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What are magnetic molecules?

What are magnetic molecules?

macro molecules (polyoxometalates etc.): consist of
constituents like Hydrogen (H), Carbon (C), Oxygen
(O), and diamagnetic ions (e.g. Mo) as well as para-
magnetic ions like Iron (Fe), Chromium (Cr), Copper

(Cu), Nickel (Ni) or Manganese (Mn);

pure organic magnetic molecules: magnetic coupling
between high spin units (e.g. free radicals);

single spin quantum number 1/2 < s < 7/2;

intermolecular interaction relatively small, therefore

measurements reflect the thermal behaviour of a
single molecule.
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Structure of magnetic molecules

e dimers (Fey), tetrahedra (Cry), cubes (Crg);
e rings, especially iron rings (Feg, Feg, Feig, ...);

e complex structures (Mny2) — drosophila of molecular
magnetism;

e soccer balls, more precisely icosidodecahedra (Fesq) and
other macro molecules;

e chain like and planar structures of interlinked magnetic
molecules.
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Example of magnetic macro molecules
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e structure of {MoroFes}: Fe - yellow, e classical ground state of {Mo7sFesg}: three sublattice
Mo - blue, O - red, structure, coplanar spins (2);
° antiferroma_gnetic interaction mediated by e quantum mechanical ground state S = 0 can only
O-Mo-O bridges (1). be approximated, dimension of Hilbert space

(2s + 1)V ~ 10%.
(1) A. Miiller et al., Chem. Phys. Chem. 2, 517 (2001) , (2) M. Axenovich and M. Luban, Phys. Rev. B 63, 100407 (2001)
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Why study magnetic molecules?

e transition few-spin system =- many-spin system,
contribution to understanding of bulk magnetism;

e transition quantum spin system (s = 1/2)
=> classical spin system (Fe: s =5/2, Gd: s = 7/2);

e easy to produce, single crystals with > 107 identical
molecules can be synthesized and practically completely
characterized;

e speculative applications: magnetic storage devices,
magnets in biological systems, light-induced nano

Crg switches, displays, catalysts, qubits for quantum com-
puters.
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Magnetic molecules as storage media?

Magnetic molecules as storage media?
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Single Molecule Magnet (SMM): magnetic molecule
with high ground state spin and hysteresis (usually due
to large anisotropy);

every molecule is a domain of its own; very weak
intermolecular interactions; high density and
nevertheless good separation of magnetic moments;

high ground state spin possible,
e.g. S = 10 for Mnyo;

theoretically possible storage density:
40 Tbits per square inch,
today: 20 Gbits per square inch (IBM),
300GB per square inch (Fujitsu 05/2002)
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Magnetic molecules as storage media?

Disadvantages:

e magnetization tunneling — stabilisation by appropriate

substrate?
Prof. Bliigel, Osnabriick/Jiilich,

http://www.flapw.de

Energy/a.u.

e often very small coupling (J ~ 10 K), i.e. thermally
unstable at room temperature;

........... e recording head must be very small and needs precise
108 -6 4-2 0 2 4 6 8 10 guide_

m
s

http:/ /www.people.man.ac.uk/~mbdssrew /winpeny_intro3.html
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Model Hamiltonian — Heisenberg-Model

H = =) Ji;3()-30)
,J

The Heisenberg model, sometime augmented with anisotropy and dipol-dipol interaction
terms as well as a Zeeman term, describes the magnetic spectrum of many molecules with

high accuracy, although its derivation by means of ab initio calculations (DFT?) remains a
challenge.

In the following we will only consider system with s(z) = sVi. Since the dimension of Hilbert

space equals (2s + 1)V the Hamiltonian can be diagonalized completely for small molecules.
For larger ones approximate methods are used.
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Dimension of the problem

Product basis, total dimension: dim () = (25 + 1)

S (U) [ M, oo My oo yMN ) =My | M, ooy My oo, M)
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These states span the Hilbert space and are used to construct symmetry-related basis states.

Symmetries of the Heisenberg model

28 =0 ,  [HS]=0
Additional (point group) symmetries are possible.
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Decomposition into mutually orthogonal subspaces

Hilbert space H can be decomposed into mutually orthogonal subspaces H (M) with
M =3, my (M is the quantum number belonging to S)

‘|‘Smax

H.S.|=0: H= @ H(M), Spx=Ns
M:—Smax
dimension of H(M) (de Moivre)
dim (H(M)) = f(N,2s+1,Smax— M)
lv/ 1]
_ B (N (N —-14+v—npu
with F(¥opv) = 3 () AT

The dimension of the largest subspace is relevant. If more symmetries apply this dimension
will be further reduced.
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Exact diagonalization

| Cuboctahedron, s=1, J=-0.5

E/IJ

e Numerically exact diagonalization feasible up to RAM size;
e Example: 10,000x10,000 complex*16, 1.6 GB RAM needed:

e Not much we can do at this point, wait for more RAM ;-)
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e Low-lying states sufficient for low-temperature physics;
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The best we can do: Low-lying states
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Low-lying states

e Low-lying states important for quantum phase transitions, e.g. magnetization jumps.

e Several methods available to obtain extreme eigenvalues: projection, Lanczos, DMRG.
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Lanczos method

Construct tridiagonal matrix starting with an arbitrary vector |7 )

[ Y1) = (= [Yr){e] — [ Ye—1){(VYr—1|) H|¥r)
Ky
Vi )

| k1) =

e New Lanczos vector by construction orthogonal all previous Lanczos vectors;

e Extremal eigenvalues of tridiagonal matrix converge quickly against true extremal eigenval-
ues;

e Example: ground state energy approximated to 10 figures with about 300 Lanczos steps
although dimension of Hilbert space 10%;

e Three Lanczos vectors needed: RAM!
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Density Matrix Renormalization Group technique

Procedure to construct subspaces that contain low-lying trial states
Developed to calculate groundstate properties of (infinite) 1D spin systems (S. White 1992)

e Split system into subsystems (e.g. spin chain into single spin sites)

e lteratively increase system size but keep only a fixed number of states
— Truncation of the Hilbert space

e Question: Which states are best suited to be kept?
— Use density matrix of “target state” to determine most important states

e Calculate physical properties in reduced Hilbert spaces
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Standard DMRG algorithm schematically

Algorithm was developed and first used to study groundstate properties of infinite systems

(1-dimensional)

Example: infinite spin chain

1. Begin with 4-spin superblock

2. Combine block Bj, and one spin
to block By

3. Truncate block Bri; to m
states

4. continue with step 2.

— System size increases by 2 spins
after each step
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Density matrix projection and basis truncation

superblock

[4) |5

VO .
system environment

o Find "target state” (groundstate) | 1> ) of superblock

o Calculate partial trace of corresponding density operator p°B = |°B ) (/5B |

— Reduced density matrix p describes the weights of the system states in the decomposition

SB
of |1>2)
e Keep only the m "most important” states as truncated basis of the system

e Parameter m controls accuracy and computational cost of the method
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e For many 1D systems, errors decrease exponentially with m

—6

e Very good accuracy can be achieved, e.g. AE/E ~ 107" in the groundstate energy

(infinite s = % chain, nn-interaction, S. White 1992)
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DMRG for 2D systems

How to apply method to 2D systems?

e Map 2D structure to 1D chain with long-range interactions

e Perform standard algorithm
e Accuracy not as good as in 1D case

e AFE/FE x 1/m for the icosidodecahedron (s = 1/2, {MorsFes3p})
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{Mo,5Fe3y} - lowest rotational band with DMRG

e Rotational band hypothesis predicts
quadratic sequence of H (M) ground-

(o]
o
o

600~ + DMRG calculation states
- — fit to rotational band 1

e Consistent with DMRG calculations

] e Difficult to calculate since quasi two-
dimensional and finite

] e Accuracy tested with an icosidodeca-
0 10 20 30 40 50 60 70 hedron of s = 1/2 (AE/E ~ 1%
M for m = 200)

M. Exler, J. Schnack, Phys. Rev. B 67, 094440 (2003)
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Spin-coherent states

Overcomplete set of “basis” states
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e Spin-coherent states intuitiv due to classical correspondence;

e Use reduced set of trial states to approximate low-lying levels.
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e DMRG for finite systems? DMRG for two- or three-dimensional systems?

O

Outlook

e How to choose optimal set of spin-coherent states?

h00
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icosidodecahedron, s=hb/2
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Outlook
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Thank you very much for your attention.

Collaboration

Prof. K. Barwinkel, Prof. H.-J. Schmidt, M. Allalen, M. Briiger, D. Mentrup, M. Exler,
P. Hage, F. Hesmer, P. Shechelokovskyy (Uni Osnabriick);

Prof. M. Luban, Prof. R. Modler, Dr. P. Kogerler, Dr. Chr. Schroder (Ames Lab, lowa,
USA);

Prof. S. Bliigel (FZ Jiilich);
Prof. J. Richter, J. Schulenburg (Uni Magdeburg);

Dr. A. Honecker (Uni Braunschweig).
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