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➠ ➡➡ ➠ ❐ ? ✖ What are magnetic molecules?

What are magnetic molecules?

Cr4

• macro molecules (polyoxometalates etc.): consist of
constituents like Hydrogen (H), Carbon (C), Oxygen
(O), and diamagnetic ions (e.g. Mo) as well as para-
magnetic ions like Iron (Fe), Chromium (Cr), Copper
(Cu), Nickel (Ni) or Manganese (Mn);

• pure organic magnetic molecules: magnetic coupling
between high spin units (e.g. free radicals);

• single spin quantum number 1/2 ≤ s ≤ 7/2;

• intermolecular interaction relatively small, therefore
measurements reflect the thermal behaviour of a
single molecule.
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➠ ➡➡ ➠ ❐ ? ✖ Structure of magnetic molecules

Structure of magnetic molecules

Fe10

• dimers (Fe2), tetrahedra (Cr4), cubes (Cr8);

• rings, especially iron rings (Fe6, Fe8, Fe10, . . . );

• complex structures (Mn12) – drosophila of molecular
magnetism;

• soccer balls, more precisely icosidodecahedra (Fe30) and
other macro molecules;

• chain like and planar structures of interlinked magnetic
molecules.
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➠ ➡➡ ➠ ❐ ? ✖ Example of magnetic macro molecules

Example of magnetic macro molecules
{Mo72Fe30}

• structure of {Mo72Fe30}: Fe - yellow,
Mo - blue, O - red,

• antiferromagnetic interaction mediated by
O-Mo-O bridges (1).

• classical ground state of {Mo72Fe30}: three sublattice
structure, coplanar spins (2);

• quantum mechanical ground state S = 0 can only
be approximated, dimension of Hilbert space
(2s + 1)N ≈ 1023.

(1) A. Müller et al., Chem. Phys. Chem. 2, 517 (2001) , (2) M. Axenovich and M. Luban, Phys. Rev. B 63, 100407 (2001)
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➠ ➡➡ ➠ ❐ ? ✖ Why study magnetic molecules?

Why study magnetic molecules?

Cr8

• transition few-spin system ⇒ many-spin system,
contribution to understanding of bulk magnetism;

• transition quantum spin system (s = 1/2)
⇒ classical spin system (Fe: s = 5/2, Gd: s = 7/2);

• easy to produce, single crystals with > 1017 identical
molecules can be synthesized and practically completely
characterized;

• speculative applications: magnetic storage devices,
magnets in biological systems, light-induced nano
switches, displays, catalysts, qubits for quantum com-
puters.

unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Exact diagonalization, Lanczos, and DMRG 5



➠ ➡➡ ➠ ❐ ? ✖ Magnetic molecules as storage media?

Magnetic molecules as storage media?

• Single Molecule Magnet (SMM): magnetic molecule
with high ground state spin and hysteresis (usually due
to large anisotropy);

• every molecule is a domain of its own; very weak
intermolecular interactions; high density and
nevertheless good separation of magnetic moments;

• high ground state spin possible,
e.g. S = 10 for Mn12;

• theoretically possible storage density:
40 Tbits per square inch,
today: 20 Gbits per square inch (IBM),

300GB per square inch (Fujitsu 05/2002)
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➠ ➡➡ ➠ ❐ ? ✖ Magnetic molecules as storage media?

Magnetic molecules as storage media?

Disadvantages:

• magnetization tunneling – stabilisation by appropriate
substrate?
Prof. Blügel, Osnabrück/Jülich,
http://www.flapw.de

• often very small coupling (J ≈ 10 K), i.e. thermally
unstable at room temperature;

• recording head must be very small and needs precise
guide.

http://www.people.man.ac.uk/∼mbdssrew/winpeny intro3.html
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➠ ➡➡ ➠ ❐ ? ✖ Model Hamiltonian

Model Hamiltonian – Heisenberg-Model

H∼ = −
∑
i,j

Jij~s∼(i) ·~s∼(j)

The Heisenberg model, sometime augmented with anisotropy and dipol-dipol interaction
terms as well as a Zeeman term, describes the magnetic spectrum of many molecules with
high accuracy, although its derivation by means of ab initio calculations (DFT?) remains a
challenge.

In the following we will only consider system with s(i) = s∀i. Since the dimension of Hilbert
space equals (2s+ 1)N the Hamiltonian can be diagonalized completely for small molecules.
For larger ones approximate methods are used.
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➠ ➡➡ ➠ ❐ ? ✖ Dimension of the problem

Dimension of the problem

Product basis, total dimension: dim (H) = (2s+ 1)N

s∼z(u) |m1, . . . ,mu, . . . ,mN 〉 = mu |m1, . . . ,mu, . . . ,mN 〉

These states span the Hilbert space and are used to construct symmetry-related basis states.

Symmetries of the Heisenberg model[
H∼ ,

~S∼
2
]

= 0 ,
[
H∼ , S∼z

]
= 0

Additional (point group) symmetries are possible.
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➠ ➡➡ ➠ ❐ ? ✖ Decomposition into mutually orthogonal subspaces

Decomposition into mutually orthogonal subspaces

Hilbert space H can be decomposed into mutually orthogonal subspaces H(M) with
M =

∑
umu (M is the quantum number belonging to S∼z)

[
H∼ , S∼z

]
= 0 : H =

+Smax⊕
M=−Smax

H(M) , Smax = Ns

dimension of H(M) (de Moivre)

dim (H(M)) = f(N, 2s+ 1, Smax −M)

with f(N,µ, ν) =
bν/µc∑
n=0

(−1)n

(
N

n

)(
N − 1 + ν − nµ

N − 1

)

The dimension of the largest subspace is relevant. If more symmetries apply this dimension
will be further reduced.
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➠ ➡➡ ➠ ❐ ? ✖ Exact diagonalization

Exact diagonalization

• Numerically exact diagonalization feasible up to RAM size;

• Example: 10,000x10,000 complex*16, 1.6 GB RAM needed;

• Not much we can do at this point, wait for more RAM ;-)
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➠ ➡➡ ➠ ❐ ? ✖ Low-lying states

The best we can do: Low-lying states

• Low-lying states sufficient for low-temperature physics;

• Low-lying states important for quantum phase transitions, e.g. magnetization jumps.

• Several methods available to obtain extreme eigenvalues: projection, Lánczos, DMRG.
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➠ ➡➡ ➠ ❐ ? ✖ Lanczos method

Lanczos method

Construct tridiagonal matrix starting with an arbitrary vector |ψ1 〉

|ψ′k+1 〉 = (1− |ψk 〉〈ψk | − |ψk−1 〉〈ψk−1 | )H∼ |ψk 〉

|ψk+1 〉 =
|ψ′k+1 〉√

〈ψ′k+1 |ψ′k+1 〉

• New Lanczos vector by construction orthogonal all previous Lanczos vectors;

• Extremal eigenvalues of tridiagonal matrix converge quickly against true extremal eigenval-
ues;

• Example: ground state energy approximated to 10 figures with about 300 Lanczos steps
although dimension of Hilbert space 108;

• Three Lanczos vectors needed: RAM!
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➠ ➡➡ ➠ ❐ ? ✖ DMRG

Density Matrix Renormalization Group technique

Procedure to construct subspaces that contain low-lying trial states
Developed to calculate groundstate properties of (infinite) 1D spin systems (S. White 1992)

• Split system into subsystems (e.g. spin chain into single spin sites)

• Iteratively increase system size but keep only a fixed number of states

→ Truncation of the Hilbert space

• Question: Which states are best suited to be kept?

→ Use density matrix of“target state” to determine most important states

• Calculate physical properties in reduced Hilbert spaces
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➠ ➡➡ ➠ ❐ ? ✖ DMRG

Standard DMRG algorithm schematically

Algorithm was developed and first used to study groundstate properties of infinite systems
(1-dimensional)

Example: infinite spin chain

1. Begin with 4-spin superblock

2. Combine block BL and one spin
to block BL+1

3. Truncate block BL+1 to m
states

4. continue with step 2.

→ System size increases by 2 spins
after each step

� �� �� ��� �� � �� �� �	 	
 
�

↓
B’LBL

↓
BL+1 B’L+1
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➠ ➡➡ ➠ ❐ ? ✖ DMRG

Density matrix projection and basis truncation

superblock︷ ︸︸ ︷
| i 〉︸ ︷︷ ︸

system

| j 〉︸ ︷︷ ︸
environment

• Find ”target state” (groundstate) |ψSB 〉 of superblock

• Calculate partial trace of corresponding density operator ρSB = |ψSB 〉〈ψSB |

→ Reduced density matrix ρ describes the weights of the system states in the decomposition
of |ψSB 〉

• Keep only the m ”most important” states as truncated basis of the system

• Parameter m controls accuracy and computational cost of the method

unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Exact diagonalization, Lanczos, and DMRG 16



➠ ➡➡ ➠ ❐ ? ✖ DMRG

• For many 1D systems, errors decrease exponentially with m

• Very good accuracy can be achieved, e.g. ∆E/E ≈ 10−6 in the groundstate energy
(infinite s = 1

2 chain, nn-interaction, S. White 1992)
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➠ ➡➡ ➠ ❐ ? ✖ DMRG

DMRG for 2D systems

How to apply method to 2D systems?

• Map 2D structure to 1D chain with long-range interactions
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• Perform standard algorithm

• Accuracy not as good as in 1D case

• ∆E/E ∝ 1/m for the icosidodecahedron (s = 1/2, {Mo72Fe30})
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➠ ➡➡ ➠ ❐ ? ✖ DMRG

{Mo72Fe30} - lowest rotational band with DMRG
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DMRG calculation
fit to rotational band

• Rotational band hypothesis predicts
quadratic sequence of H(M) ground-
states

• Consistent with DMRG calculations

• Difficult to calculate since quasi two-
dimensional and finite

• Accuracy tested with an icosidodeca-
hedron of s = 1/2 (∆E/E ≈ 1%
for m = 200)

M. Exler, J. Schnack, Phys. Rev. B 67, 094440 (2003)
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➠ ➡➡ ➠ ❐ ? ✖ Spin-coherent states

Spin-coherent states

Overcomplete set of“basis” states

| θ, φ 〉 =
2s∑

p=0

√(
2s
p

)
[cos(θ/2)](2s−p) [

eiφ sin(θ/2)
]p | s,m = s− p 〉

〈 θ, φ | ~s∼ | θ, φ 〉 = s

(
sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

)

• Spin-coherent states intuitiv due to classical correspondence;

• Use reduced set of trial states to approximate low-lying levels.
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➠ ➡➡ ➠ ❐ ? ✖ Outlook

Outlook

• DMRG for finite systems? DMRG for two- or three-dimensional systems?

• How to choose optimal set of spin-coherent states?
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➠ ➡➡ ➠ ❐ ? ✖ The End

Thank you very much for your attention.

Collaboration

• Prof. K. Bärwinkel, Prof. H.-J. Schmidt, M. Allalen, M. Brüger, D. Mentrup, M. Exler,
P. Hage, F. Hesmer, P. Shechelokovskyy (Uni Osnabrück);

• Prof. M. Luban, Prof. R. Modler, Dr. P. Kögerler, Dr. Chr. Schröder (Ames Lab, Iowa,
USA);

• Prof. S. Blügel (FZ Jülich);

• Prof. J. Richter, J. Schulenburg (Uni Magdeburg);

• Dr. A. Honecker (Uni Braunschweig).
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➠ ➡➡ ➠ ❐ ? ✖ Our group & Marshall Luban

Our group & Marshall Luban
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