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The method of Nosé and Hoover!:2 to create canonically distributed positions and
momenta in classical molecular dynamics simulations is frequently used. Hamil-
ton’s equations of motion are supplemented by time-dependent pseudofriction
terms that convert the microcanonical isoenergetic time evolution into a canonical
isothermal time evolution, thus permitting the calculation of canonical ensemble
averages by time averaging.

We show that for one quantum particle in an external harmonic oscillator, the
equations of motion in terms of coherent states can easily be modified in an ana-
logous manner to mimic the coupling of the system to a thermal bath and create
a quantum canonical ensemble.> The method is generalized to a system of two
identical quantum particles. In the resulting equations of motion, one obtains an
additional attractive term for bosons and a repulsive term for fermions in the dy-
namics of the pseudofriction coefficients, leading to a correctly sampled thermal
weight.

1 Coherent states

Coherent states® |z) = |r,p) are eigenstates of the annihilation operator a of the
harmonic oscillator,

a |z)y=2z2 |z) z = ET—I—L (1)
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In the coordinate representation one finds that coherent states are shifted Gaussian
wavepackets that may be parameterized by the mean position r and the mean
momentum p:
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Since the set of coherent states forms a basis of the one-particle Hilbert space, this
set may be used in order to evaluate canonical ensemble averages. Moreover, in
the case of a harmonic oscillator potential, the thermal average of an observable B

may be written as an integral over the whole parameter space,’
1 drdp
B = 7o\ o2\ m\P; T, ) ) 2
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with
drdp
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B(r,p) = (r,p| B [r,p) , (4)
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Eq. (2) has the form of a classical phase space average, with wy,, (r,p) being the
thermal weight function on the parameter space.
The exact quantum time evolution of coherent states in a harmonic oscillator is
expressed by the following equations of motion of the parameters r and p,
d P d

—_r = — —_—p = — 2 .
dtr — dtp mwr (6)

2 Quantum Nosé-Hoover thermostat

2.1 One particle

The equations of motion (6) are modified in a manner analogous to the classical
Nosé-Hoover thermostat, i. e. a time-dependent pseudofriction term is added to the
equation of motion of p. The dynamics of the pseudofriction coefficient is deter-
mined by the requirement that the resulting dynamics (7) samples the distribution
function wgm, (r,p). This requirement is expressed in terms of a Liouville equation
in the parameter space I' = {r, p, p,}. One obtains the equations of motion

d p d 9 Dn
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Figure (1) compares the position and momentum distributions sampled by time
averages to the exact marginal distributions of wgy,,. As in the classical case, the
simple Nosé-Hoover method features problems of non-ergodicity, i. e. not all parts
of the phase space are sampled with the correct weight. This can be resolved by em-
ploying a chain of thermostats® or by the application of the closely related so-called
KBB-thermostat.” Both methods sample the distribution wg,, (r,p) correctly, and
the mean value of any observable can be determined correctly by time averaging.

2.2 Two particles
In the case of two particles with a wavefunction (1,2 | Z ), the equation

(B) = g [ S L et 7 2) PTRITD
T Ae s — 2 (212)
wim (21, 22)

(21B|2)
(z|2)
In the case of fermions, we easily find (Z|Z) = 11— e‘|zl_z2|2). This expression
vanishes if z; = 25 according to the Pauli exclusion principle. In contrast, for
bosons we find ( Z | Z)= 11+ e“zl_”'z). The Nosé-Hoover equations of motion

for the parameters 21 = (r1,p1) and 22 = (72, p2) read

defines w(g%%(zl, z2) as being the thermal weight of the expectation value
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Figure 1. From above: momentum distribution, position distribution, left panel: Nosé-Hoover
method according to the equations (7), right panel: Nosé-Hoover chain. The solid black line
depicts the exact quantum result given by the respective partially integrated function wgm/Z,

e.g., f(r) = % \/%wqm(r,p), the dashed line represents the corresponding classical distribution

2
x e~ m normalized to the same value. The distributions sampled by time averaging

are presented as histograms.
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The time dependence of the pseudofriction coefficients has to be determined in a
procedure analogous to the case of a single particle. We obtain (upper sign for
bosons, lower sign for fermions)

by, = (e -1 _ | 4 Pr(pr = p2) 1 (10)
"B \m hw mhw  elm—=21? 1

P _1 p_geﬂhw_l_1¢p2(p1—p2) 1
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The part % eﬁzw_l —1, i=1,2, in the equations of motion is familiar from the
dynamics of a single thermostatted particle. However, in the case of two particles we
find additional terms that reflect the effects of Bose-attraction and Pauli-blocking
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Figure 2. Left panel: isothermal dynamics of two identical bosons, right panel: two identical
fermions. The equations of motion (9), (10) are integrated with the initial values {ri,p1,72,p2} =
{0,—0.1,0,0.1} in both cases. The temperature is T' = 0.1hw, and Q1 = Q2 = 0.5. The integration
time is 6.5 periods of the harmonic oscillator. The figure illustrates the effect of Bose attraction
and Pauli-blocking on the dynamics: While the bosons stay close to each other for a certain time,
the fermions are immediately driven away from each other due to the exclusion principle.

directly in the thermostatted dynamics, see figure (2). In essence, the effect of the
thermostatted dynamics on identical quantum particles looks like an attractive or
repulsive interaction, although we treat a system of non-interacting particles. The
interaction is of purely statistical origin.

3 Outlook

We have presented a straightforward, yet non-trivial extension of the powerful tech-
niques of heat bath coupling in classical molecular dynamics simulations to the
quantum harmonic oscillator. Our goal is to extend the method to more general
quantum systems, especially interacting fermion systems, using approximate quan-
tum dynamics methods like Fermionic Molecular Dynamics.?
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