Complete diagonalization studies of doped Heisenberg spin rings

Jürgen Schnack

Fachbereich Physik - Universität Osnabrück http://obelix.physik.uni-osnabrueck.de/~schnack/

> DPG Frühjahrstagung Berlin, March 8th 2005

> > unilogo-m-rot.jpg.

★ → → → ×

Contents

 $Sr_{14-x}Ca_xCu_{24}O_{41}$

- Introduction
- Model
- 60 % holes on the ring
- Coulomb effects
- Outlook

★ → → □ ? **×**

Fukuda, Mizuki, Matsuda

Introduction

- Aim: Understand thermodynamic properties of $Sr_{14-x}Ca_xCu_{24}O_{41}$ as function of T and B.
- Needed: Excitations involving charge motion.
 ⇒ Screened electrostatic hole-hole repulsion has to be taken into account.
- Means: Complete diagonalization of effective Heisenberg Hamiltonian that depends parametrically on hole positions;
- Conditions: For T < 200 K only chain magnetically active.

Model

Heisenberg Hamiltonian depends on spin-hole configuration \vec{c}

$$H_{\widetilde{c}} = \sum_{\vec{c}} \left(H(\vec{c}) + V(\vec{c}) \right) \quad , \quad H(\vec{c}) = -\sum_{u,v} J_{uv}(\vec{c}) \, \vec{\underline{s}}(u) \cdot \vec{\underline{s}}(v)$$

 $J = (-64, -67, -70) \text{ K}, J_{\parallel} = 5.8 \text{ K}, J_{NN} = 8.7 \text{ K}$

Debye-screened electrostatic hole-hole repulsion ($\lambda_D = \infty$ in the following)

$$V(\vec{c}) = \frac{e^2}{4\pi\epsilon_0 \epsilon_r r_0} \frac{1}{2} \sum_{u \neq v} \frac{\exp\left\{-r_0|u-v|/\lambda_D\right\}}{|u-v|}$$

Discussion of the model

- Ansatz is similar to a simple Born-Oppenheimer description where the electronic Hamiltonian (here spin Hamiltonian) depends parametrically on the positions of the classical nuclei (here hole positions);
- Heisenberg Hamiltonian can be diagonalized for each spin-hole configuration;
- Screened electrostatic potential energy is the additional energy offset: $E_{\nu}(\vec{c}) = E_{\nu}^{\text{Heisenberg}}(\vec{c}) + V(\vec{c});$
- All thermodynamic quantities can be evaluated without further approximation. Various spin-hole configuration may contribute according to the Boltzmann weight of their energy levels.

*** *** = >** ** 🗖 ? 🛛 🗙

60 % holes on the ring

60 % holes on the ring – discussion

- Ground state indeed dimerconfiguration; nearest-neighbor Coulomb repulsion wouldn't be sufficient;
- Magnetization curve strongly dependent on J and ϵ_r ;
- For $\epsilon_r = 1$ only the dimer configuration contributes; for $\epsilon_r \gtrsim 3$ several hole configurations contribute with their respective magnetic spectra.
- It seems that ε_r ≈ 3, which is in good agreement with a dielectric constant of 3.3 found in Ref. [1];

[1] Y. Mizuno, T. Tohyama, and S. Maekawa, Phys. Rev. B 58 (1998) 14713

Coulomb effects – levels

 $\lambda_D = \infty$, dielectric constant ϵ_r is the only free parameter.

Coulomb effects – specific heat

The high degeneracy of excited hole configurations plays an important role, since they substantially contribute to observables at low temperature although lying rather high in energy.

Coulomb effects – inelastic neutron scattering

Rough sketch of the lowest transitions observable with inelastic neutron scattering. The arrow marks the singlet-triplet transition at about 135 K.

Outlook

- Model depends on four parameters $(J, J_{\parallel}, J_{NN}, \epsilon_r)$;
- Refine model using the wealth of accumulated magnetization data;
- A direct measurement of the energy needed to excite hole movements would be very valuable since it would put additional restrictions on the range of the dielectric constant ϵ_r INS?;
- Intermodel comparison with Hubbard and t-J model (Fatiha Ouchni). First results show that a strong Coulomb repulsion indeed leads to localized holes on the chain.

Thank you very much for your attention.

Special thanks to

- Dr. Rüdiger Klingeler for endless discussions and for providing magnetization data;
- Prof. Dr. Bernd Büchner for valuable discussions;
- Fatiha Ouchni for drawing my attention to the existing literature and for challenging my ideas.