Frustration effects in magnetic molecules

Jürgen Schnack

Department of Physics - University of Osnabrück http://obelix.physik.uni-osnabrueck.de/~schnack/

PhD program, Osnabrück, April 16, 2004

••• ← → ••• □ ? X Contents

Contents

- Introduction
- Spins and Interactions
- Ferromagnets and Antiferromagnets
- Frustration
- Magnetization jumps
- Plateaus and Susceptibility minima
- Magnetocaloric effect

Gossip about frustration

 Fe_{30}

- Typical statement: It is known that frustrated spin systems exhibit spectacular phenomena: high ground state degeneracy, re-entrance, partial disorder, controversial nature of the phase transition, order by the disorder, etc.
- What is frustration?
- New consequences of frustration?

← → → □ ? X

Interaction and frustration

Interaction and frustration

Heisenberg Hamiltonian

$$H = -\sum_{i,j} J_{ij} \vec{s}(i) \cdot \vec{s}(j) + g \mu_B B \sum_{i}^{N} \underline{s}_z(i)$$
Heisenberg Zeeman

The Heisenberg model – including anisotropy, and dipol-dipol interaction if necessary – as well as a Zeeman term describes the magnetic spectrum of many molecules with high accuracy.

 $\vec{s}(i)$ are the spin operators at sites i, J_{ij} is the strength of the mutual interaction, B is the applied magnetic field.

Ferromagnets and Antiferromagnets

- Dimer: $H = -2J \ \vec{s}(1) \cdot \vec{s}(2)$
- Feromagnetic coupling: J > 0, classical spin vectors align parallel; $E_0 = -2Js^2$.
- Antiferomagnetic coupling: J < 0, classical spin vectors align antiparallel; $E_0 = 2Js^2$.
- Antiferomagnetic ring with even N: classical spin vectors align antiparallel; $E_0 = 2JNs^2$.

Simple definition of frustration

- Triangle: $H = -2J \left(\vec{\underline{s}}(1) \cdot \vec{\underline{s}}(2) \vec{\underline{s}}(2) \cdot \vec{\underline{s}}(3) \vec{\underline{s}}(3) \cdot \vec{\underline{s}}(1) \right)$
- Very simple definition of frustration: The last spin is frustrated because it does not know how to align.
- True clasical ground state in the antiferromagnetic triangle is given by relative angles of 120° between neighboring spins it is degenerate.
- But the quantum ground state is non-degenerate for integer s and fourfold degenerate for half-integer s.

Classical definition of frustration

- Definition: A quantum spin system is frustrated if the corresponding classical system is frustrated, i. e. if neighboring classical spins are not aligned antiparallel.
- Problem: Need to know the corresponding classical system.

Advanced definition of frustration

- Definition: A non-bipartite system is called frustrated.
- Bipartite: If the system can be decomposed into subsystems A and B such that the coupling constants fulfil $J(x_A,y_B) \leq g^2$, $J(x_A,y_A) \geq g^2$, $J(x_B,y_B) \geq g^2$, the system is called bipartite.
- Definition uses topological properties of the graph of interactions.

Consequences of frustration

Zeeman level splitting

- $H_{\text{Zeeman}} = g \, \mu_B \, B \, \sum_{i}^{N} \, s_z(i)$
- $E_{\nu}(B) = E\nu(B=0) + g\,\mu_B\,B\,M_{\nu}$
- The lowest level for a given magnetic field B is the new ground state. This state defines the magnetization at T=0.
- If $E_{\min}(S)$ quadratic in S (Landé interval rule) then the magnetization steps are equidistant.

${Mo_{72}Fe_{30}}$ - magnetization jump

- $E_{\min}(S)$ linear in S for high S instead of being quadratic (1).
- Heisenberg model: property depends only on the structure but not on s (2).
- Alternative formulation: independent localized magnons (3).
- (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
- (2) H.-J. Schmidt, J. Phys. A: Math. Gen. **35**, 6545 (2002)
- (3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88 (2002) 167207

Localized Magnons

- | localized magnon $\rangle = \frac{1}{2} (|1\rangle |2\rangle + |3\rangle |4\rangle)$
- $|u\rangle = \underline{s}^-(u) |\Omega\rangle$; $|\Omega\rangle$ magnon vacuum; u=1,2,3,4
- $H | 1 \rangle = J\{ | 1 \rangle + 1/2(| 2 \rangle + | 4 \rangle + | 5 \rangle + | 8 \rangle \}$
- ullet H | localized magnon $angle \propto$ | localized magnon angle

Triangles trap the localized magnon, amplitudes cancel at outer vertices.

Kagomé Lattice

- Localized one-magnon state indicated by bold lines.
- Non-interacting one-magnon states can be placed on the grid; each state of n independent magnons is the ground state in the Hilbert subspace with M=Ns-n.
- \Rightarrow linear dependence of E_{\min} on M; magnetization jump;
- Maximal number of independent magnons: N/9.
- Magnetization jump is a macroscopic quantum effect!
- J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

Plateaus

- Plateaus of the magnetization curve are a very popular subjects nowadays.
- Especially structures built of corner sharing triangles often show a plateau at $M_{\rm sat}/3$.
- Lattices like the Kagomé lattice are examples for such a behavior.
- The properties of such frustrated lattices are supposed to be related to high temperature superconductivity.

Susceptibility minima I

- Several frustrated Heisenberg spin systems feature a local minimum in the susceptibility as function of magnetic field B (1).
- Triangular, Kagomé, garnet lattice, icosidodecahedron, cuboctahedron, and triangle have a dip around $B_{\rm sat}/3$, more precise $M_{\rm sat}/3$.
- Pyrochlore lattice and tetrahedron feature a dip around $B_{\text{sat}}/2$, more precise $M_{\text{sat}}/2$.
- Phenomenon emerges in spin systems with sublattice structure.

(1) C. Schröder, H. Nojiri, J. Schnack, P. Hage, P. Kögerler, and M. Luban, to be submitted soon

Susceptibility minima II

$$H_{\sim}^{\mathrm{triangle}} = J \left[\vec{S}^2 - 3 \vec{z}^2 \right]$$
 $H_{\sim}^{\mathrm{tetrahedron}} = J \left[\vec{S}^2 - 4 \vec{z}^2 \right].$

- Spectra of triangle with s=4 and tetrahedron with s=3 identical rotational band, Landé rule.
- Difference in magnetization behavior stems from different degeneracies!
- The degeneracies of energy eigenvalues result from the various ways to couple 3 or 4 intrinsic spins to a given total spin S.

Susceptibility minima III

Stability analysis with three level system

$$dM \approx -\beta (g\mu_B)^2 e^{-\beta \Delta} \frac{d_1 + d_3}{d_2} dB$$

- Minimum of χ whenever $(d_1 + d_3)/d_2$ is minimal.
- Triangle: minimum at $S_{\text{max}}/3$, tetrahedron: minimum at $S_{\text{max}}/2$.
- Alternative: degeneracy functions consist of two branches, intersection shows up in higher derivatives of Z(T,B)

Susceptibility minima IV

- Local minimum in χ is observed in several extended spin structures.
- Three-sublattice systems: triangle, octahedron, cuboctahedron, icosidodecahedron as well as triangular, Kagomé, and garnet lattice.
- Four-sublattice systems: tetrahedron and pyrochlore lattice.
- Explanation quantum mechanically difficult, classical explanation much clearer.

The Magnetocaloric Effect

- Discovered in pure iron by E. Warburg in 1881.
- Heating or cooling in a varying magnetic field.
- Typical rates: 0.5...2 K/T (adiabatic temperature change).
- Giant magnetocaloric effect: $3 \dots 4$ K/T in $Gd_5(Si_xGe_{1-x})_4$ alloys $(x \le 0.5)$.
- Also interesting: refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle.
- Magnetocaloric effect especially effective in frustrated classical spin systems (1).
- (1) M. E. Zhitomirsky, Enhanced magnetocaloric effect in frustrated magnets, Phys. Rev. B 67, 104421 (2003)

Adiabatic temperature change

- Adiabatic process: no heat transfer to the environment, i.e. constant entropy dS = 0.
- Effect strong around jumps of the magnetization curve.
- Adiabatic temperature change especially strong at the large jump to saturation.

20

Relative magnetocaloric effect

- In paramagnets, i. e. uncoupled magnetic moments (spins), we find $(\partial T/\partial B)_S^{\text{para}} = T/B$.
- Interacting spin systems can exceed the paramagnetic limit.
- Figure shows $(\partial T/\partial B)_S/(\partial T/\partial B)_S^{\text{para}}$
- Again in the vicinity of the large jump to saturation the effect is much stronger than in a paramagnet.

21

Application of the magnetocaloric effect

- Application for magnetization cooling: at room temperature for everyday applications, at very low-temperature for extreme cooling.
- Magnetic refrigeration: cost effective, save considerable energy (20 to 30%) over conventional gas compression technology; environmentally friendly, since eliminating ozone depleting chemicals (CFCs), green house gases (HCFCs and HFCs), and hazardous chemicals (NH₃) [Karl A. Gschneidner, Jr., Ames Lab].

Thank you very much for your attention.

The end.