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Gossip about frustration

Gossip about frustration

e Typical statement: It is known that frustrated
spin systems exhibit spectacular phenomena:
high ground state degeneracy, re-entrance, par-
tial disorder, controversial nature of the phase
transition, order by the disorder, etc.

e \What is frustration?

e New conseguences of frustration?
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oooaoaao? O Heisenberg Hamiltonian

Heisenberg Hamiltonian

— _Z JZjS —I—Q/LBBZ

Heisenberg Zeeman

The Heisenberg model — including anisotropy, and dipol-dipol interaction if

necessary — as well as a Zeeman term describes the magnetic spectrum of many
molecules with high accuracy.

3(i) are the spin operators at sites i, J;; is the strength of the mutual interaction,
B is the applied magnetic field.
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Ferromagnets and Antiferromagnets

? A

‘ o Dimer: H = —2J 3(1) - 3(2)

? e Feromagnetic coupling: J > 0, classical spin vec-
tors align parallel; £y = —2Js2.

\ '

e Antiferomagnetic coupling: J < 0, classical spin
vectors align antiparallel; Ey = 2.Js2.

e Antiferomagnetic ring with even N: classical spin
vectors align antiparallel; £y = 2JN s
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Simple definition of frustration

o Triangle: H = —2J (5(1) 3(2)3(2) - 3(3)3(3) 5(1))

(7
+ - e Very simple definition of frustration: The last spin is
frustrated because it does not know how to align.

e True clasical ground state in the antiferromagnetic
triangle is given by relative angles of 120° between
neighboring spins it is degenerate.

e But the quantum ground state is non-degenerate for
Integer s and fourfold degenerate for half-integer s.

/
\
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Classical definition of frustration

e Definition: A guantum spin system is frustrated if the
corresponding classical system is frustrated, 1. e. if
neighboring classical spins are not aligned antipar-
allel.

e Problem: Need to know the corresponding classical
system.
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Advanced definition of frustration

A B

e Definition: A non-bipartite system is called frus-
B \ '. : ( A trated.
A e Bipartite: If the system can be decomposed into

A B subsystems A and B such that the coupling con-
stants fulfil J(z4,y5) < g%, J(xa,y4) > g°,
A—B A B J(xp,yr) > ¢°, the system is called bipartite.
B A B A
Al Bl Al B e Definition uses topological properties of the graph of
AR interactions.
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Zeeman level splitting

Zeeman level splitting

E A M=1
S=2
S=1 M=0
S=0
M=—1
™ B
M A
] T=0
21 —
14
™ B

I}J]Zeeman =gupbB Ziv ;Ez(l)
E,(B)=FEv(B=0)+gugBM,

The lowest level for a given magnetic field
B is the new ground state. This state
defines the magnetization at 7" = 0.

If Emin(S) quadratic in S (Landé inter-
val rule) then the magnetization steps are
equidistant.
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{Mo~;Fesp} - magnetization jump

{Mo7oFegq} - magnetization jump
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e Enmin(S) linear in S for high S instead of being quadratic (1).

e Heisenberg model: property depends only on the structure but not on s (2).

e Alternative formulation: independent localized magnons (3).

(1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
(2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002)

(3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88 (2002) 167207
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Localized Magnons

o |localized magnon) =1 (|1)— |2)+ [3)— |4))

, o |u)=s5"(u)|Q); |2)—magnon vacuum;
2N uw=1,234
8 6
7 o H|1)=J{|1)+1/2(]2)+ [4)+ [5) + [8))}

e H|localized magnon) o |localized magnon)

e Triangles trap the localized magnon, amplitudes cancel at outer vertices.
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Kagom é Lattice

e Localized one-magnon state indicated by bold lines.

() O

= 7= - e Non-interacting one-magnon states can be placed

><u>< on the grid; each state of n independent magnons is

O C the ground state in the Hilbert subspace with M =
O Ns —n.

e = linear dependence of Enyjn on M; magnetization
jump;,

e Maximal number of independent magnons: N/9.

e Magnetization jump is a macroscopic quantum
effect!

J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
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Plateaus

Plateaus

e Plateaus of the magnetization curve are a
very popular subjects nowadays.

e Especially structures built of corner shar-
Ing triangles often show a plateau at
Msat/g.

e Lattices like the Kagomé lattice are ex-
amples for such a behavior.

e The properties of such frustrated lattices
are supposed to be related to high temper-
ature superconductivity.
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Susceptibility minima |

Susceptibility minima |

e Several frustrated Heisenberg spin systems feature
a local minimum in the susceptibility as function of
magnetic field B (1).

e Triangular, Kagomé, garnet lattice, icosidodecahed-
ron, cuboctahedron, and triangle have a dip around
Bsat/3, more precise Mgat/3.

e Pyrochlore lattice and tetrahedron feature a dip
around Bsai/2, more precise Mgqt/2.

e Phenomenon emerges in spin systems with
sublattice structure.

(1) C. Schroder, H. Nojiri, J. Schnack, P. Hage, P. Kogerler, and M. Luban, to be submitted soon
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Susceptibility minima Il

Susceptibility minima |l
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e Spectra of triangle with s = 4 and tetrahedron with
s = 3 identical — rotational band, Landé rule.

e Difference in magnetization behavior stems from dif-
ferent degeneracies!

e The degeneracies of energy eigenvalues result from
the various ways to couple 3 or 4 intrinsic spins to a
given total spin S.
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Susceptibility minima

e Stability analysis with three level system
E“
dy +d
A . . dM ~ —B(gup)?e P2 1T 3 4B
0] _d d2
S-1 S S+1 S;n . . : ..
e Minimum of xy whenever (d; + ds)/ds is minimal.

Triangle: minimum at Smayx/3,
tetrahedron: minimum at Spax/2.

(dy+dg)/d
—_— N
o o
<
(Y

1.6
_ triangl ﬁ\ ?tt hed _ . . .
0 2 4 b5 8 0 1 o Alternative: degeneracy functions consist of two
S branches, intersection shows up in higher derivat-

ives of Z (T, B)
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Susceptibility minima IV

or = = E ! . . . . .
N I e Local minimum in x Is observed in several ex-
< [ I I I I - tended spin structures.
L =
0_
2o| L 5 e Three-sublattice systems: triangle, octahedron,
Lot e ] cuboctahedron, icosidodecahedron as well as
0z 480w triangular, Kagome, and garnet lattice.
1.0 o~ ] .
o o8| o Four-sublattice systems: tetrahedron and
élj ol pyrochlore lattice.
02 ] e Explanation quantum mechanically difficult,
gof | CcEeden et ] classical explanation much clearer.
0.0 I 0.2 I 0.4 I 0.6 I 0.8 I 1.0 I
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The Magnetocaloric Effect

e Discovered in pure iron by E. Warburg in 1881.

e Heating or cooling in a varying magnetic field.

e Typical rates: 0.5...2 K/T (adiabatic temperature change).

e Gilant magnetocaloric effect: 3...4 K/T in Gd5(Si,Ge;_.)4 alloys (z < 0.5).

e Also interesting: refrigerant capacity, which is the measure of how much heat can
be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle.

e Magnetocaloric effect especially effective in frustrated classical spin systems (1).

(1) M. E. Zhitomirsky, Enhanced magnetocaloric effect in frustrated magnets, Phys. Rev. B 67, 104421 (2003)

Jurgen Schnack, Frustration effects in magnetic molecules 19



oooaoaao? U Adiabatic temperature change

Adiabatic temperature change

isentrops, cuboctahedron, s=1
10 F o
- e Adiabatic process: no heat transfer to the
81 1 environment, i.e. constant entropy dS = 0.
0 06 -
= : e Effect strong around jumps of the magnet-
=04y 1 ization curve.
2 _ e Adiabatic temperature change especially
0.0 p AL strong at the large jump to saturation.
0.0 0.h 1.0 16 2.0
B/Bgat
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Relative magnetocaloric effect

Relative magnetocaloric effect

1.0

rel. mce, cuboctahedron, s=I1

pay B

2

.- i AT
il lfl{\nﬂﬂhl -
00 05 10 15
B/Bgat

2.0

In paramagnets, i. e. uncoupled magnetic
moments (spins), we find (0T/0B)%" =
T/B.

Interacting spin systems can exceed the
paramagnetic limit.

Figure shows (0T /0B)s/(0T/0B)g

Again in the vicinity of the large jump to
saturation the effect is much stronger than
In a paramagnet.
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Application of the magnetocaloric effect

e Application for magnetization cooling: at
room temperature for everyday applica-
tions, at very low-temperature for extreme
cooling.

e Magnetic refrigeration: cost effective, save
considerable energy (20 to 30%) over
conventional gas compression technology;
environmentally friendly, since eliminat-
Ing ozone depleting chemicals (CFCs),
green house gases (HCFCs and HFCs),
and hazardous chemicals (NH3) [Karl A.
Gschneidner, Jr., Ames Lab].

)

&
-
N
=
o
b

)
_'J e F.
W "-H >

Jurgen Schnack, Frustration effects in magnetic molecules 22



attention.

The end.
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