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@ = w7 ? ® Molecule Magnets

We investigate
magnetic molecules.
(Some of you do, too.)

J. Schnack, Contemporary Physics 60, 127-144 (2019)



@ = w77 % Problem

You have got a molecule!

S = 60!

Congratulations!

Powell group: npj Quantum Materials 3, 10 (2018)
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@ = w77 4 Problem

You want to build a quantum
computer!
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Very smart!

Wernsdorfer group: Phys. Rev. Lett. 119, 187702 (2017)
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@ @ = o ] ? ® Problem

You want to achieve quantum
coherence!

r=(+D+I-D)/V2

Desperately needed!
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Friedman group: Phys. Rev. Research 2, 032037(R) (2020)
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@ = w77 4 Problem

You want to deposit your
molecule!
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Next generation magnetic storage!

Xue group: Phys. Rev. Lett. 101, 197208 (2008)
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@ = w77 % Problem

You want molecular
magnetocalorics!

Cooll!

Brechin group: Angew. Chem. Int. Ed. 51, 4633 (2012)
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@ - - ] ? 4 Molecule Magnets

How do we get there?
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@ = - o ] ? % Contents for you today

Today’s approach to guantum magnetism

e 1 spin — storage and calorics

e 2 spins —decoherence and clock transitions
e 3 spins — frustration

e Many spins — a universe opens up

e Mag(net)ic calculations
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One spin

(One spin can do a lot!)
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@ @ = o ] ? ® One Spln

One spin — basic quantum mechanics

spins defined through commutator relations

7/\/

[s”,sY| =i h s*, and cyclic permutations thereof

eigenvalue equations

§%|sm) = h’*s(s+1)|sm)
s%lsm) = hm|sm), m=—s,—s+1,...,5—1,s
magnetic moment (simple, but common version) Theorists like A = 1!
g = —guBS “—”, because electron carries negative charge.
Hzeeman = _,ng = 9#35- B
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“ - o ] 7 % Singel-ion anisotropy |

One spin — single-ion anisotropy

EYTISE LR 314
_ 1 H = D(s*)* +gupBs®
D < 0 easy axis, D > 0 hard axis;
eigenvectors: |sm)
AE B
;Z eigenvalues: E,, = Dm? + gugBm , m = —s,...,s
>< IMPORTANT: [H, s*] = 0 = level crossings at B = 0
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“ - o ] 7 % Singel-ion anisotropy |l

One spin — single-ion anisotropy

\E M H=D(s*)°+E {<§f”>2 - <zy>2} +gupBs*
12 3

|E'| < |D| — major axes of the anisotropy tensor;

- - NO LONGER eigenvectors: |sm)

B .
- eigenvalues are more complicated functions of
B = Be,: E,(B)

IMPORTANT: [H, s*] # 0 = avoided level crossings at

B = 0 for integer spins
(otherwise Kramers degenerecy)
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“ - o ] 7 % Singel-ion anisotropy Il

One spin — single-ion anisotropy

H=D(s*)’+E {(g"’”)2 - (zy)Q} +gupBs*

- ~

| sm ) —m is NOT a good quantum number any longer

What do the spectra and the arrows mean?

Perturbation picture: spectra show eigenvalues of
dominant term D(s*)? with eigenstates | sm ).

_ - For the full H these states are NOT stationary and thus
time-evolve (tunnel) into | s, —m ) after some time.
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W - oo 7] 7 % Bistability |
One spin — bistability

Goal: single-molecule magnets (SMM)

/\
e H=D(s%)’ +gupBs*
e

IMPORTANT: [H, S*] = 0 = level crossings at B = 0

- - = low-temperature TIME-DEPENDENT hysteresis

Side remark: For macroscopic systems in the ferro-
—— magnetic phase the relaxation time is HUGE, that’s
why we don't experience it.
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Bistability Il

One spin — bistability

H = D(s)+ E{(s%)° ~ (s")°} + gunBs’

Y

= low-temperature TIME-DEPENDENT hysteresis
closes at B = 0 — not bistable & bad for storage

REASON: branching at avoided level crossings;
strong dependence on tunneling gap and B;

slow change of B = system follows ground state,
compare Landau-Zener-Stiickelberg
or slow/fast train at switch
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@ @ = o ] ? ® B|Stab|l|ty [l

One spin, e.g. ground state spin of molecule — outlook

] -
] ¢

Today’s major goals:

ferromagnetic spin-spin interaction

uniaxial anisotropy tensors

symmetry that does not permit £-terms

PERSISTENT PROBLEM: phonons

,Bu,@th Nick Chilton, Thorsten Glaser, Jeff Long, Alessandro Lunghi, Mark Murrie,
\ ) Frank Neese, Stefano Sanvito, Roberta Sessoli, Richard Winpenny, Yan-Zhen
By QY Zheng, ...
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@ = w77 4 Nobel prize 1949

Sub-Kelvin cooling: Nobel prize 1949

The Nobel Prize in Chemistry 1949
was awarded to William F. Giauque for

his conftributions in the field of chemical
thermodynamics, particularly concern-

ing the behaviour of substances at ex-
tremely low temperatures.
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@ @ wm o 7] '7 ®

Nobel prize 1949

Sub-Kelvin cooling: Nobel prize 1949

768

LETTERS TO THE EDITOR

Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd.(S0O,);-8H,0

We have recently carried out some preliminary experi-
ments on the adiabatic demagnetization of Gd.(S0,);
-8H 0 at the temperatures of liquid helium. As previously
predicted by one of us, a large fractional lowering of the
absolute temperature was obtained.

An iron-free solenoid producing a field of about 8000
gauss was used for all the measurements. The amount of
Gda(504);-8H,0 was 61 g. The observations were checked
by many repetitions of the cooling. The temperatures were
measured by means of the inductance of a coil surrounding
the gadolinium sulfate. The coil was immersed in liquid
helium and isolated from the gadolinium by means of an
evacuated space. The thermometer was in excellent
agreement with the temperature of liquid helium as
indicated by its vapor pressure down to 1.5°K.

On March 19, starting at a temperature of about 3.4°K,
the material cooled to 0.53°K. On April 8, starting at
about 2° a temperature of 0.34°K was reached. On
April 9, starting at about 1.5° a temperature of 0.25°K
was attained.

It is apparent that it will be possible to obtain much
lower temperatures, especially when successive demagneti-
zations are utilized.

W. F. GiauguEe
D. P. MacDougaLL
Department of Chemistry,
University of California,
Berkeley, California,
April 12, 1933,

W. F. Giauque and D. MacDougall, Phys. Rev. 43, 768 (1933).
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@ = w7 2 Magnetocaloric effect |

One spin — magnetocalorics

A A
T T
Sl

ol pd

SZ
T, |

| |
B B
o H=ygups*B, paramagnet = independent spins = ideal gas of magnetism.

e |deal paramagnet: S(T,B) = f(B/T),i.e. S = const = T «x B.

e Often, at low T dipolar interaction between spins prevents further cooling.
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o e w77 ® Magnetocaloric effect Il

One spin — magnetocalorics — outlook

e Often magnetocaloric observables not directly measured, but inferred from
Maxwell’s relations.

e (Gd;: real cooling experiment with a molecule.
e Goal: development of new coolants — isentrope design.

J. W. Sharples, D. Collison, E. J. L. McInnes, J. Schnack, E. Palacios, M. Evangelisti, Nat. Commun. 5, 5321 (2014).
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@ = w7 ? b One spin

This was the warmup!
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Two spins

(Two spins can do more!)



@ @ = o ] ? ® Two SpInS

Two spins — basic quantum mechanics

interaction — Heisenberg Hamiltonian (isotropic)

N
];IHeisenberg = —2Ji 51 : :5:2 3 IjZeeman =gupB § ,ﬁzz
)

symmetries (+ possible point group symmetries), total spin: 5 = va 5
I:J[Heisenberg =+ f::[Zeemana S’Q} — [gHeisenberg T IjZeemana QZ} =0

dipolar interaction: = symmetries lost

2

0 - - - g — g g —

gdipolar — fﬂif (;51 " S52 — 3(;51 ' 12)(;52 ' 12)) €12 = "“12/7“12
12
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@ @ = o ] ? ® Two SpInS

Two spins — Heisenberg dimer s; = s, = 3 ‘ l;
AE (S=1,M=+1) AE (S=1,M=+1)
B * B

e Product basis {|m; = £1/2,my = £1/2)} = {|11), [11), [11), | L)}

e Energy eigenstates (stationary):
[S=0,M=0)=—Z([1) = [I1), [S=1,M=0)= (1) + [{1)),

Sl

e A superposition would oscillate for ever! = Quantum coherence!
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@ @ = o ] ? ® Two SpInS

Two spins — Heisenberg dimer decoheres in environment

e A eB eC oD oA eB e C eD
" 0.5}
ﬁﬁﬁﬁiiﬁiiiﬁ?iiiliiiiiriiﬁ 0. 4
— 03l
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| v2 Time 27t t (ps) Time 25t t (ps)
Solve time-dependent Schrodinger equation for full system.
V4
Scenario A is a (perfect) clock transition. A
» Y >/
- N v %
A
P. Vorndamme, J. Schnack, Phys. Rev. B 101, 075101 (2020) X “N b \
Y
Y. Bae et al., Science Advances 4, eaau4159 (2018)
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Three spins

(Triangles add new features!)



@ @ wm o 7] 7 ® Three SpInS

Three spins — triangles and frustration

* Ising Heisenberg BN

e H=-2),_. Jij$i-5; Jij <0—antiferromagnetic coupling

e Ferromagnets are useful, but boring; antiferromagnets are mind-boggling!

e Example: J;; = J < 0;
s1 = s2 = s3 == — ground state S = 3 fourfold degenerate.
s1 = s9 = s3 = 1 — ground state .S = 0 non-degenerate.
— ground state S = : fourfold degenerate . ..

N|—

N

S1 =— SS9 =— S§3 —
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@ @ = o ] ? ® Three SpinS

Three spins — triangles and frustration

I kagome 42
—T1=0
— T1=0.01
—1=002
— T1=0.05
—T1=01

e Antiferromagnetic frustrated molecules and lattices may exhibit fascinating prop-
erties: unusual magnetization curves, plateaus and jumps, magnon crystalliza-
tion, strange ground states , e.g. spin liquids, spiniice, ...

A.P. Ramirez, MRS Bull. 30, 447 (2005).

J. Schnack, Dalton Trans. 39, 4677 (2010).

S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001).

C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008).

J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018).
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Three spins

For physicists:

Past “three” comes “many”.

(Interesting collective behavior possible.)
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w7 3 Typicality approach to molecular magnetism

How to calculate big systems?

(Typicality approach to magnetism)
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@ @ = o ] ? ® Typ|CaI|ty approaCh

Partition function

Z(T,B) = tr (exp [-@D — " exp[-fE,]

1
ﬁ”W:EvW% 5:]{3—T

Questionnaire 1: Why do we diagonalize Hamiltonians?

Questionnaire 2: How big matrices can we diagonalize?

Jurgen Schnack, Molecular magnetism 31/43



@ @ = o ] ? ® Poll 1

Poll 1

Why do we diagonalize Hamiltonians, i.e. determine eigenvalues and eigenstates?

1. They are needed for spectroscopy (EPR, INS, NMR).

2. They are needed for thermodynamic functions (partition function, magnetization,
heat capacity).

3. They are handy to calculate the time evolution (pulsed EPR, simulate quantum
computing, thermalization).

4. My professor wants to keep us busy.

(multiple answers allowed)
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@ @ = o ] ? ® Poll 2

Poll 2

How big (complex hermitean) matrices can we diagonalize on a (super-) computer?

1. 3x3
2. 10,000 x 10,000

3. 100,000 x 100,000

4. 1,000,000 x 1,000,000

(multiple answers allowed)
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@ - oo ] ? % Typicality approach

Can we evaluate the partition function

Z(T, B) = tr (exp :—513: )

without diagonalizing the Hamiltonian?

Yes, with magic!
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@ @ = o ] ? ® Trace estimators

Solution I: trace estimators

Q

r(0) ~ (r|O|r)

Py = Y rlv), r=+1

v

e |v) some orthonormal basis of your choice;
not the eigenbasis of O, since we don’t know it.

e r, = +1 random, equally distributed. Rademacher vectors.
e Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).
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@ @ = o ] ? ® Trace estimators

Solution lI: Krylov space representation

2 5 /BNL_l N 1
| —BH+Zmr .. HNL-
L=l o (N, — 11~

Q

o |-4H
applied to a state |r) yields a superposition of

Lr), Hir), H|r), ...HN ' r).

These (linearly independent) vectors span a small space of dimension Ny ;
it is called Krylov space.

Let’s diagonalize H in this space!

Jurgen Schnack, Molecular magnetism
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@ @ = o ] ? ® Trace estimators

Partition function I: simple approximation

Ny,
_BH _3elm)
Z(T,B) ~ (rle "®lr)=Y" e P |(n(r)|r)?

n=1

(r|Qe "% |r)

—BH

OB (rle "2 r)

2

o Wow!!l

e One can replace a trace involving an intractable operator by an expectation value
with respect to just ONE random vector evaluated by means of a Krylov space
representation???

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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@ @ = o ] ? ® Trace estimators

Partition function Il: Finite-temperature Lanczos Method

Np,
1
NI ~ 23S e ) )P

r=1 n=1

e Averaging over R random vectors is better.
e |n(r)) n-th Lanczos eigenvector starting from |r) (Rademacher vectors).
e Partition function replaced by a small sum: R =1...100, N, =~ 100.

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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Magic typicality for the ferric wheel

S 1sFTTT T T 1 wofT T T -
+ ring, N=10, s=hb/2 - ring, N=10, s=h/2
% R=1, Ng=100, B=0 8 R=1, Ng=100, B=0 -
_8' LOF H s e ] XCD 6 F
g *++ R=100 1 B . I
05| — exact = I *** R=100
-\O | oL — exact |
% I

00, | T osd ., . . . . Lo

0 2 4 6 8 10 12 14 0O 2 4 6 8 10 122 14
kgT /1] keT /1]

Accuracy: J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).
SU(2) & Do: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).
SU(2) & Cpr: T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)

Ferric wheel: K.L. Taft et al., J. Am. Chem. Soc. 116, 823 (1994)
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@ @ wm o 7] 7 ® Summary

Summary

e Magnetic molecules for storage, g-bits, MCE,
and since they are nice.

e Molecules taught us about frustrated systems.

e Isentropes for interacting systems are much
richer than for paramagnets. Good for applica-
tions away from (7T'= 0, B = 0).

e Coherence and thermalization under investiga-
tion.

e ED, HTE, CMC, QMC, FTLM, DMRG, DDMRG,
thDMRG for magnetic molecules.
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Many thanks to my collaborators

e C. Beckmann, M. Czopnik, T. Glaser, O. Hanebaum, Chr. Heesing, M. Hock, K. Irlander, N.B. lvanov, H.-T. Langwald,
A. Mdaller, H. Schlater, R. Schnalle, Chr. Schroder, J. Ummethum, P. Vorndamme (Bielefeld)

K. Barwinkel, T. Heitmann, R. Heveling, H.-J. Schmidt, R. Steinigeweg (Osnabriick)
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(Man U); L. Cronin, M. Murrie (Glasgow); E. Brechin (Edinburgh); H. Nojiri (Sendai, Japan); A. Postnikov (Metz);
M. Evangelisti (Zaragosa); A. Honecker (U Cergy-Pontoise); E. Garlatti, S. Carretta, G. Amoretti, P. Santini (Parma);
A. Tennant (ORNL); Gopalan Rajaraman (Mumbai); M. Affronte (Modena)

J. Richter, J. Schulenburg (Magdeburg); B. Lake (HMI Berlin); B. Bichner, V. Kataev, H.-H. Klau3 (Dresden); A. Pow-
ell, W. Wernsdorfer (Karlsruhe); J. Wosnitza (Dresden-Rossendorf); J. van Slageren (Stuttgart); R. Klingeler (Heidel-
berg); O. Waldmann (Freiburg); U. Kortz (Bremen)
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an - D ? x The end

Thank you very much for your
attention.

The end.



@ = w77 % Information

Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.
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