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Abstract

If a string is cyclically shifted it will re�appear after a certain number of shifts, which will
be called its order. We solve the problem of how many strings exist with a given order by
applying the MOEBIUS inversion principle. This problem arises in the context of quantum
mechanics of spin systems.

1 Introduction and de�nitions

Let S(A,N) denote the set of strings a = 〈a1, . . . , aN〉 of natural numbers an ∈
{0, . . . , A− 1}. There are exactly AN such strings. For any a ∈ S(A,N) let
Σ(a) def=

∑N
n=0 an and T (a) def= 〈aN , a1, a2, . . . , aN−1〉. T is the cyclic shift op-

erator. If T n denotes the nth power of T , n ∈ N, it follows that TN = T 0 =1S(A,N).
We consider two equivalence relations on S(A,N). For a, b ∈ S(A,N) we de�ne

a ∼ b⇔ Σ(a) = Σ(b) (1)

and

a ≈ b⇔ a = T n(b) for some n ∈ N. (2)

Obviously, a ≈ b implies a ∼ b since the sum of the numbers in a string is invariant
under permutations.
The aim of this article is to analyze the structure of the equivalence classes of strings
with respect to ∼ and ≈. The main question will be: How many ≈-equivalence
classes of a given size exist? Or: How many ≈-equivalence classes of a given size
exist which are contained in a certain ∼-equivalence class? This problem can, of
course, be solved in a straight-forward manner for any given A and N , either by
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hand or by means of a simple computer program. We are rather seeking explicit
formulae which answer the above questions.
The problem arises in the context of quantum mechanics of spin rings with a cycli-
cally symmetric coupling between the N individual spins. Any individual spin can
assumeA different states and the total system can assumeAN different states. More
precisely: The total Hilbert space of the problem possesses an orthonormal basis of
product states parametrized by the set S(A,N). According to the symmetries of the
problem it is possible to split the total Hilbert space into a sum of orthogonal sub-
spaces which are invariant under the Hamiltonian of the problem. These subspaces
are closely connected to the equivalence classes of strings de�ned above. For more
details see [1�3].

2 Strings with constant sum

For any a ∈ S(A,N) we denote the corresponding equivalence class [a]∼ of strings
having the same sum by

S(A,N,M) where M def= Σ(a). (3)

Obviously, S(A,N) is a disjoint union

S(A,N) =
⋃

M=0...N(A−1)

S(A,N,M) (4)

and the total number of strings satis�es

|S(A,N)| = AN =
∑

M=0...N(A−1)

|S(A,N,M)| . (5)

The problem of determining the number of strings with a constant sum |S(A,N,M)|
is equivalent to the problem of calculating the probability distribution of the sum of
N independent, �nite, uniformly distributed random variables. An example would
be the probability of scoring the sum M in a throw with N dice with A faces.
Geometrically, this is the problem of how many lattice points are met if you cut a
hypercube containing AN lattice points perpendicular to its main diagonal.
The solution to this problem is known since long and traces back to Abraham de
MOIVRE [4]:

|S(A,N,M)| =
bM
A
c∑

n=0
(−1)n

(
N

n

)(
N − 1 +M − nA

N − 1

)
, (6)

2



where bxc denotes the largest integer ≤ x. The proof is straight-forward using the
generating function (see e. g. [5])(

A−1∑
a=0

za
)N

=
N(A−1)∑
m=0

|S(A,N,m)| zm. (7)

3 Cycles of strings

We will call the equivalence classes a = [a]≈, a ∈ S(A,N) of strings which are
connected by cyclic shifts �cycles�. The different sets of cycles will be denoted by

C(A,N) def= S(A,N)/ ≈, C(A,N,M) def= S(A,N,M)/ ≈ . (8)

This notation appears natural since cycles are the orbits of the cyclic group

G
def= {T n : n = 0, . . . , N − 1} ∼= ZN (9)

operating on strings in the way de�ned above. Hence cycles can at most contain
N strings. The number of strings contained in a cycle will be called its �order�.
�Proper cycles� are de�ned as those of maximal order N , �epicycles� are cycles
of order less than N . Special epicycles are those containing exactly one constant
string a = 〈i, i, . . . , i〉, i ∈ {0, . . . , A− 1}. These will be of order one and are
called �monocycles�. Obviously, there are exactly A monocycles.
Generally, the orbit of a groupG generated by the operation on some element awill
be isomorphic to the quotient set G/Ga, where Ga is de�ned as the subgroup of all
transformations leaving a �xed. In our case Ga will be isomorphic to Zk where k is
a divisor of N and a will be of order n = N

k
. k will be called the �complementary

order� of a. The case k = 1 corresponds to proper cycles, whereas the case k = N
yields monocycles.
To put it differently: If a string a ∈ S(A,N) consists of k copies of a substring
b ∈ S(A, n), kn = N , it will generate an epicycle a = [a]≈ containing at most n
strings. a contains exactly n strings iff b itself generates a proper cycle b ∈ C(A, n).
Conversely, any epicycle a of order n consists of strings which are k copies of
substrings b belonging to proper cycles b. Moreover, if a ∈ C(A,N,M) is of order
n the corresponding proper cycle b will satisfy b ∈ C(A, n,m) with M = km.
Thus we obtain the following

Lemma 1 (1) The order n of any cycle a ∈ C(A,N,M) is a divisor of N .

(2) Moreover, in this case m def= Mn
N

will be an integer.

Hence the order of cycles will always belong to the following set:

De�nition 1 D(A,N,M) def= {n ∈ N : n|N and N |Mn},
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and the complementary order k = N
n

will always belong to

De�nition 2 CD(N,M), de�ned as the set of common divisors of N and M .

In passing we note that if N is a prime number, then there will be only proper cy-
cles and exactly A monocycles, as mentioned above, hence N will divide AN −A,
which is essentially FERMAT's theorem of 1640, cf. [6], Theorem 2.13

De�nition 3 Let N (A,N,M, n) denote the number of cycles a ∈ C(A,N,M) of
order n andM(A,N,M, n) the number of strings belonging to these cycles:

M(A,N,M, n) def= N (A,N,M, n)n. (10)

According to the preceding discussion the following holds:

Lemma 2

M(A,N,M, n) =

M(A, n, Mn
N
, n) : if n ∈ D(A,N,M)

0 : else
, (11)

|S(A,N,M)|=
∑

n∈D(A,N,M)

M(A,N,M, n) (12)

=
∑

k∈CD(N,M)

M(A,
N

k
,
M

k
,
N

k
). (13)

Together with (6) this yields a recursion relation forM(A,N,M, n). It is, however,
possible to obtain an explicit formula by means of MOEBIUS' inversion principle,
which will be shown in the next section.

4 Explicit formula forM(A,N,M, n)

We recall the de�nition of the MOEBIUS function µ:

De�nition 4

µ(ν) def=


1 : if ν = 1,

(−1)m : if ν is a product of m distinct primes,

0 : else.

(14)

The MOEBIUS inversion principle may be formulated as follows:
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Theorem 1 Let n ∈ N and D(n) denote the set of divisors of n, further let f and
g be two functions de�ned on D(n). Then

g(ν) =
∑
d|ν
f(d) for all ν ∈ D(n), (15)

if and only if

f(ν) =
∑
d|ν
µ(d)g(

ν

d
) for all ν ∈ D(n). (16)

It can be easily checked that this formulation is equivalent to the usual one which
refers to functions de�ned for all natural numbers, cf. for example [6], Theorem
6.14. From our formulation we may derive a slightly generalized principle:

Theorem 2 Let ni ∈ N, i=1, . . . ,r, and CD(n1, . . . , nr) denote the set of common
divisors of n1, . . . , nr, further let f and g be two functions de�ned on
D def=

{
(n1
d
, . . . , nr

d
)|d ∈ CD(n1, . . . , nr)

}
. Then

g(ν1, . . . , νr) =
∑

d∈CD(ν1,... ,νr)

f(
ν1

d
, . . . ,

νr
d

) for all (ν1, . . . , νr) ∈ D, (17)

if and only if

f(ν1, . . . , νr) =
∑

d∈CD(ν1,... ,νr)

µ(d)g(
ν1

d
, . . . ,

νr
d

) for all (ν1, . . . , νr) ∈ D.

(18)

This theorem follows from Theorem 1 since the set CD(n1, . . . , nr) is identical to
the set D(n), if n denotes the greatest common divisor of n1, . . . , nr and the do-
mains D(n) and D of the respective functions are in 1 : 1 correspondence.

Theorem 2 may be applied in order to solve (13) for M(A,N,M,N) if we set
g(N,M) = |S(A,N,M)| and f(N,M) =M(A,N,M,N).
Using (6), we eventually obtain the following

Theorem 3

M(A,N,M,N) =
∑

n∈D(A,N,M)

µ(
N

n
)
bMn
NA
c∑

ν=0
(−1)ν

(
n

ν

)(
n− 1 + Mn

N
− νA

n− 1

)
,

(19)

LetM(A, n) denote the number of strings belonging to cycles of order n, irrespec-
tive of M . This number does not depend on the total length N of the strings. By an
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Order n Number of cycles of order n

1 5

2 10

3 40

4 150

6 2580

12 20343700

Table 1
Number of cycles of order n for N = 12 and A = 5.

analogous reasoning as above we may conclude

Theorem 4

M(A, n) =
∑
k|n

µ(
n

k
)Ak. (20)

From this expression the number of cycles is obtained by division by n. Note that
n|M(A, n), hence (20) generalizes FERMAT's original result to the case where n
need not be prime.
Finally we give a numerical example for N = 12 and A = 5 in table 1.
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