | ν ⟩|2.

(2)

The trace, i.e., the sum over an orthonormal basis, is in a
Monte Carlo fashion replaced by a much smaller sum over
R random vectors | ν ⟩ for each symmetry-related orthogonal
subspace H(γ ) of the Hilbert space, where γ labels the
irreducible representations of the employed symmetries. The
exponential of the Hamiltonian is then approximated by its
spectral representation in a Krylov space spanned by the NL

Lanczos vectors starting from the respective random vector
| ν ⟩. | n(ν) ⟩ is the nth eigenvector of H

∼
in this Krylov

space. This allows us to evaluate typical observables such
as magnetization and specific heat [80]. In the Appendix we
provide further information on the accuracy of the method.

The method was implemented in two independently self-
written programs, one of which, SPINPACK, is publicly avail-
able [81]. The latter employs several symmetries in order to
decompose the full Hilbert space into much smaller orthogo-
nal subspaces according to the irreducible representations of
the used symmetries. In our case S

∼
z symmetry was used to-

gether with the longest cyclic point group (length 14 for N =
42) as well as with spin-flip symmetry and a second com-
muting point group where applicable. The largest Hilbert sub-
spaces in the sector with magnetic quantum number M = 1
assumed a dimension of 3.67 × 1010. We used R = 10 in all

(a)

(b)

FIG. 1. (a) Specific heat of the KHAF as function of temperature
at B = 0 for various systems sizes (logarithmic temperature scale).
(b) Specific heat of the KHAF and the SHAF as function of temper-
ature at B = 0 (linear temperature scale).

subspaces of M = 0, i.e., for the subspaces that contain the
ground state and the lowest energy levels, R = 4 for M = 1,
R = 2 for M = 2, . . . , 8, and then again R = 10 for 8 <
M < 16. The number of Lanczos iterations for each random
vector, NL, was determined by reaching convergence for the
two lowest energy levels. This automatically resulted in NL !
250 for the largest subspaces of M = 0, . . . , 5. In subspaces
with M ! 16 the Hamiltonian was diagonalized completely.
The total computation time for the kagome system of 42
sites was ∼5 × 106 core hours at the Leibniz Supercomputing
Center’s supermuc.

III. KAGOME LATTICE ANTIFERROMAGNET N = 42

In what follows we focus on the specific heat, the density
of states, the uniform susceptibility, the entropy, and the
magnetization process.

A. Zero-field properties

We start with the discussion of the specific heat C (T ), the
entropy S(T ), and the uniform susceptibility χ0(T ) using a
logarithmic scale for T in order to make the low-temperature
features transparent; see Figs. 1(a), 3(a), and 4(a). The main

094423-2

Jürgen Schnack, Gd10Fe10 27/30



à áá à p ? 6 Numbers

42 means:
no open questions anymore.

Otherwise, please ask.
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Thank you very much for your
attention.

The end.
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