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The picture on the title page displays magnetisation curves of the polyoxometalate
{MozsFezo} [MSST99]. The dashed blue curve depicts the experimental result and the
solid red curve the theoretical result calculated with the help of an approximate Hamil-
tonian [LSMOO0].

The inset shows the structure of {Mor;Fes,} which was synthesized in the group of
Prof. Dr. A. Miiller at the university of Bielefeld. Small red balls depict oxygen, big red
balls depict iron and blue balls molybdenum. The structure is displayed viewing along
a fivefold symmetry axis. The inset figure was produced by Paul Kogerler (Bielefeld).
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1. Introduction

This collection of articles summarizes the author’s work done after 1996. It is submitted
to the Fachbereich Physik at the University of Osnabriick for the purpose of the author’s
Habilitation.

The first chapters, which precede the collection of articles, provide a short introduction
of the fields the articles belong to. They also inform how the articles of the author
contribute to research efforts of the specific field.

Three main fields are covered in this collection. All of them deal with small quantum
systems: with characteristics of their ground states and low-lying excitations, and with
their thermal properties. Due to experimental progress both in synthesis as well as
in characterization small and mesoscopic systems attract more and more attention.
A common characteristics of these systems is their finite particle number, not one or
two and not infinity, which leads to deviations from the behaviour expected in the
thermodynamics limit and often calls for an extension of physical concepts, like for
instance the concept of phase transitions.

In addition these systems show all degrees of correlations induced by interparticle in-
teractions. Weakly interacting particles like the recently investigated atomic vapours
contained in magnetic traps may be rather well described as ideal quantum gases using
standard methods, whereas the interacting spins of a magnetic molecule or interact-
ing fermions in nuclei form highly correlated systems. In the latter case the partition
function cannot be evaluated easily or even at all. One method to determine thermo-
dynamic properties nevertheless is the method of thermostated dynamics, which was
developed within the last fifteen years. While the method is successfully applied to clas-
sical systems as for instance noble gas clusters or classical spin systems, its extension
to quantum systems is a matter of current research.

The following introduction is organized as follows. The second chapter presents the
latest results on properties of magnetic molecules, the third chapter introduces to the
physics of ideal Fermi or Bose gases contained in magnetic traps. The fourth and last
chapter summarizes the effort made to uncover thermodynamic properties of interact-
ing Fermi systems.

Throughout the article all operators are underlined with a tilde, e.g. H, expectation



1. Introduction

values are denoted by brackets, e.g. (H ) or calligraphic letters, e.g. % and thermal
averages are symbolized by double brackets like in (( H )). If not needed explicitly %
and kp are sometimes dropped.

References to articles submitted for the purpose of the author’s Habilitation are given
in bold face letters.



2. Small magnetic molecules

The synthesis of molecular magnets has undergone rapid progress in recent years
[SGC93, GCPS94, Gat94, CDGM96, MPPG98]. Each of the identical molecular units
can contain as few as two and up to several dozens of paramagnetic ions (“spins”). The
largest paramagnetic molecule synthesized to date, the polyoxometalate {MorsFe3}
[MSS*99] contains 30 iron ions of spin s = 5/2. Although these materials appear as
macroscopic samples, i.e. crystals or powders, the intermolecular magnetic interactions
are utterly negligible as compared to the intramolecular interactions. Therefore, mea-
surements of their magnetic properties reflect mainly ensemble properties of single
molecules.

The properties of magnetic molecules are investigated with a variety of well-known
techniques like electron parametric resonance (EPR) [BG90], NMR spin-lattice relax-
ation rate measurements [Mor56, LGBC97b, LGBC97a], [FLB*00], neutron scatter-
ing [BL89], magnetisation measurements [TDP*94], torque magnetometry [WSK*99],
and calorimetry [GNS*98].

Their magnetic features promise a variety of applications in physics, magneto-chemistry;,
biology, biomedicine and material sciences [Gat94, CDGM96]. The most promising
progress is being made in the field of spin crossover substances using effects like “Light
Induced Excited Spin State Trapping (LIESST)” [GHS94].

It appears that in the majority of these molecules the localized single-particle magnetic
moments couple antiferromagnetically and the spectrum is rather well described by the
Heisenberg model with isotropic next neighbour interaction [BG90, DGP*93, CCF*95,
PDK*97, WSK*99]. Thus, the interest in the Heisenberg model, which is known already
for a long time, but used mostly for infinite systems like chains or lattices, was renewed
by the successful synthesis of magnetic molecules. Studying such spin arrays focuses
on qualitatively new physics caused by the finite size of the system.

The work presented in this chapter was mainly done with K. Barwinkel, H.-J. Schmidt,
D. Mentrup (Universitdt Osnabriick), and M. Luban (Ames Lab & Iowa State Univer-
sity), the respective publications [MSL99, BSS00b, FLB*00, MSSL00, BSS00a, Sch00,
SLO1] are presented in section A on page 36.



2. Small magnetic molecules

2.1 Heisenberg model

The Hamilton operator for the isotropic Heisenberg model including the interaction
with an external magnetic field (Zeeman term) reads

~

H = —2J ) 3(u)-3(v)+gusBS., (2.1)
(u,v)

where J is the exchange interaction with units of energy, and J < 0 corresponds to
antiferromagnetic, J > 0 to ferromagnetic coupling. The vector operators 3(u) are the
single-particle spin operators. The sum in Eq. (2.1) runs over all distinct interacting
pairs (u,v) of spins at positions u and v. Since the Hamilton operator commutes with
SQ and §,, total spin S and total magnetic quantum number M are good quantum
numbers. For spin rings the Hamiltonian (2.1) is also invariant under cyclic shifts which
leads to another good quantum number, the translational quantum number .

These symmetries of the isotropic Heisenberg Hamilton operator allow to decompose
the Hilbert space # into a set of mutually orthogonal subspaces #(S, M, k) [BSSO0b]
in which a complete diagonalization can be performed either analytically [Kou97,
Kou98], [BSS00b] or numerically [BF64, BJ83, FLMU91, Man91, DGP"93, GJL94,
FLS97, Wal00].

The achieved insight could be used to compare the quantum Heisenberg model to its
classical counterpart. The classical Heisenberg model [LLB98, Sch99b] turns out to
provide accurate quantitative results for static properties, such as magnetic susceptibil-
ity, down to thermal energies of the order of the exchange coupling [LLB98, Sch99b,
MLS*]. However, considerable care is required comparing dynamical properties which
express themselves in time-dependent spin-spin correlation functions. Here the finite,
and possibly rather small, dimension of the Hilbert space restricts the quantum dynam-
ics, for instance to be recurrent [MSL99, MSSLOO].

2.2 Exact properties of antiferromagnetically coupled spin
rings

The successful description of magnetic molecules by means of the Heisenberg model
resulted in new efforts to find exact properties for instance for low-lying states and
thus joined long-lasting investigations performed for infinite chains and lattices, see
e.g. [BLP92, BLLP94, RIVR95, SGJ96, NRS98, TR99, WKS*00]. Already 40 years ago
a special class of spin arrays — bipartite spin systems — was found to possess strict
ground state properties which are characterized by the sign rule of Marshall and Peirls
[Mar55] and by the theorem of Lieb, Schultz and Mattis [LSM61, LM62]. But since



2.2 Exact properties of antiferromagnetically coupled spin rings

many magnetic molecules are non-bipartite spin systems, the formulation of similar
properties is highly desirable.

Looking at the properties of spin rings with constant, isotropic nearest-neighbour inter-
action one realizes that both the ground states as well as the first excited states share
systematic properties which so far are understood only for Heisenberg spin rings of an
even number of spin sites, i.e. bipartite rings. Rings with an odd number of sites, which
are non-bipartite and thus can be characterized as frustrated [RIVR95], show unex-
pected properties in degeneracy and translational quantum number [BSS00a, Sch00].

Knowing systematic rules for quantum numbers also of non-bipartite systems would be
very useful for a comparison of theoretical results with measurements. One could em-
ploy knowledge about quantum numbers of ground and first excited states in order to
understand the thermal behaviour of quantities like the magnetic susceptibility. In addi-
tion these exact values may help to improve low temperature approximations. Usually
the high temperature behaviour of observables is well known, e.g. from classical spin
dynamics [LLB98], but at low temperature such approximations are poor. The knowl-
edge of ground and first excited states could already be sufficient for a considerable
improvement.

Some of our results for ground state properties [BSS00a] are summarized in table 2.1.

Without exception we find:

1. The ground state belongs to the subspace #(S) with the smallest possible total
spin quantum number S; this is either S = 0 for N -s integer, then the total
magnetic quantum number M is also zero, or S = 1/2 for N-s half integer, then
M= +1/2,

2. The restricted ground state within a subspace of constant total magnetic quantum
number M belongs to #(S) with S attaining its smallest value S = |M]|.

3. If N-sis integer, then the ground state is non-degenerate.
4. If N-sis half integer, then the ground state is fourfold degenerate.
5. If s is integer or N-s even, then the shift quantum number is k£ = 0.

6. If s is half integer and NV-s odd, then the shift quantum number turns out to be
k= N/2.

7. If N-s is half integer, then k¥ = |(N +1)/4| and k = N — [(N + 1)/4] is found.
| (N + 1)/4] symbolizes the greatest integer less or equal to (N + 1) /4.

It appears that for the properties of the first excited state strict rules do not hold in
general, but only for “high enough” N (N > 5). Then, as can be anticipated from table
2.1, we can conjecture that [Sch00]
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e if N is even, then the first excited state has S = 1 and is threefold degenerate,
and

e if N is odd and the single particle spin is half-integer, then the first excited state
has S = 3/2 and is eightfold degenerate, whereas

e if NV is odd and the single particle spin is integer, then the first excited state has
S =1 and is sixfold degenerate.

Except for small odd N also the cyclic shift quantum numbers & of the first excited state
show an interesting regularity.

e For odd N > 7, k assumes a certain value for all integer spins and another value
for all half-integer spins. We conjecture that the ¥ quantum numbers for half-
integer spins are k = 3| (N +1)/4| and k = N — 3|(N +1)/4]. | (N + 1)/4] sym-
bolizes the greatest integer less or equal to (N + 1) /4. For integer spins numerical
data are poor, but it seems that k is as close as possible to N/2, i.e. k = | N/2]
and k =N — | N/2|.

e For even N the shift quantum number & is N/2, if N/2 is also even; if N/2 is odd,
k = 0 for half-integer spin and £ = N/2 for integer spin.

For spin-1-rings these properties can be derived using the Bethe ansatz [Bet31, Hul38,
Kar94]. For rings of higher spin quantum number and N > 4 only numerical evidence
could be collected so far.

Having evaluated the spectra of small Heisenberg rings with isotropic next-neighbour
interaction one can approximate the infinite chain limit, which for the s = % ground
state is known as the Bethe-Hulthén limit [Bet31, Hul38]. Because the sequences con-
verge rather slowly and energy eigenvalues can be evaluated only for some small N,
the Levin u-sequence acceleration method [Lev73, Lub77] is employed, which leads to
impressive estimates of the antiferromagnetic ground state energies as well as of the
excitation gap for infinite rings or chains of larger spin quantum numbers [Sch00].

2.3 Rotational modes

It is clear that even Heisenberg systems of relatively modest size pose a major theoret-
ical challenge. A stunning example is provided by the recently synthesized molecular
magnet [MSST99] {Moy,Fes}, where the 30 Fe** ions (spins 5/2) occupy the sites of
an icosidodecahedron. The total dimension of the Hilbert space for this spin system is
a staggering 63, namely of order Avogadro’s number, precluding the unsophisticated
calculation of the energy eigenvalues and eigenvectors on any imagined configuration
of immense, ultra-fast computers.
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Figure 2.1: Energy spectra of antiferromagnetically coupled Heisenberg spin rings (hor-
izontal dashes). The crosses connected by the dashed line represent the fit
to the rotational band, which by definition matches both the lowest and
the highest energies exactly. On the L.h.s the dashed line reproduces the
exact rotational band, whereas on the r.h.s. it only approximates it, but to
high accuracy. The solid line on the r.h.s. corresponds to the approximation
following from the sublattice structure, i.e. using D = 4 [SLO1].

Major low-temperature properties of Heisenberg spin arrays in general and {MozsFe3, }
in particular [MLS™] can be understood employing the fact that all these systems pos-
sess a low-lying rotational band, i.e. , the minimal energies for each value of total spin
S depend quadratically on S

Egmin ~ —J[D(N,s)/N]1S(S+ 1)+ E, . (2.2)

While this result has previously been noted for special spin arrays like rings with an
even number of spin sites (see Fig. 2.1) or triangular lattices [Kar94, BLP92, BLLP94,
CCF196, JJLt99, ACCT00], we find that it also applies for rings with an odd number of
sites as well as for all of the polytope configurations we have investigated (tetrahedron,
cube, octahedron, icosahedron, triangular prism, and axially truncated icosahedron)
[SLO1]. The coefficient D(N, s) in (2.2) can be approximated using the symmetry of
the spin array [BLP92, BLLP94], [SLO1], which shows up for instance in the classical
ground state configuration. This symmetry related coefficient D turns out to be D = 4
for rings of arbitrary, but even N [ACC*T00] and D = 6 for the icosidodecahedron,
cube, and octahedron, independent on s [SLO1]. The coefficient D reflects the high s
limit for the given spin array, D = D(N, oc). Our investigations [SLO1] have revealed
that the specific D(NV, s) for any finite s is always a little larger than D, compare also
r.h.s. of Fig. 2.1.

The concept of rotational bands is useful even in cases where SQ does not commute
with the Hamilton operator, if the symmetry breaking terms are small and can be
treated perturbatively. The eigenstates and eigenenergies of the unperturbed (rota-
tionally symmetric) Hamilton operator can be classified by their total spin quantum
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number S, and symmetry breaking terms like on-site anisotropy or dipolar interactions
will lead to energy corrections [JJLT99].

2.4 Qutlook

The rotational band can be understood as originating from interacting sublattice spins
[BLP92, BLLP94]. The subdivision into sublattices is given by the symmetry of the spin
array and expresses itself in the classical ground state. We conjecture that the picture
of interacting sublattice spins holds even for moderate excitations off the rotational
band. Therefore we extend the concept of the rotational band towards an approximate
Hamilton operator [LSMOO], see also [HgZ98],

NsL
D — -

B = [@2—25?] , 2:3)
j=1

where the sublattice spin quantum numbers are called S;. The spin operators ;5:‘2 and

all 52 commute with each other and with H". Thus the eigenvalues E5 of HS™ are
easily evaluated and given in terms of the quantum numbers S and S;. One realizes
that higher lying bands are also parabolic and parallel to the ground state band. This
is rather realistic for the second band and indeed observed in rings of even N [Wal00].
That the second band is parallel to the first one should be visible in inelastic neutron
scattering as well as in EPR measurements [LSMO00].

Figure 2.2 demonstrates for{Mo,Fes,} that the agreement between the approximate
quantum model and experiment is excellent. The thin curve displays the result of ap-
proximation (2.3) for 7" = 4 K. The dashed curve in Fig. 2.2 gives the experimental
data obtained [MLS™] using a pulsed field that led to an estimated effective spin tem-
perature of approximately 4 K. We attribute the very small discrepancy in the slope of
the magnetisation curve below the critical field to the fact that the classical coefficient
D = D(N,o0) always underestimates the true coefficient D(NN, s) by a few percent
[SLO1]. In order to improve approximation (2.3) we use D(N, s) in the following. We
adjust D(N, s) so that the resulting magnetisation curve (thick curve in Fig. 2.2) pro-
vides an optimal fit to the measured data. This is achieved by taking D(N, s) = 6.23 for
{MozsFesq }. Thus the effective Hamiltonian becomes

. D(N, s
ngf = _J (N )[

§ - (B+35+58)] (2.4

with v = 1.148 in order to maintain the correct value of the largest energy eigenvalue.
Finally, the ground state energy of {Mor,Fes} described by H§" is Ey/kp ~ —364 K

as compared to —305 K which follows from Eq. (2.3). We are currently attempting to
calculate D(30,5/2) from first principles using DMRG techniques [Whi93].

10



2.4 Outlook

Figure 2.2: Magnetisation versus magnetic field: The thin curve displays the result of
approximation (2.3) for 7" = 4 K. Experimental data using a pulsed field are
given by the dashed curve. The pulsed field appears to have heated the spin
system to approximately 4 K, while the cryostat temperature was 0.46 K.
Not shown are error bars due to an uncertainty of £0.5 T for the data.
The thick curve giving the result of the improved approximation, Eq. (2.4),
taking D(N, s) = 6.23, also at 4 K, closely reproduces the measured values.

With the upcoming synthesis of yet more advanced and larger compounds with exotic
properties it can be expected that the field of magnetic molecules will flourish and
provide important challenges to the theoretical description of molecular magnetism.

11



2. Small magnetic molecules

s N
2 | 3] 4] 5 | 6 | 7 | 8 | 9 | 10
1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 | Eo/(NJ)
1 1 4| 1 4 1 4 1 4 1 | deg
0 1/2 0 1/2 0 1/2 0 1/2 0|S
1 1,2 0 1,4 3 2,5 0 2,7 5|k
4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846 | AE/|J]
1 3 4| 3 2 3 8 3 8 3 | deg
1 3/2 1 1/2 1 3/2 1 3/2 1|8
0 0 2 0 0 1,6 4 3,6 0|k
4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 | Ey/(NJ)
1 1 1 1 1 1 1 1 1 1 | deg
0 0 0 0 0 0 0 0 0|S
0 0 0 0 0 0 0 0 0|k
4.0 2.0 | 2.0 1.929 1.441 1.714 1.187 1.540 1.050 | AE/|J|
1 3 9 3 6 3 6 3 6 3 | deg
1 1 1 1 1 1 1 1 1S5
1(0,1,2 2 2,3 3 3,4 4 4,5 5|k
7.5 5 6 4.973 5.798 5.338 5.732 5.477 5.70417 Eo/(NJ)
% 1 4 1 4 1 4 1 4 1 | deg
0 1/2 0 1/2 0 1/2 0 1/2 0SS
1 1,2 0 1,4 3 2,5 0 2,7 5|k
4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938TT AE/|J|
3 3 16| 3 8 3 8 3 8 3 | deg
1 3/2 1 3/2 1 3/2 1 3/2 1S
0(0,1,2| 2 2,3 0 1,6 4 3,6 0|k
12 6| 10 8.456 9.722 9.045 9.630 9.2637f 9.59077 Ey/(NJ)
2 1 1 1 1 1 1 1 1 1 | deg
0 0 0 0 0 0 0 0 0| S
0 0 0 0 0 0 0 0 0|k
4.0 20|20 1.922| 1.394| 1.652 | 1.091 | 1.4317T | 0.906™ | AE/|J]|
2 3 9 3 6 3 6 3 6 3 | deg
1 1 1 1 1 1 1 1 1S
110,1,2] 2 2,3 3 3,4 4 4,5 5|k
17.5 5| 15 | 12.434 | 14.645 | 13.451 | 14.528T | 13.848TT | 14.475TT Ey/(NJ)
2 1 41 1 4 1 4 1 4 1 | deg
0 1/2 0 1/2 0 1/2 0 1/2 0|S
1 1,2 0 1,4 3 2,5 0 2,7 5|k

Table 2.1: Properties of ground and first excited state of antiferromagnetically coupled
Heisenberg rings for various N and s: ground state energy FEy, gap AFE,
degeneracy deg, total spin S and shift quantum number k. t — O. Waldmann,
private communication. 1 — projection method [Man91].

12



3. ldeal Bose and Fermi systems

Ideal quantum gases are usually treated in the thermodynamic limit, i.e. infinitely
spread at a certain density, since all applications which were important in the past,
like the electron gas, phonons or photons, deal with huge particle numbers. Only the
experimental attempts of the last years to investigate finite Fermi and Bose systems and
to describe them in terms of thermodynamics called for new theoretical effort.

Interesting finite Fermi systems are for instance nuclei, which behave like a liquid
drop and therefore can undergo a first order liquid-gas-like phase transition [JMZ84,
GKMS84, BLV84, BIV85, SW86, SCG™89, PMR"95]. On the low excitation site of the
caloric curve the nuclear systems might be well described as an ideal Fermi gas in a
common harmonic oscillator potential (shell model).

Small Bose systems became available through the development of traps. Here the focus
is on the Bose-Einstein condensation which for instance could be found investigating
dilute atomic vapours (e.g. alkali atoms) in magnetic traps [AEM 195, DMA*95, KvD96,
BSH97]. Again the system can be well described as an ideal quantum gas contained in
an external harmonic oscillator potential, for an overview see [DGPS99].

Rigorously speaking a phase transition towards the Bose-Einstein condensate does not
happen in an external potential since the chemical potential is always non-zero for fi-
nite temperatures [Hua87]. Only for a vanishing potential (infinite volume limit) it is
zero for all temperatures below 7. It is also true that this phase transition does only
occur for dimensions d > 2. Dealing with finite systems one has to relax the rigor-
ous point of view and look for criteria which could identify a “smooth Bose-Einstein
condensation”.

The investigated ideal quantum gases are characterized by a constant particle number
and may be represented by the canonical or the micro-canonical ensemble [GH96,
GH97] depending on whether heat exchange with the environment is possible or not.

The work presented in this chapter was done with H.-J. Schmidt (Universitdt Os-
nabriick), the respective publications [SS98, SS99] are presented in section B on page
37.

13



3. Ideal Bose and Fermi systems

3.1 Canonical ensemble of fermions and bosons in har-
monic traps

Although the micro-canonical, canonical and grand-canonical ensembles are connected
by integral transformations and one would expect them to lead to the same results at
least for large particle numbers, some observables like the fluctuation of the condensate
fraction are rather sensitive to the choice of the ensemble. For the following investiga-
tions we choose the canonical ensemble, because the particle number is rather constant
and heat exchange with the environment possible. This is of course already a simpli-
fication of real experiments, since the systems are not really in equilibrium, losing for
instance particles due to evaporative cooling or creation of bound states.

The partition function of the canonical ensemble of non-interacting fermions and bosons
in harmonic traps was already investigated in a book by Peter Landsberg [Lan61], but
later forgotten and rediscovered [BF93, BLD97], [SS98].

It turns out that the partition function Zy for the canonical ensemble of N identical
and non-interacting particles can be recursively built starting with the single-particle
partition function

N
= %Z 1) Z1(nB) Zn-n(B), Zo(B)=1, B=1— (3.1)
n=1

where the upper sign in the sum stands for bosons, the lower sign for fermions. Mean
energy and specific heat can be derived by partial derivatives as usual. For the particle
densities a similar recursion relation holds [BF93], [SS98].

Regarding the question how to characterize the Bose-Einstein condensation in finite
systems, a first natural criterion is the maximum in the specific heat [PP77, KT96],
which is a kink in the free three-dimensional case because the mean energy jumps at
T.. Looking at figures 3.1 and 3.2 (upper right corner) one sees that the specific heat
exhibits a clear maximum in the three-dimensional oscillator (Fig. 3.2) whereas it does
not in the one-dimensional oscillator (Fig. 3.1). Moreover, the specific heat of N bosons
in the one-dimensional oscillator is the same as the specific heat of N fermions in the
same oscillator [SS98]! Therefore, although it seems to be experimentally favourable
to investigate quasi one-dimensional Bose gases it is doubtful whether the effects un-
veil much about Bose-Einstein condensation [DGPS99]. The mere fact of a macroscopic
occupation of the single-particle ground state [KvD96] is not so exciting from a theo-
rists point of view since that happens also for distinguishable particles, see figures 3.1
and 3.2 (lower left) and [SS98].

14



3.2 Fermion-boson symmetry
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Figure 3.1: One-dimensional harmonic oscillator: mean energy, specific heat, ground
state occupation number and its fluctuation for bosons (solid line) and dis-
tinguishable particles (dashed line) [SS98].

3.2 Fermion-boson symmetry

A closer inspection of the canonical partition function uncovers a surprising symmetry
property which connects fermions and bosons contained in harmonic oscillator poten-
tials of odd space dimensions [SS99],

Z¥(B) = (-1)"Zy(-5)

where the partition function with the negative argument has to be understood as
the analytic continuation into the region of negative temperatures. In thermodynamic
mean values like mean energy or specific heat this symmetry shows up as

EN(B)=—Ex(=B) .  CR(B)=Cx(=H).

A straight forward application of the above result is to calculate fermionic partition
functions and mean values by evaluating the respective bosonic ones at negative tem-
peratures and thereby to avoid the “sign problem”, which denotes the poor convergence
of alternating sequences like fermionic partition functions due to massive cancellations
in the summation.

(3.2)

(3.3)

More generally, the property (3.2) is related to the fact that the single-particle partition
function has an analytic continuation to the whole §-axis where it is an odd function,

15



3. Ideal Bose and Fermi systems
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Figure 3.2: Three-dimensional harmonic oscillator: mean energy, specific heat, ground
state occupation number and its fluctuation for bosons (solid line) and dis-
tinguishable particles (dashed line) [SS98].

Z1(—p) = —Z1(B). Thus the fermion-boson symmetry depends only on the oddness of
7, and not on the form of the single-particle Hamiltonian.

3.3 Outlook

The above presented recursion relation allows to evaluate properties of non-interacting
Fermi and Bose gases starting from their single-particle partition function, which can
be evaluated analytically in some and numerically in the other cases. But the atomic
vapours, although dilute, consist of interacting bosons or fermions. A direct evaluation
of the partition function, now for interacting particles, is no longer possible and approx-
imations are used. Among them mean-field approximations (Gross-Pitaevskii) [Gro61,
Pit61a, Pit61b, Gro63, DGPS99], quantum Monte-Carlo calculations [KDL97, GCL97],
and path-integral methods [Cep95, BLD97, BDL97, FBDL99, TBLDOO] are very popu-
lar. The next chapter describes an alternative approach which aims at an evaluation of
thermodynamic mean values by time-averaging.

16



4. Thermostated quantum dynamics

Statistical properties of finite interacting systems are of great interest. The aim is to de-
scribe the behaviour of systems like atomic clusters, atomic vapours or atomic nuclei at
finite temperatures and to investigate properties like the specific heat or phase transi-
tions. These statistical properties are given by the partition function which for classical
systems in the canonical ensemble reads

N
_ 3 dp, __H
Z = /illdaczdpz exp{ kBT}’ (4.1)

where H denotes the Hamilton function, and for quantum systems

H
Z = tr (exp{—ﬁ}) , (4.2)
B

where H is the Hamilton operator. For realistic systems like atomic clusters or nuclei
where the Hamilton function or operator contains a (two-body) interaction it is hard
or impossible to evaluate the partition function especially for the quantum description.

Equations of motion for the investigated system are often much easier; either they are
exactly known and can be integrated at least numerically as it is the case with the
classical Hamilton’s equation or they can be approximated with standard methods like
Time-dependent Hartree-Fock (TDHF) or quantum molecular dynamics methods as it
is the case on the quantum side. The idea then is to extract the desired thermodynamic
quantities from the time evolution of the system. If the system is ergodic, ensemble
averages can be replaced by time averages.

During the last decade a huge progress has been made on the classical side of the
problem (see for instance [Nos84, Hoo85, KB90, KBB90, KBB91, Nos91]). To put it
into a few words, the basic idea is to exploit the equipartition theorem and to use for
instance the kinetic energy as a measure of the current temperature.

In quantum mechanics the problem is much more involved. No useful a-priori-relation
between expectation values of observables and temperature like in the equipartition
theorem can be exploited. Attempts have been made to derive a thermal non-linear
Schrodinger equation which results in an ergodic wave function [Kus93], but this
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4. Thermostated quantum dynamics

method needs thermodynamic relations as an input, which are not known for most
systems and therefore itself a matter of investigation.

The first idea presented here is to couple an additional degree of freedom to the original
system, which serves as a thermometer. This idea was already successfully applied in
nuclear physics in order to determine the caloric curve of nuclei and to investigate the
nuclear liquid-gas phase transition [SF97]. The second step is to construct a feedback
algorithm in order to drive the system via complex time steps towards the desired
temperature [Sch98]. A third ongoing project tries to develop a Nosé-like thermostat
for quantum systems starting from previous work by Grilli and Tosatti [GT89].

The work presented in this chapter was done in part with H. Feldmeier (GSI, Darm-
stadt), the respective publications [SF97, FS97, FNRS98, Sch98, Sch99a, FS00] are
presented in section C on page 38.

4.1 Molecular dynamics approach

In cases where the (canonical) partition function is not known the time-dependent
Schroédinger equation cannot be solved either. The following time-dependent quantum
variational principle (TDVP) [KK76, KS81]

2
5 [Ca (e is —Hlem) = o (43
t1

allows to derive approximations to the time—dependent Schrodinger equation on the
level of accuracy one needs or can afford. For the variation of the trial state ( Q(¢) | in
the complete Hilbert space the TDVP leads to the Schrodinger equation. Taking (anti-
symmetrized) product states of wave packets, i.e. coherent states [KS85], as trial states
leads to all kinds of quantum mechanical molecular dynamics models [Hel75, DPC86,
Fel90, KD97]. One of the latter is the model of Fermionic Molecular Dynamics (FMD)
[Fel90, FBS95], [FS97, FS00], which describes many-fermion systems with Slater de-
terminants of Gaussian wave packets with time-dependent width. In addition the trial
states can be correlated in order to account for short-ranged repulsion [FNRS98]. Al-
though the model was primarily developed to simulate nuclear reactions, which are
non-equilibrium phenomena, it is also capable to address equilibrium situations.

It is a genuine feature of approximations derived from Eq. (4.3) that the resulting time
evolution is in general non-unitary, i.e. ( H) is a constant of motion but not the higher

moments ( H™),n > 1. Strictly speaking, this improves the ergodicity of time-averages

because the equations of motion are non-linear and chaotic, but unfortunately in a
rather uncontrollable way.

Another important question is whether or under which circumstances one can expect
that time-averages converge against the proper limit, since the quantum dynamics is
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4.2 Phase transitions in nuclei

restricted, see for instance [OR93, SF96], [Sch99a].

Nevertheless, the idea to derive thermal properties from time-averages of an approxi-
mate quantum molecular dynamics is not only used in nuclear but also in atomic and
plasma physics, for instance to describe hydrogen plasmas under high preasure, see
e.g. [KTR94, ES97].

4.2 Phase transitions in nuclei

Mean-field models predict a first order phase transition for nuclear matter with a crit-
ical temperature which depends on the proton-neutron asymmetry [JMZ84, GKM84,
BIV84, BIV85, SW86, SCG*89]. A recent experimental attempt by the ALADIN group
[PMR'95] to deduce an equation of state, which relates the excitation energy of a hot
nucleus to its temperature, has stimulated both, theoretical and experimental efforts
in this field [NHW*95, MS95, PN95, MGP™96, PMR ™96, FBK*T96, XLTF96]. In the ex-
periment excited projectile spectators were investigated in Au+Au collisions at a beam
energy of F/A = 600 MeV. While the equation of state refers to a stationary system
where liquid and vapour (evaporated nucleons) are in equilibrium, the experiment
deals with an expanding source. This causes some uncertainties for the temperature,
which is deduced from isotope ratios, since the system cools while it is expanding. Thus
the temperature has to be understood as belonging to a transient equilibrium.

In molecular-dynamics calculations the finite system may be excited avoiding collec-
tive expansion, but similar problems arise when the phase transition sets in. Particles
which escape from the nucleus cool down the residue and thermal equilibrium cannot
be maintained. In order to avoid these difficulties, in the present simulations the ex-
cited nuclear system is confined by a wide container potential which is chosen to be a
harmonic oscillator potential. Its frequency w serves as a thermodynamic variable like
the volume in the ideal gas case. Due to the containment evaporated nucleons cannot
escape, but form a cloud of equilibrated vapour around the excited nucleus.

Thermodynamic relations are obtained by coupling the nuclear system to a reference
system which serves as a thermometer, see Fig. 4.1. Both, the time-evolution of the
nuclear system and of the thermometer are described by the Fermionic Molecular Dy-
namics (FMD) model. Assuming thermal equilibrium in the sense of ergodicity the
temperature of the nuclear system is derived from the time-averaged energy of the
thermometer and related to the excitation energy of the nucleus. The resulting caloric
curve — evaluated for 2*Mg, 2"Al and “°Ca (Fig. 4.2, L.h.s.) — shows the clear structure
of a first-order phase transition and has a striking similarity with the experimentally
determined one (Fig. 4.2, r.h.s.) [SF97].
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4. Thermostated quantum dynamics

Figure 4.1: Sketch of the setup: the self-bound excited nuclear system is represented by
Gaussian wave packets (solid lines) which are enclosed in a broad container
potential. For the thermometer only one wave packet is shown (dashed
line), it is contained in a different oscillator.
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Figure 4.2: Caloric curve: Lh.s. FMD [SF97], r.h.s. experimental values [PMR'95,
Poc97].

4.3 Thermostated dynamics

Thermostated dynamics is a very powerful method to determine thermal properties
for classical systems [Nos84, Hoo85, KB90, KBB90, KBB91, Nos91]. In the simplest
scheme the system is cooled or heated via pseudo-friction coefficients if the present
temperature is too high or too low, respectively. Hamilton’s equations of motion are
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Figure 4.3: Occupation probabilities p,; l.h.s.: distribution at t = 0; middle: time evolu-
tion p,(t) for n = 0 — top line, n = 3 — middle, n = 6 — bottom line; r.h.s.:
time averaged distribution (symbols), the solid curve shows the canonical
result expected for the desired temperature.

therefore extended in the following way

d 0H d O0H
_ 7 — _ — 9 :———_' :1 PR N .
d 3N

The last line, equation (4.5), shows nicely how the system is driven towards the temper-
ature 7T via the coupling to the pseudo-friction coefficient (. It was shown that the re-
sulting distributions are those of the canonical ensemble (see e.g. the report [Nos91]).
In addition ergodicity can be improved by using more pseudo-friction coefficients and
different couplings to the original system [KBB90].

The ansatz chosen to equilibrate a model quantum system [Sch98] is to describe
the total system by a time-dependent state |Q(¢)) consisting of the original system
| system(t) ) and the thermometer |thermometer(t) )

|Q(t)) = |system(t)) ® |thermometer(t)) , (4.6)

and to install a feedback mechanism which uses the difference between the tempera-
ture T}, measured by the thermometer and the desired temperature 7. Then the total
system is evolved by a complex time step dr,

dr=dt—idf, dBo(Tn—T)/Ti, |QW)— |Qt+dr),  (47)

where the imaginary part is directly proportional to the temperature difference. As can
be inferred from (4.7) dS > 0 results in cooling and df < 0 in heating of the system.

The results of time averaging are compared to the canonical ensemble of the ideal
Fermi gas enclosed in a common harmonic oscillator potential. It is demonstrated that
the system is indeed ergodic, i.e. the time averaged occupation numbers coincide with
those obtained in the canonical ensemble, see Fig. 4.3 and [Sch98].
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4. Thermostated quantum dynamics

4.4 OQutlook

Methods like the two introduced above suffer from the disturbance of the investigated
system by the thermometer system. It is clear that the necessary interaction between
system and thermometer introduces unwanted correlations especially at low tempera-
tures. Therefore, in an ongoing project we try to construct a Nosé-like thermostat for
quantum systems starting from previous work by Grilli and Tosatti [GT89].

The idea of Ref. [GT89] is to scale the coordinate and momentum operators by a time-
dependent function s as follows

Lk
—sT k— =, (4.8)
~ ~ ~ s
which leaves the canonical commutation relations invariant, i.e. [Z, E] = [sZ, E/ s], and
to replace the Hamilton operator H by
N i2 P2
3
~ V({ *}) S | Tlns 4.9
;QmiSQ—i_N 5Z; +2M—|- S (4.9)

where s is an additional degree of freedom, known from the Nosé-method [Nos84,
Nos91], which simulates the coupling to the infinite heat bath. The authors of Ref.
[GT89] brought forward the argument that in principle such a scaling leads to the
canonical ensemble for the original system assuming an ergodic micro-canonical en-
semble for the combined system which includes the new degree of freedom s. In prac-
tice they had to supplement additional fluctuating forces of Langevin type with tem-
peratures that needed adjustment during the time evolution.

In our attempt to investigate the method systematically we follow the time-evolution
both by numerical exact integration of the Schrodinger equation and by means of
Fermionic Molecular Dynamics. First results show, that the proposed method does not
hold what the authors promise. Nevertheless, it is possible to exchange the proposed
scaling by general unitary transformations which depend parametrically on the scaling
variable s [SMFO01].

A success of our effort would provide a very valuable method to investigate complex
systems — bosons, fermions, molecules and clusters — at finite temperatures. A gen-
eral technique like this would contribute in atomic, molecular, nuclear and solid state
physics as well as in quantum chemistry.
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