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Abstract. We give two examples where symmetric polynomials play an important rôle in
physics: First, the partition functions of ideal quantum gases are closely related to certain
symmetric polynomials, and a part of the corresponding theory has a thermodynamical
interpretation. Further, the same symmetric polynomials also occur in Berezin’s theory of
quantization of phase spaces with constant curvature.

1. Introduction

It often happens that mathematical theories have unexpected applications in physics. In the
present case of the theory of symmetric polynomials (SP) we have, additionally, the remark-
able situation, that physicists have re-discovered certain fragments of the theory of SP in order
to solve problems in few-particle quantum statistical mechanics [1],[2],[3],[4],[5],[6]. Actu-
ally, it turns out that a part of the physical theory of ideal quantum gases is equivalent to a
part of the theory of SP if a certain translation scheme is applied, see below. The central idea
of this scheme, namely that partition functions can be considered as evaluations of certain SP,
is not novel, but appeared at various places in the literature, see [7],[8],[9],[10],[11], often in
the context of generalized statistics. Nevertheless, the relevance for the problems treated in
the above-mentioned articles and the consequences of this observation seem to have remained
largely unnoticed.

A second field where SP might be important tools is the theory of quantization in the
form suggested by F. A. Berezin [12] and subsequently further developed, see e. g. [13]. Here
the same SP as in quantum statistical mechanics occur in the expansion of the quantization
operator for two-dimensional phase spaces with constant curvature. One could speculate
about the underlying reasons and possible extensions of this connection.

2. SP and ideal quantum gases

We will only explain the basic idea of the connection between SP and quantum statistical the-
ory of ideal gases. Further details may be found in [14] and [15] and in the literature quoted
there.

It is well-known that the eigenstates of the N -particle Hamiltonian without interactions
can be characterized by “occupation number sequences” i 7→ ni. Here ni is the occupation
number of the i-th energy level Ei of the 1-particle Hamiltonian. Hence

∑

i

ni = N, (1)

and, for fermions, additionally

ni ∈ {0, 1}. (2)
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Equivalently, each eigenstate can be characterized by a monomial of degree N

x
n ≡

∏

i

xni

i , (3)

where the xi are abstract, commuting variables corresponding to the energy levels and n

denotes the whole occupation number sequence. The energy eigenvalues corresponding to
these eigenstates are

E =
∑

i

Eini. (4)

Now we can express the N -particle partition function as

Z±

N(β) =
∑

E

e−βE =
∑

n

exp

(

−β
∑

i

Eini

)

(5)

=
∑

n

∏

i

(

e−βEi

)ni

=
∑

n

∏

i

xni

i

︸ ︷︷ ︸

∣
∣
∣
∣
∣
∣
∣

xi=exp(−βEi)

(6)

≡

{

bN (x1, x2, . . .) : Bosons(+)
fN (x1, x2, . . .) : Fermions(−)

(7)

Here the sum over n is subject to the constraint (1) for bosons, and to (1), (2) for fermions.
Since these constraints are invariant under permutations of the variables x1, x2, . . ., the result-
ing sum of the monomials x

n in (6) will be a symmetric polynomial of the x1, x2, . . .. We
call these SP “fermi polynomials ” fN or “bose polynomials” bN , respectively. In the theory
of SP the fN are called “elementary SP” and the bN “complete SP”. However, in this article
we will stick to our more physical nomenclature.

The partition function ZN(β) of a particular system is obtained by evaluation of the cor-
responding SP along the curve β 7→ xi(β) = exp(−βEi), see figure 1. Hence we have a 1 : 1
correspondence between certain SP and certain “partition types” of ideal gases. Here the “par-
tition type” of a system is given by the number N of particles, the number L ∈ {1, 2, . . . ,∞}
of abstract energy levels (or the dimension of the 1-particle Hilbert space) and the type of the
statistics, Bose or Fermi. The values Ei of the energy levels, including their degeneracy, only
determine the system and its particular partition function. Hence a SP corresponds not to a
single system but to a large class of systems. It is then obvious, that mathematical relations
between the fN and the bN can be translated into physical relations between the corresponding
partition functions, irrespective of the values of the Ei.

There is a third kind of SP with a physical meaning in the theory of ideal gases, the
“power sums”

pn ≡
∑

i

xn
i . (8)

Evaluation at xi = exp(−βEi) gives

pn|xi=exp(−βEi) =
∑

i

exp(−nβEi) = Z1(nβ). (9)

One of the central results of the elementary theory of SP is that each of the above families
of SP, the fN , the bN , and the pn, can be used as a “basis” of SP, in the sense that any SP
can be expressed as a polynomial of the fN (resp. bN or pn). This implies that the fermionic
partition functions can be expressed by means of the bosonic ones and vice versa. Moreover,
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Figure 1. This figure shows the graph of the bose ploynomial b3 = x3

1
+x2

1
x2+x1x

2

2
+x3

2
with

N = 3 and L = 2. A selected number of curves parametrized by the inverse temperature β
is shown which illustrate the partition functions for special systems obtained by the evaluation
of b3 at the values x1(β) = exp(−βE1) and x2(β) = exp(−βE2).

both in turn can be expressed by means of the 1-particle partition function at different inverse
temperatures nβ. These relations are more or less known in the physical literature but their
origin in the theory of SP has only recently be disclosed [14].

SP can be defined through their generating functions. In statistical mechanics the cor-
responding generationg functions are called “grand canonical partitions functions” and will
be denoted by B(z) for bosons and F (z) for fermions. The formal parameter z is physically
interpreted as the fugacity z = exp(−βµ), where µ is the chemical potential. The physical
domain of z is (0, 1) for bosons and (0,∞) for fermions.

There exists a fundamental symmetry ω : Λ −→ Λ of the ring Λ of SP, which maps the
fN onto the bN , see [16]. It is connected with the equation F (z)B(−z) = 1. The physical in-
terpretation of this relation is that the fermionic grand canonical partitions function is related
to the analytical continuation of the bosonic one to negative z and vice versa. Similar relations
for other thermodynamic functions are implied. Whether analytical continuation is possible
depends on the system under consideration. For the system of particles in a box it has been
shown that analytical continuation of the partition functions is possible in the thermodynamic
limit [3] and the resulting Bose-Fermi symmetry has been discussed. Another Bose-Fermi
symmetry has been observed for particles in odd space dimensions confined by a common
harmonic oscillator potential [5]. Here Z1(β) = −Z1(−β) implies Z+

N(β) = (−1)NZ−

N(−β).
Since here analytical continuation is involved w. r. t. the β-plane, it is not yet clear how this
symmetry is related to that given by ω

These and further relations and translation schemes will be sketched in the table below.
For details see [14] and, as a standard reference for the theory of SP, [16].
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Physics Mathematics

Abstract energy levels Variables x1, x2, . . .

Occupation by N particles Monomials x
n

Partition types Symmetric polynomials p(x) =
∑

n
x

n

- Ring of symmetric polynomials Λ

Partition function ZN(β) Evaluation of p(x) at xi = e−βEi , i = 1, . . . , L

F (z)
B(z)

}

Grand canonical parti-
tion functions

F (z)
B(z)

}

Generating functions for
fn, bn

Fugacity z = e−βµ F (z) ≡
∏L

i=1 (1 + xi z) =
∑L

n=0 fn zn

B(z) ≡
∏L

i=1
1

1−xi z
=
∑L

n=0 bn zn

Bose- Fermi symmetry by analyti-
cal continuation in the z-plane [3] B(z)F (−z) = 1

ω : Λ −→ Λ
ω : fn 7→ bn

}

involutive automorphism of
graded rings

∑

i

(

e−βEi

)n
= Z1(nβ) pn, evaluated

- Generating function:
P (z) = d

dz
log B(z) =

∑L
n=1 pnzn

〈N〉 zP (z)

Landsberg’s identities (Appendix E
of his 1961 textbook, rediscovered
several times)

Newton’s identity: nfn =
∑n

r=1(−1)r−1prfn−r



Symmetric polynomials in physics 5

3. SP and Berezin quantization

The main idea of Berezin’s approach to quantization is the use of “generalized coherent
states” (GCS) in order to establish an approximate equivalence between classical and quantum
observables and states. GCS will be denoted by |α〉 where the “parameter” α runs through
some phase space M . The most important property of GCS is the completeness relation

1=
∫

M
|α〉〈α| dα. (10)

CGS are used to map operators A onto functions on M by means of

j(A)(α) ≡
〈α|A|α〉

〈α|α〉
. (11)

The adjoint map is given by

j∗(f) =
∫

M
f(α)|α〉〈α| dα, (12)

where we ignore all questions about the exact domains of definition of (11) and (12). The
“quantization operator” j ◦ j∗ maps functions onto functions. It is used for semiclassical ex-
pansions of physical quantities w. r. t. powers of h, where h is a formal parameter (“Planck’s
constant”) on which the Hilbert space and the GCS depend.

In the case of a flat phase space M = R
2, the GCS are chosen as the usual coherent

states discovered by E. Schrödinger. Then

j ◦ j∗ = exp(−h2∆), (13)

where ∆ is the Laplace operator in R
2, see e. g. [17]. There are at least two other cases where

j ◦ j∗ can be calculated: The Lobachevskij plane L and the 2-sphere S2. Here j ◦ j∗ is given
in the form of an infinite product, see [12], which resembles the grand canonical partition
functions considered in the previous section. Hence j ◦ j∗ can be expanded into power series
w. r. t. ∆, where the coefficients are bose polynomials for L and fermi polynomial for S2. ∆
is the corresponding Laplace-Beltrami operator of L, resp. S2. More explicitely:

Case 1

M = LOBACHEVSKIJ plane L

|α〉 : BEREZIN’S coherent states [12]

j ◦ j∗ =
∞∏

n=0

(

1 −
h2

(1 + nh)(1 − (n − 1)h)
∆

)−1

(14)

=
∞∑

N=0

bN (x1, x2, . . .)∆
N (15)

where xn =
h2

(1 + nh)(1 + (n − 1)h)
(16)

Case2

M = 2-sphere S2

|α〉 : BLOCH’S coherent states [17]

h =
1

2s
(s : spin quantum number) (17)
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j ◦ j∗ =
∞∏

n=0

(

1 +
h2

(1 + nh)(1 + (n + 1)h)
∆

)

(18)

=
∞∑

N=0

fN(x1, x2, . . .)∆
N (19)

where xn =
1

(2s + n)(2s + n + 1)
(20)

It is remarkable, that the bose and fermi polynomials occur for the two simplest cases
of 2-dimensional phase spaces with constant negative and positive curvature. Both kind
of polynomials can be considered as special cases of the so-called Schur polynomials sλ,
where λ denotes a Young diagram or, equivalently, a partition of N , see [16]. In fact,
bN = s(N) and fN = s(1N ), where (N) (resp. (1N)) is the Young diagram consisting of a
single row (resp. column). One might wonder whether also other Schur polynomials occur in
the expansion of the quantization operator for other choices of phase spaces and GCS.
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