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The beauty of magnetic molecules |

e Macro molecules (polyoxometalates etc.): con-
sist of constituents like Hydrogen (H), Carbon
(C), Oxygen (O), and diamagnetic ions (e.g.
Mo) as well as paramagnetic ions like lIron (Fe),
Chromium (Cr), Copper (Cu), Nickel (Ni), Vana-
dium (V) or Manganese (Mn);

e Pure organic magnetic molecules: magnetic cou-
pling between high spin units (e.g. free radicals);

e Single spin quantum number 1/2 < s < 7/2;

e Intermolecular interaction relatively small, there-

fore measurements reflect the thermal behaviour
of a single molecule.
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The beauty of magnetic molecules Il

e Dimers (Fe»), tetrahedra (Cry), cubes (Cry);
e Rings, especially iron rings (Feg, Fes, Feg, ...);

e Complex structures (Mn;5) — drosophila of
molecular magnetism,;

e “Soccer balls”, more precisely icosidodecahedra
(Fesp) and other macro molecules;

e Chain like and planar structures of interlinked
magnetic molecules, e.g. triangular Cu chain:

J. Schnack, H. Nojiri, P. Kdgerler, G. J. T. Cooper, L. Cronin, Phys. Rev.
B 70, 174420 (2004)
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The beauty of magnetic molecules Il
{Mo~;Fesp} — our favorite molecule

25nmm| -

e Giant magnetic Keplerate molecule; e Classical ground state of {MorsFesq}: three
e Structure: Fe - ye||0W’ Mo - b|ue, sublattice structure, Coplanar Spins (2),
O - red; e Quantum mechanical ground state S = 0
e Antiferromagnetic interaction mediated can only be approximated, dimension of Hilbert
by O-Mo-O bridges (1). space (2s + 1) ~ 10%.

(1) A. Mdller et al., Chem. Phys. Chem. 2,517 (2001) , (2) M. Axenovich and M. Luban, Phys. Rev. B 63, 100407
(2001)
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The beauty of magnetic molecules IV

The beauty of magnetic molecules IV
Why magnetic molecules?

Transition few-spin system = many-spin system,
contribution to understanding of bulk magnetism;

Transition quantum spin system (s = 1/2)
= classical spin system (sge = 5/2, sgq = 7/2);

Easy to produce, single crystals with > 10'" iden-
tical molecules can be synthesized and practi-
cally completely characterized,

Speculative applications: magnetic storage de-
vices, magnets in biological systems, light-
induced nano switches, displays, catalysts,
gubits for quantum computers.
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Model Hamiltonian — Heisenberg-Model

N
H = =) Ji36)-3()+ ) 3(i) -Di-30G)+psB ) gis-(i)
] ,J ?

Heisenberg Anisotropy, ... Zeeman

The Heisenberg model including anisotropy, and dipol-dipol interaction if
necessary, as well as a Zeeman term describes the magnetic spectrum of many
molecules with high accuracy.

Reason: lons of the iron group have quenched angular momentum ([ ) ~ 0 due

Y

to chemical binding, remaining spin-orbit coupling treated perturbatively with the
help of anisotropy terms. This is different for rare earth ions!

Since the dimension of Hilbert space equals (2s + 1)» the Hamiltonian can be
diagonalized completely for small molecules. For larger ones approximate methods
are used.
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Product basis and symmtries

Product basis, total dimension: dim (H) = (2s + 1)

S(U) |myy. o s Myyeo o, MN ) =My | M,y e oo, My, ..., MN )

Y

These states span the Hilbert space and are used to construct symmetry-related
basis states.

Symmetries of the Heisenberg model without anisotropy

us]-0 o [ns]-

Additional (point group) symmetries are possible, e.g. shifts on a ring molecule.
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Decomposition into mutually orthogonal subspaces

If {Ij, gz} = 0, the Hilbert space H can be decomposed into mutually orthogonal
subspaces H(M) (M is the quantum number belonging to S)

+Smax
H.S.|=0 @ H= @ HM), Snax=Ns
M =— Smax
H(M) containes all states |my,...,my,...,my) With > . m; = M.

The Hamiltonian is diagonalized in all subspaces separately. The dimension of the
largest subspace determines whether a Hamiltonian can diagonalized completely.
If further symmetries apply this dimension will be further reduced.

For practical purposes (i) - 3(j) = 5-()s-() + 3 | s7(0)s () + 5~ ()57 (5)]

Wl
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Example: spinringwith N =6,s =1/2

Total dimension of H: Dim(H) = (2 x 1/2 +1)° = 64;
M=3:|Q)=|++++++), Dim(H(M)) =1,

M =2: |-+ ++ ++) and cyclic shifts; Dim(H(M)) = 6;

M=1 |-—++++), |-+ —+++), | -+ + — ++) and cyclic shifts;
Dim(H(M)) = 15;

M=0|-—=—=+++), | -—+—++), |-+ ——++), |-+ =+ —+)
and cyclic shifts; Dim(H(M)) = 20;

Dimensional check: 64 =1+6+15+204+154+6+1 /

Inclusion of translational symmetry leads to orthogonal subspaces H(M, k) with
k =0,...,5. Then the largest dimension is 4.
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e Numerically exact diagonalization feasible up to RAM size;

e Example: 10,000x10,000 complex*16, 1.6 GB RAM needed,;

e Not much we can do at this point, wait for more RAM

U

Exact diagonalization

E/

Cuboctahedron, s=1, J=10.
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Exact diagonalization
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The best we can do:

Low-lying states

Low-lying states

E/]

20 |

10 F

_10 =

llllllllllllllll

icosidodecahedron, s=1/2

llllllllllllllll

00 05 10 15 20 25 30 35
gugB/J

e Low-lying states sufficient for low-temperature physics, e.g. Mn5 (1,2);

e Low-lying states important for qguantum phase transitions,
e.g. magnetization jumps.

e Several methods available: projection, Lanczos, DMRG.

(1) Regnault et al., Phys.
(2) Chaboussant et al., P

Rev. B 66, 054409 (2002)
hys. Rev. B 70, 104422 (2004)
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Lanczos method
Construct tridiagonal matrix starting with an arbitrary vector |, )
[Vkr1) = (U= [P ) (V| — [Pr—1){Yr-1]) H |tx)

[Yhus)
Vi i)

| Vr+1)

e New Lanczos vector by construction orthogonal all previous Lanczos vectors;

e Extremal eigenvalues of tridiagonal matrix converge quickly against true extremal
eigenvalues;

e Example: ground state energy approximated to 10 figures with about 300 Lanc-
zos steps although dimension of Hilbert space 10°;

e Three Lanczos vectors needed: RAM!
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Density Matrix Renormalization Group technique

Procedure to construct subspaces that contain low-lying trial states
Developed to calculate groundstate properties of (infinite) 1D spin systems

e Split system into subsystems (e.g. spin chain into single spin sites)
e lteratively increase system size but keep only a fixed number of states
— Truncation of the Hilbert space
e Question: Which states are best suited to be kept?
— Use density matrix of “target state” to determine most important states
e Calculate physical properties in reduced Hilbert spaces

Steven R. White, Phys. Rev. B 48, 10345 (1993)
Salvatore R. Manmana, Alejandro Muramatsu, Reinhard M. Noack, cond-mat/0502396
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DMRG

Standard DMRG algorithm schematically

Algorithm was developed and first used to study groundstate properties of infinite
systems (1-dimensional)

Example: infinite spin chain

1.

2.

Begin with 4-spin superblock

Combine block B and one
spin to block By, 11

. Truncate block Brii to m

states

continue with step 2.

System size increases by 2
spins after each step
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{Mo~,;Fesp} — Lowest rotational band with DMRG

e Dimension of Hilbert space:

800 (25 + 1) ~ 1023
600~ + DMRG calculation I L. . . ) )
sool  —vtorotational band ] o Difficult since quasi two-dimensional
T and finite;
=200 -
L I . .
o 1 e Slow convergence with 1/m instead
200 B of exp(—m);
400 N -
010 20 30 40 50 60 70 e Result: relative ground state ener-
M gies form an almost quadratic band

(rotational band hypothesis).

M. Exler, J. Schnack, Phys. Rev. B 67, 094440 (2003)
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Rotational bands in antiferromagnets |

U
Rotational bands in antiferromagnets |
IR WEEEBEEEEEZZ/]
0F o —==== = 50 - = % = = ]
NI S0 = 2 ]
L Lud

N=6, s=b/2, AF A

8 10 12 14
S

e Often minimal energies F,,;,(S) form a rotational band: Landé interval rule (1);

e Most pronounced for bipartite systems (2),
good approximation for more general systems;

e Sometimes low-lying spectrum is a sequence of rotational bands (3).

(1) A. Caneschi et al., Chem. Eur. J. 2, 1379 (1996), G. L. Abbati et al., Inorg. Chim. Acta 297, 291 (2000)
(2) J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2001)
(3) O. Waldmann, Phys. Rev. B 65, 024424 (2002)
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Rotational bands in antiferromagnets Il
Approximate Hamiltonian for  {Mo~7sFesp}

DJ |- NSL_)
H=-2J ) 3 -30) =~ ——=|5°-) S| =H"

B4 === _="_—

-360

E/

-380 —— -

=400, o ]

—

S; sublattice spins; D = 6; INS shows broad peak at band separation.

J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56 863 (2001) 863
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Giant magnetization jumps in frustrated antiferromagnets |

Gilant magnetization jumps in frustrated antiferromagnets |
{MO72 Fego}
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e Fnin(S) linear in S for high S instead of being quadratic (1);

e Heisenberg model: property depends only on the structure but not on s (2);

e Alternative formulation: independent localized magnons (3);

(1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)

(2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002)

(3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

Jurgen Schnack, Quantum Theory of Molecular Magnetism

20



googgag? U Giant magnetization jumps in frustrated antiferromagnets |l

Giant magnetization jumps in frustrated antiferromagnets Il
Localized Magnons

o |localized magnon) =1 (|1)— |2)+ [3)— |4))

e [1)=5s"(1)[TTT ...)etc.

o H|1)=J{|1)+1/2(]2)+ [4)+ [5) + |8))}

Y

H|2)=J012)+1/2(|1) + [3) + [5) + |6))}

Y

e H|localized magnon) o |localized magnon)

e Triangles trap the localized magnon, amplitudes cancel at outer vertices.
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Giant magnetization jumps in frustrated antiferromagnets Ill
Kagome Lattice

OX X XC e Non-interacting one-magnon states can be placed
><Q>< on various lattices, e. g. the kagome lattice;
OX_ X XC - .
- e Each state of n independent magnons is the ground
L state in the Hilbert subspace with M = Ns — n;

e Linear dependence of En,i, on M
= magnetization jump;

e Maximal number of independent magnons: N/9;

e Jump is a macroscopic quantum effect!

J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys.: Condens. Matter 16, S779 (2004)
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Magnetization plateaus and susceptibility minima

e Octahedron, Cubocthedron, Icosidodecahedron —
little (polytope) brothers of the kagome lattice with
Increasing frustration.

~
o

o]
o
-

dM/dB [arb. units]

wn
o
—

e Cubocthedron & Icosidodecahedron realized as
magnetic molecules.

e Cubocthedron & Icosidodecahedron feature
plateaus, e.g. at Ms,:/3 and independent magnons.

o
o
o

3 Do 0.42K
20 i =20K

\
| \

o e Susceptibility shows a pronounced dip at Bsy/3
(classical calculations and quantum calculations for
the cuboctahedron).

: Experiment
: T=0.42K
i — upcycle
: — down cycle

dM/dB [arb. units]

o

L | I | I P |- PR BT s
5 10 15 20 25 30
B [Tesla]

e Experimentally verified with {MorsFes}.

C. Schroder, H. Nojiri, J. Schnack, P. Hage, M. Luban, P. Kogerler, Phys. Rev. Lett. 94, 017205 (2005)
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Metamagnetic phase transition |

e Normally hysteretic behavior of SMM is an outcome

05 g of magnetic anisotropy.
T=0 77
0.4r — up cycle . /k;/ 7
= s e The classical AF Heisenberg Icosahedron exhibits a
N | pronounced hysteresis loop.
0o'//voﬁ oszB 03 04 05 ) o
Bea e It shows a first order phase transition at 7' = 0 as

function of B.

e The minimal energies are realized by two families of
spin configurations (movie by C. Schroder).

Ey

e The overall minimal energy curve is not convex
=> magnetization jump.

C. Schroder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett., submitted, cond-mat/0501558
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Metamagnetic phase transition Il

30 + o -
| Icosahedron: ]
o5 | » i e Quantum analog:
: o : Non-convex minimal energy levels
20 - —=| . - = magnetization jump of AM > 1.
L _)\— 4
= 15| ] s=5/2 - , . :
A e Lanczos diagonalization for various s.
10 F ;\—I s=3/2 7 .
_ s _ e True jump of AM = 2 for s = 4.
| s=1
°r =1/2 )
- 3 : e Polynomial fit in 1/s yields the classi-
O, . T cally observed transition field.
0.30 0.3 0.40 0.45 0.0 0.6 0.60
B/Bgat

C. Schroder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett., submitted, cond-mat/0501558
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Enhanced magnetocaloric effect |
Basics

e Discovered in pure iron by E. Warburg in 1881.

e Heating or cooling in a varying magnetic field.

e Typical rates: 0.5...2 K/T (adiabatic temperature
change).

e Giant magnetocaloric effect: 3...4 K/T e.g. In
Gd5(Si,.Ge;_,)4 alloys (z < 0.5).

e MCE especially large: due to condensation of a
macroscopic humber of soft modes (Zhitomirsky),
due to condensation of independent magnons
(Zhitomirsky, Honecker, Richter), close to quantum

critical points (Rosch).
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Enhanced magnetocaloric effect Il
Simple af s =1/2 dimer

S=1, M=+1

S=1, M=0

S=1, M=-1

S=0, M=0
U~

e Singlet-triplet level crossing causes a “quantum phase transition”
at T' = 0 as a function of B.

e M(T =0,B)and S(T = 0, B) not analytic as function of B.

e C(T, B) varies strongly as function of B for low T.
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Enhanced magnetocaloric effect Il
Entropy of af s = 1/2 dimer

S as function of T and B

S(T =0, B) # 0 at level crossing due to degeneracy

O. Derzhko, J. Richter, Phys. Rev. B 70, 104415 (2004)
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Enhanced magnetocaloric effect IV
Isentrops of af s = 1/2 dimer

T-B isentropes

Magnetocaloric effect:
(a) reduced,

(b) the same,

(c) enhanced,

(d) opposite

Enhanced magnetocaloric effect IV

when compared to an ideal paramagnet.

Case (d) does not occur for a paramagnet.
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Enhanced magnetocaloric effect V

Enhanced magnetocaloric effect V

cuboctahedron, s=1/2

00 05 10 15 20
B/Bgat
ring, N=12, s=1/2

0.0 0.2 0.4 060810 12 14 16
B/Bgat

Two molecular spin systems

e Graphics: isentrops of the frustrated cubocta-
hedron and a N = 12 ring molecule;

e Cuboctahedron features Independent
magnons and extraordinarily high jump
to saturation;

e Degeneracy and (T = 0)—entropy at satura-
tion field higher for the cuboctahedron;

e Adiabatic (de-) magnetization more efficient
for the frustrated spin system.
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Collaboration
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