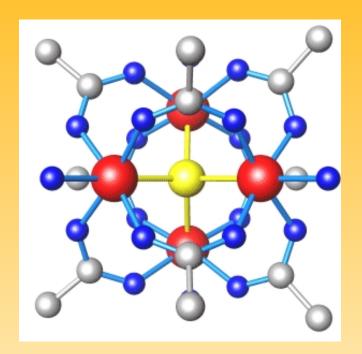
Magnetic properties of deposited Polyoxometalates

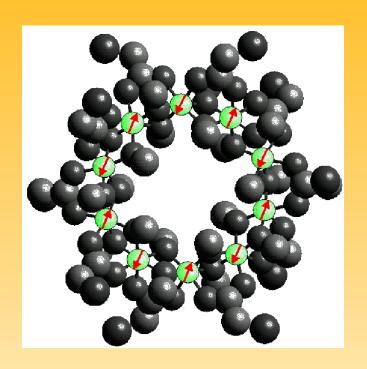
Jürgen Schnack

Department of Physics - University of Osnabrück http://obelix.physik.uni-osnabrueck.de/~schnack/

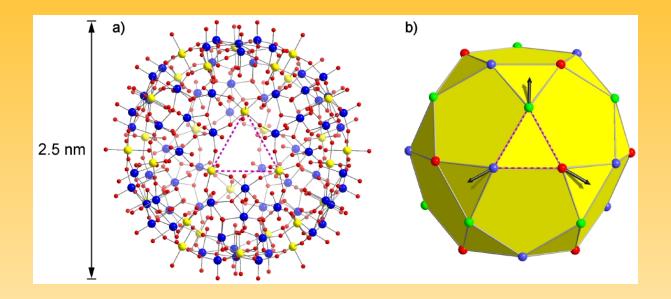

Block seminar, Bramsche, October, 11th 2002

••• ← → •• □ ? X

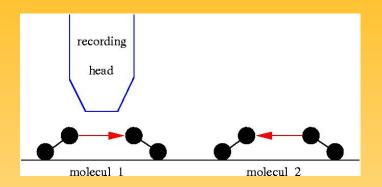
Contents

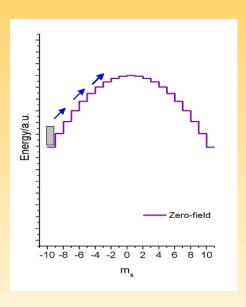

- What are magnetic molecules?
- Structure of magnetic molecules
- Example for magnetic macro molecules
- Magnetic molecules as storage media (1)?
- Magnetic molecules as storage media (2)?
- Aims of our project
- Model Hamiltonian
- Time-dependent magnetic fields
- Phonons and the interaction Hamiltonian

What are magnetic molecules?


- macro molecules, e.g. polyoxometalates: consist of constituents like Hydrogen (H), Carbon (C) and Oxygen (O) as well as paramagnetic ions like Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni) or Manganese (Mn);
- pure organic magnetic molecules: magnetic coupling between high spin molecules (e.g. free radicals);
- intermolecular interaction relatively small.

Structure of magnetic molecules


- dimers (Fe₂), tetrahedra (Cr₄), cubes (Cr₈);
- rings, especially iron rings (Fe₆, Fe₈, Fe₁₀, ...);
- complex structures (Mn₁₂);
- soccer balls, more precisely icosidodecahedra (Fe₃₀) and other macro molecules.


Example for magnetic macro molecules $\{Mo_{72}Fe_{30}\}$

- structure of $\{Mo_{72}Fe_{30}\}$: Fe yellow, Mo blue, O red,
- antiferromagnetic interaction mediated by O-Mo-O bridges.
- classical ground state of $\{Mo_{72}Fe_{30}\}$: three sublattice structure, coplanar spins,
- quantum mechanical ground state S=0 can only be approximated, dimension of Hilbert space $(2s+1)^N \approx 10^{23}$.

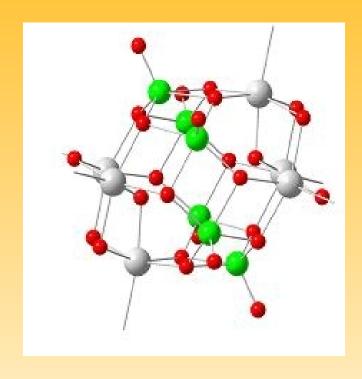
Magnetic molecules as storage media?

Advantages:

- every molecule is a domain of its own; very weak intermolecular interactions; high density and nevertheless good separation of magnetic moments;
- high spin possible, e.g. S = 10;
- magnetic molecules show hysteresis;
- theoretically possible storage density:
 40 Tbits per square inch,
 today: 20 Gbits per square inch (IBM), 300GB per square inch (Fujitsu 05/2002)

Magnetic molecules as storage media?

Disadvantages:


- magnetisation tunneling! stabilisation by appropriate substrate? (Prof. Blügel, Osnabrück/Jülich, http://www.flapw.de)
- often very small coupling $(J \approx 10 \text{ K})$, i.e. thermally unstable at room temperature;
- recording head must be very small and needs precise guide.

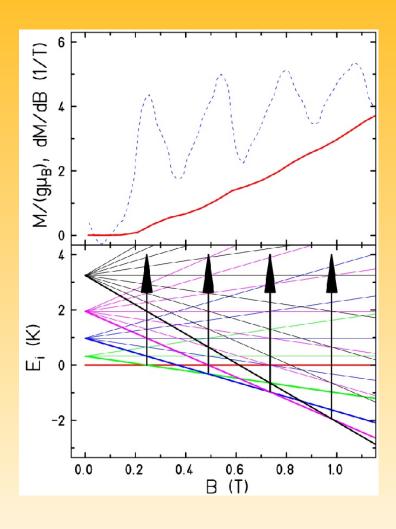
http://www.people.man.ac.uk/~mbdssrew/winpeny_intro3.html

Aims of the project

← → → □ ? **×**

Aims of the project

- effective spin Hamiltonian for the molecule synthesized by H. Reuter/M. Izaaryene;
- possible application of magnetic molecules: storage devices; therefore dynamics of the magnetization due to thermal activation, disturbance by phonons, and under the influence of an external magnetic field are of utmost importance;
- magnetic molecules in time-dependent magnetic fields;
- influence of phonons on the interaction Hamiltonian of magnetic molecules.


Model Hamiltonian – Heisenberg-Model

$$H = -\sum_{i,j} J_{ij} \vec{s}(i) \cdot \vec{s}(j) - D \sum_{i} \left(\vec{e}(i) \cdot \vec{s}(i) \right)^{2} + g \mu_{B} B \sum_{i}^{N} \underline{s}_{z}(i)$$

The Heisenberg modell including anisotropy, and dipol-dipol if necessary, as well as Zeeman term describes the magnetic spectrum of many molecules with high accuracy.

Since the dimension of Hilbert space grows with $(2s+1)^N$ the Hamiltonian can be diagonalized completely for small molecules. For larger ones approximate methods are used.

Time-dependent magnetic fields

- magnetization tunneling at avoided level crossings description via time-dependent Schrödinger equation or Landau-Zener formula;
- ⇒ hysteresis effects;
- relaxation processes due to phonons description with detailed balance;
- ⇒ flattens hysteresis.

Phonons and the interaction Hamiltonian

$$\frac{H}{\tilde{z}} = -\sum_{i,j} J(\vec{r}_i, \vec{r}_j) \ \vec{s}(i) \cdot \vec{s}(j)$$

$$J(\vec{r}_i, \vec{r}_j) \approx J(|\vec{r}_i - \vec{r}_j|) \approx J^{(0)}(ij) + \frac{1}{2} \delta \vec{r}_{ij} \cdot \frac{\partial}{\partial \vec{r}_{ij}} \otimes \frac{\partial}{\partial \vec{r}_{ij}} J(|\vec{r}_{ij}|) \cdot \delta \vec{r}_{ij}$$

- expected that the vibrational degrees of freedom, the phonons, do have an appreciable effect on the magnetic properties of molecular magnets, since molecular magnets can be rather soft;
- dependence of $J(|\vec{r}_{ij}|)$ on \vec{r}_{ij} by SDFT + frozen phonon calculations (Prof. Blügel);
- possible magnetoelastic spin-Peierls phase transitions;
- Because of the complexity of the phonon-magnon interaction not even simple model studies
 have been reported so far for molecular magnets.

Thank you very much for your attention.

Collaboration

- Prof. K. Bärwinkel, Prof. H.-J. Schmidt, M. Brüger, D. Mentrup, M. Exler, P. Hage, F. Hesmer, P. Shechelokovskyy (Uni Osnabrück);
- Prof. M. Luban, Prof. R. Modler, Dr. P. Kögerler, Dr. Chr. Schröder (Ames Lab, Iowa, USA);
- Prof. S. Blügel (FZ Jülich);
- Prof. J. Richter (Uni Magdeburg);
- Dr. A. Honecker (Uni Braunschweig).