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à áá à p ? 6 Kagome

Kagome lattice antiferromagnet – scientific problems

Kagome lattice
antiferromagnet
(figure Mike Zhitomirsky)

• Thermodynamic functions (1)

• “Condensation” of low-lying singlets below the
first triplet?

• Magnetization jump to saturation

• Thermal stability of magnetization plateaus

• Crystallization of localized magnons?

• Notoriously enigmatic (2)!

(1) J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018)
(2) A.M. Läuchli, J. Sudan, R. Moessner, Phys. Rev. B 100, 155142 (2019)

Jürgen Schnack, Kagome lattice 1/9



à áá à p ? 6 Kagome 42

Kagome N = 42 – magnetic properties

• Low-T peak moves to higher T with increasing N , maybe to form shoulder (2).

• Density of low-lying singlets seems to move to higher excitation energies!

• Magnetization exhibits plateaus and giant jump to saturation.

(1) J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018)
(2) Xi Chen, Shi-Ju Ran, Tao Liu, Cheng Peng, Yi-Zhen Huang, Gang Su, Science Bulletin 63, 1545 (2018).
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Kagome – magnetization jump due to independent magnons

• Nearest-neighbor Heisenberg model: independent one-magnon states are eigen-
states and ground states below the saturation field.

• They lead to flat energy bands and can be localized as well.

J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
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Kagome – magnetization jump due to independent magnons
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• Nearest-neighbor Heisenberg model: independent one-magnon states are eigen-
states and ground states below the saturation field:
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• They lead to flat energy bands and can be localized as well.

J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
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Kagome – magnetization jump due to independent magnons

Bose condensation in flat bands

Sebastian D. Huber and Ehud Altman
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

!Received 27 July 2010; published 2 November 2010"

We derive effective Hamiltonians for lattice bosons with strong geometrical frustration of the kinetic energy
by projecting the interactions on the flat lowest Bloch band. Specifically, we consider the Bose Hubbard model
on the one-dimensional sawtooth lattice and the two-dimensional kagome lattice. Starting from a strictly local
interaction the projection gives rise to effective long-range terms stabilizing a supersolid phase at densities
above !c=1 /9 of the kagome lattice. In the sawtooth lattice on the other hand we show that the solid order,
which exists at the magic filling !c=1 /4, is unstable to further doping. The universal low-energy properties at
filling 1 /4+"! are described by the well-known commensurate-incommensurate transition. We support the
analytic results by detailed numerical calculations using the density-matrix renormalization group and exact
diagonalization. Finally, we discuss possible realizations of the models using ultracold atoms as well as
frustrated quantum magnets in high magnetic fields. We compute the momentum distribution and the noise
correlations, that can be extracted from time of flight experiments or neutron scattering, and point to signatures
of the unique supersolid phase of the kagome lattice.

DOI: 10.1103/PhysRevB.82.184502 PACS number!s": 75.10.Jm, 67.80.K#, 67.85.#d

I. INTRODUCTION

Strong geometric frustration can prevent straightforward
ordering and thus lead to the emergence of novel highly cor-
related ground states. The best known examples of this phe-
nomenon are from spin systems. Frustration of the magnetic
exchange interactions on certain lattices gives rise to exten-
sive degeneracy of classically ordered states,1–9 invalidating
a direct semiclassical spin-wave analysis. This picture has
close analogy in the physics of the fractional quantum hall
effect, where the huge degeneracy of a partially filled Landau
level invalidates perturbative analysis in the interactions. In
both cases the true ground state, which could be a Laughlin
state, a spin liquid or some unexpected broken symmetry
state, emerges from the degenerate manifold in a highly non-
trivial way.

In this paper we address a related question concerning the
ground states of weakly interacting bosons in a lattice which
fully frustrates the bosons’ kinetic energy. The usual expec-
tation is that weakly interacting bosons will form a conden-
sate in the lowest-energy single-particle state, or in other
words, the lowest eigenstate of the kinetic-energy operator.
However, if the hopping matrix elements on the lattice are
sufficiently frustrated, the lowest Bloch band becomes flat,
thus providing a huge degeneracy of single-particle states to
which the bosons may condense. The nature of the ground
state is now fully determined by the interactions acting
within the hugely degenerate manifold. Under these condi-
tions a straight forward perturbative treatment in the interac-
tion is of no use. The problem is inherently strongly corre-
lated and provides an interesting route for understanding and
perhaps even realizing novel phases of matter.

We shall specifically consider a Hamiltonian of the form

H = #
$ij%

&tij&'bi
†bj + H.c.( +

U

2 #
i

bi
†bi

†bibi, !1"

where bi are bosonic operators defined on the sites of the
two-dimensional kagome lattice. This model gives a flat

lower Bloch band in the single-particle spectrum.10–12 We
shall also consider a related one-dimensional model defined
on the sawtooth lattice. Both models and the band structure
they give rise to are depicted in Fig. 1.

Such models of bosons with flat bands are of direct rel-
evance to real physical systems. Recently a number of pro-
posals were put forward for realization of models with frus-
trated hopping using ultracold atoms in optical lattices.13,14

Another natural realization involves frustrated spin-1 mag-
nets. If the Curie-Weiss temperature is sufficiently low, as in
m-MPYNN·BF4 !Refs. 15 and 16" !$CW)3 K", the spins
can be fully polarized, or nearly so, by external magnetic
fields. The dilute population of magnons, or depolarized
spins, in the highly polarized regime is well described by
Hamiltonian !1".

The presence of a flat band implies the existence of local-
ized eigenstates of the kinetic energy, as illustrated in Figs.
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FIG. 1. !Color online" !a" Single-particle dispersion on the
kagome lattice along high-symmetry lines in the Brillouin zone
!gray". !b" The kagome geometry with its lattice vectors a1/2 and the
basis sites A, B, and C in each unit cell !gray". !c" Single-particle
dispersion on the sawtooth lattice as a function of momentum k for
t!=*2t. !d" The sawtooth geometry with couplings t and t! and the
basis sites A and B in the unit cell !gray".

PHYSICAL REVIEW B 82, 184502 !2010"

1098-0121/2010/82!18"/184502!16" ©2010 The American Physical Society184502-1

• Nearest-neighbor Heisenberg model: independent one-magnon states are eigen-
states and ground states below the saturation field.

• They lead to flat energy bands and can be localized as well.

L.h. figure from S. D. Huber and E. Altman, Phys. Rev. B 82, 184502 (2010).
J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
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Kagome – magnetization jump due to independent magnons

• Nearest-neighbor Heisenberg model: independent one-magnon states are eigen-
states and ground states below the saturation field.

• Maximal filling with localized independent magnons of minimal size. Crystal?

J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
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Kagome – crystallization of magnons

• Finite-temperature continuous transition to a magnon crystal (universality class
of the two-dimensional three-state Potts model).

• Numerical investigation with FTLM up to N = 72: rounded peaks in C vs T (1).

• Qualitative agreement with loop gas model as well as hard hexagon model (2).

(1) J. Schnack, J. Schulenburg, A. Honecker, J. Richter, Phys. Rev. Lett. 125, 117207 (2020)
(2) M. E. Zhitomirsky and Hirokazu Tsunetsugu, Phys. Rev. B 70, 100403(R) (2004)
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Kagome – crystallization of magnons

• Crystallization of localized magnons (1).

• T -B phase diagram for finite lattices.

• Extends limiting picture of hard hexagons.

• Loop gas provides good rationalization as long as
other states can be neglected (2,3).

• Experimentally relevant for e.g. Cd-kapellasite (4).

(1) J. Schnack, J. Schulenburg, A. Honecker, J. Richter, Phys. Rev. Lett. 125, 117207 (2020)
(2) A. Honecker, J. Richter, J. Schnack, A. Wietek, Cond. Matter Phys. 23, 43712 (2020)
(3) https://perso.u-cergy.fr/ ahonecker/talks/kagomeLoop15december2020.pdf
(4) R. Okuma, D. Nakamura, T. Okubo, A. Miyake, A. Matsuo, K. Kindo, M. Tokunaga, N. Kawashima, S. Takeyama,

and Z. Hiroi, Nat. Commun. 10, 1229 (2019)
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Thank you very much for your
attention.

Andreas Honecker Johannes Richer

Jörg Schulenburg Jürgen Schnack

The end.
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Magnon crystallization in the kagome lattice antiferromagnet

J. Schnack, J. Schulenburg, A. Honecker, J. Richter, Phys. Rev. Lett. 125, 117207
(2020)

Jürgen Schnack, Kagome lattice 10/9



à áá à p ? 6 Quantum magnetism

Quantum magnetism: math

(−27.8 3.46 0.18 · · ·
3.46 −2.35 −1.7 · · ·
0.18 −1.7 5.64 · · ·... ... ... · · ·

)
• Eigenvalue problem of huge dimension.

• N spins s lead to a Hilbert space dimension of
(2s + 1)N , e.g. N = 42 spins s = 1/2 yield a
dimension of 4,398,046,511,104.

• Even when using symmetries, the exponential
growth renders an exact treatment of large sys-
tems impossible.

• Can we approximate the partition function
Z = Tr

(
exp[−βH∼ ]

)
without solving the eigenvalue problem?

⇒ Trace estimators & Krylov space representation.

Jürgen Schnack, Kagome lattice 11/9
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Solution I: trace estimators

tr
(
O∼

)
≈ 〈 r |O∼ | r 〉 =

∑
ν

〈 ν |O∼ | ν 〉+
∑
ν 6=µ

rνrµ〈 ν |O∼ |µ 〉

| r 〉 =
∑
ν

rν | ν 〉 , rν = ±1

• | ν 〉 some orthonormal basis of your choice;
not the eigenbasis of O∼, since we don’t know it.

• rν = ±1 random, equally distributed. Rademacher vectors.

• Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).
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Solution II: Krylov space representation

exp
[
−βH∼

]
≈ 1∼− βH∼ +

β2

2!
H∼

2 − · · · βNL−1

(NL − 1)!
H∼
NL−1

applied to a state | r 〉 yields a superposition of

1∼ | r 〉, H∼ | r 〉, H∼
2 | r 〉, . . . H∼

NL−1 | r 〉 .

These (linearly independent) vectors span a small space of dimension NL;
it is called Krylov space.

Let’s diagonalize H∼ in this space!

Jürgen Schnack, Kagome lattice 13/9
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Partition function I: simple approximation

Z(T,B) ≈ 〈 r | e−βH∼ | r 〉 ≈
NL∑
n=1

e−βε
(r)
n |〈n(r) | r 〉|2

Or(T,B) ≈
〈 r |O∼e

−βH∼ | r 〉

〈 r | e−βH∼ | r 〉
=
〈 r | e−βH∼/2O∼e

−βH∼/2 | r 〉

〈 r | e−βH∼/2e−βH∼/2 | r 〉

• Wow!!!

• One can replace a trace involving an intractable operator by an expectation value
with respect to just ONE random vector evaluated by means of a Krylov space
representation???

• Typicality = any random vector will do: | r 〉 ≡ (T =∞)

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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Partition function II: Finite-temperature Lanczos Method

ZFTLM(T,B) ≈ 1

R

R∑
r=1

NL∑
n=1

e−βε
(r)
n |〈n(r) | r 〉|2

• Averaging over R random vectors is better.

• |n(r) 〉 n-th Lanczos eigenvector starting from | r 〉.

• Partition function replaced by a small sum: R = 1 . . . 100, NL ≈ 100.

• Implemented in spinpack by Jörg Schulenburg (URZ Magdeburg); MPI and
openMP parallelized, used up to 3072 nodes.

SPINPACK page: https://www-e.uni-magdeburg.de/jschulen/spin/
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FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) SU(2) & D2: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).

(3) SU(2) & CN : T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)
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FTLM 3: sawtooth chain

|J2/J1| = 0.45 – near critical, |J2/J1| = 0.50 – critical.

Frustration, technically speaking, works in your favour.
(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020)

(2) J. Schnack, J. Richter, T. Heitmann, J. Richter, R. Steinigeweg, Z. Naturforsch. A 75, 465 (2020)
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