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Abstract

A quantum molecular model for fermions is investigated which works with an-

tisymmetrized many–body states composed of localized single–particle wave

packets. The application to the description of atomic nuclei and collisions

between them shows that the model is capable to address a rich variety of

observed phenomena. Among them are shell effects, cluster structure and

intrinsic deformation in ground states of nuclei as well as fusion, incomplete

fusion, dissipative binary collisions and multifragmentation in reactions de-

pending on impact parameter and beam energy. Thermodynamic properties

studied with long time simulations proof that the model obeys Fermi–Dirac

statistics and time averaging is equivalent to ensemble averaging. A first order

liquid–gas phase transition is observed at a boiling temperature of T ≈ 5 MeV

for finite nuclei of mass 16 . . .40.
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1 Introduction and summary

Heavy–ion reactions show typical dissipative phenomena at low beam energies (a

few MeV per nucleon above the Coulomb barrier) [1, 2]. With increasing impact

parameter the complete fusion reactions go over into deeply inelastic collisions where

the scattered nuclei have lost large fractions of the initial energy and converted that

into intrinsic excitation energy. The exchange of nucleons causes the mass and charge

numbers of the outgoing nuclei to fluctuate around a mean value. At the same time

energy loss and scattering angle show fluctuations like a Brownian movement. For

the description of these phenomena the so called particle exchange picture [3, 4, 5]

which is based on the assumption of a Fermi gas with long mean free paths turned

out to be rather successful.

Around the same time the time–dependent Hartree–Fock model (TDHF) [6, 7, 8,

9] was conceptually and numerically developed to a stage where heavy–ion collisions

could be calculated. Although TDHF is a microscopic quantal model, which is

supposed to describe systems with long mean free path and slow collective motion of

the mean field, slow compared to the Fermi velocity such that the particles and their

mean field can always be in equilibrium, it turned out that only the dissipation of

the collective energy could be described but not the fluctuations [8] which inevitably

go along with any dissipation. TDHF results are very close to a classical trajectory

picture with friction and very small fluctuations.

The surprising failure of the more quantal and more microscopic TDHF model

compared to the more phenomenological particle exchange picture, both being based

mainly on independent particle motion, originates in the inability of the TDHF state

to react to small fluctuations. Consider a symmetric system: if there is a fluctuation

in one direction, let us say a nucleon passes from the left to the right hand nucleus,

there is of course in a many–body quantum state, always with the same probability

the fluctuation in the opposite direction. Thus the mean field which averages over

all configurations, will not adjust to the new situation, namely that there is now one

more particle in the right hand nucleus, because with exactly the same probability

a particle went out to the other nucleus and thus the mean particle number stays

the same. The same holds true for recoil effects which would give a fluctuation

to the collective relative momentum. The time evolution with the Hartree–Fock
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Hamiltonian conserves global symmetries of the initial state. The mean field in

TDHF is the same for all macro–channels (mass numbers, charge numbers, relative

momenta etc.) which causes a ”spurious cross channel coupling” [10] suppressing

almost all fluctuations.

In the particle exchange picture a random transfer of a nucleon will cause a jump

to a new mean field situation where the acceptor nucleus is now enlarged in volume

such that the new radius is that of a nucleus with one more particle. This way

the decision is made, which of the many possibilities in the many–body quantum

state is realized and this new situation is then evolved further in time. Of course

with the same probability the particle could have jumped to the other side, then

this would be the new situation with a larger mean field on the other side which

would be evolved further in time. This picture is much more realistic for dissipative

phenomena because the exact solution of the Schrödinger equation develops random

phases between the macro–channels such that they cannot interfere on a macroscopic

scale.

When the beam velocity becomes comparable to the Fermi velocity the mean

field picture of binary collisions should break down. In addition the mean free

path of the nucleons becomes shorter than the diameter of the system due to the

larger intrinsic excitation energy. In BUU–type models [11, 12, 13, 14, 15, 16] a

random Boltzmann collision term has been introduced to account for the shorter

mean free path, but the long range part of the two–body interaction is still treated

in a mean field fashion. The next step has been to replace the mean–field part

by classical molecular dynamics with soft phenomenological two–body potentials

[17, 18]. These Quantum Molecular Dynamics (QMD) approaches have two main

conceptional difficulties. First, the mean field (long range part of the interaction) and

the collision term (short range repulsion) should be treated self–consistently [19, 20].

Second, the Pauli principle is reduced to the numerically enforced prohibition of

over–occupation of phase–space cells. Other approaches try to replace the Pauli

principle by adding a two–body ”Pauli potential” in order to avoid too large one–

body phase–space densities [21, 22, 23, 24, 25, 26]. The difficulty is that the Pauli

principle requires the many–body state to be antisymmetric with respect to particle

exchange, and this is outside the classical notions.

In the following sections we discuss a model, named Fermionic Molecular Dy-
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namics (FMD) [27, 28, 29], which combines the microscopic quantal features includ-

ing the Pauli principle with the properties of classical molecular dynamics. Wave

packets replace the classical points in phase space and thus introduce quantum prop-

erties into classical molecular dynamics. Especially the antisymmetrization of the

many–body state has many consequences genuine in quantum and absent in classical

mechanics.

A classical system of particles (molecules) which interact via a two–body inter-

action of van der Waals type — repulsive at short and attractive at large distance

— often behaves in a deterministic chaotic way. Small deviations in the initial con-

ditions lead to exponentially diverging trajectories in the many–body phase space.

Situations with global symmetries, for instance the left–right symmetry in the TDHF

solution discussed above, are of measure zero in the classical case. Each particle fol-

lows a single trajectory which cannot split into two or more with certain amplitudes

like in the quantum case. This property is also common to FMD since there is only

one wave packet per nucleon for which the equations of motion decide in a deter-

ministic way where to move, for example whether it will join the right or left hand

nucleus. This ”quantization” of the particle number density is the main difference

to TDHF if a single Slater determinant is used. In a forthcoming publication we are

introducing antisymmetric many–body states which are not single Slater determi-

nants anymore, but take care of the short range correlations caused by the repulsive

core in the interaction.

After discussing the concept of the model and the resulting properties we calcu-

late ground states of nuclei. In section 3 an important insight is that the antisym-

metrization not only takes care of the Pauli principle, but also delocalizes the wave

packets and introduces shell effects. The ground states turn out to be rather similar

to deformed Hartree–Fock states.

The dynamical properties of the FMD equations of motion are investigated in

section 4. Calculations of heavy–ion collisions at 6 AMeV show that the typical

fluctuations of dissipative collisions, which are absent in TDHF, are seen in FMD.

Increasing the beam energy to 32 AMeV which corresponds to a relative velocity

of about the Fermi velocity leads to a break down of the mean field. The very

same model which describes fusion and binary dissipative collisions now predicts

multifragmentation.
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A microscopic transport model developed for non-equilibrium situations should

of course also possess the correct equilibrium properties. In the last section we

proof that the thermostatic properties calculated with the FMD trial state are those

of Fermi–Dirac statistics. Time averaging over dynamical calculations defining the

thermodynamic properties not only shows that FMD equilibrates towards the Fermi

distribution, but even allows to investigate the liquid–gas phase transition of small

nuclei.

2 The concept of Fermionic Molecular Dynamics

The concept of Fermionic Molecular Dynamics is based on the molecular dynamics

picture in which subgroups of the investigated system are described by their centre

of mass coordinates. These subgroups are composite bound objects like molecules

or in our case nucleons. The molecules are interacting by two–body potentials which

approximate the complicated interactions between the constituents of the molecules.

The two–body potentials, which include to a certain degree also the polarization

induced in one molecule by the presence of the other one, depend in general on the

relative distance, the relative velocity and the relative orientation of the molecules.

Consider for example the interaction Vww between water molecules which have

a dipole moment. First, it is a function of the distance but also of the relative

orientation (see fig. 1). Second, depending on the relative velocity the electron

clouds will be able to adjust more or less completely to the adiabatic situation. This

will result in a velocity dependence.

In our case the complex molecule is the nucleon which consists of three quarks

surrounded by a cloud of virtual mesons. Like the water molecule the nucleon is

not spherically symmetric but has an orientation, the spin. In addition there are

two kinds of molecules, protons and neutrons, which introduces a further degree of

freedom, the isospin. Altogether the picture of a nucleon–nucleon potential in itself

is only an approximation and there is a certain degree of freedom in its choice.

In classical molecular dynamics the molecules are treated as classical distinguish-

able particles which means that one has to solve Newton’s equations of motion for

the classical centre of mass coordinates. The many–body state is given by the tra-
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Figure 1: Interactions between water molecules and nucleons (protons or neu-

trons) are rather complex.

jectory in many–body phase space.

Here Fermionic Molecular Dynamics differs substantially because its many–body

state is described by an antisymmetrized many–body wave function for the centre

of mass coordinates and the spin degrees of freedom of all nucleons. As already

explained in the introduction, in nuclei the nucleons cannot be localized in phase

space well enough for a non–quantal treatment. The same holds true for the spin

variables. Unlike the water molecule, where the dipole moment has only small

quantum fluctuations around its mean value, the Hilbert space for the spin is only

two–dimensional and hence one cannot construct a localized wave–packet for the

spin orientation. A spin 1
2

degree of freedom is always quantal.

All this together does not allow to treat nucleons in nuclei as classical particles.

Therefore FMD is using localized single–particle wave packets for the centre of mass

coordinates instead of points in phase space. The indistinguishability of the particles,

which has such prominent consequences like Fermi motion, Fermi pressure, or Pauli

blocking, is introduced by using a many–body state which is antisymmetric with

respect to particle exchange. Therefore, all effects which arise from the fact that the

particles are indistinguishable fermions are taken into account and by construction

the Pauli principle cannot be violated. The use of wave packets guarantees that

the uncertainty relation cannot be violated either. It actually turns out that due
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to antisymmetrization the localization of the particles is suspended when the wave

packets are overlapping. Thus, shell model states as well as plane waves are included

in |Q 〉 even if it is built from Gaussian shaped single–particle states (see section

3.2)

This means that the trial state contains the essential quantum properties of a

Fermi gas. In addition if the system is dilute and the distance between the particles

is much larger than the widths of their wave packets one obtains the classical limit

in the sense of Ehrenfest. Hence the FMD trial state has enough freedom to cover

large areas of quantum physics and connects seamlessly to classical physics.

So the first part of the FMD concept is to include all necessary physics in the

many–body trial state |Q 〉 but keeping this many–body state still numerically

treatable.

The second part of the concept is to deduce the equations of motion from the

time–dependent quantum variational principle

δ

∫ t2

t1

dt 〈Q(t) | i
d

dt
−H∼ |Q(t) 〉 = 0 . (1)

This variational principle [30], which will be explained in more detail below, ensures

automatically the conservation laws, provided the trial state has enough freedom as

shown in section 2.3.

Altogether, the concept is well defined and the success of the model is granted if

one has the proper Hamiltonian H∼ and a rich enough trial state. The art consists in

finding a trial state which contains the essential degrees of freedom without becoming

numerically intractable. As one does not know a priori what the important physical

phenomena will be, one needs experimental guidance and physical intuition to set

up the trial state. Even for the same Hamiltonian H∼ there can be different optimal

sets of trial states, depending on the excitation energy or the part of the phase space

the system is occupying.

If the model fails, the concept is to reexamine the trial state and to include

more or other degrees of freedom. But also the Hamiltonian is not sacred as it is in

many cases only an approximation to a much more complex underlying microscopic

picture.

There is also an interplay between the trial state and the effective Hamiltonian.
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In nuclear physics the nucleon–nucleon interaction is strongly repulsive at short

distances. This important feature contributes to nuclear saturation and hence is

part of the essential physics which should also be present in the trial state. The

antisymmetrized product state (single Slater determinant) which we use in this paper

cannot account for the depletion of the many–body wave function at small relative

distances between the particles. Therefore, we are using an effective interaction

with a moderate repulsion at short distances in the spirit of a Brueckner G–Matrix

treatment.

2.1 Parameterized many–body trial state

Instead of classical points in phase space Fermionic Molecular Dynamics deals with

wave packets which are localized in phase space. Each nucleon (molecule) is repre-

sented by a Gaussian wave packet parameterized by the set

q(t) = {~r(t), ~p(t), a(t), χ(t), φ(t), ξ}:

〈~x | q(t) 〉 = exp

{
−

(~x− ~r(t) )2

2a(t)
+ i~p(t) · ~x

}
⊗ |χ(t), φ(t) 〉⊗ | ξ 〉 , (2)

which in quantum mechanics is the closest analogue to a classical particle described

by a single point (~r(t), ~p(t)) in phase–space.

In FMD the match to classical positions and momenta are the parameters ~r(t)

and ~p(t) which determine the mean values of the position and momentum operator

of the single particle state:

~r(t) =
〈 q(t) | ~x∼ | q(t) 〉

〈 q(t) | q(t) 〉
, ~p(t) =

〈 q(t) | ~k∼ | q(t) 〉

〈 q(t) | q(t) 〉
. (3)

Due to the quantum mechanical uncertainty relation the wave packet can be either

narrow in coordinate space and wide in momentum space or vice versa. This non–

classical degree of freedom is taken care of by the complex width parameter a(t) =

aR(t) + iaI(t). It determines via its real part aR(t) the variance of the momentum

distribution σ2
K(t) by the relation

3

2aR(t)
=
〈 q(t) | (~k∼− ~p(t))

2 | q(t) 〉

〈 q(t) | q(t) 〉
= 3σ2

K(t) . (4)
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Since the wave packet is spherical the widths are equal in all three Cartesian di-

rections. The imaginary part aI(t) appears in the expression for the spatial width

σ2
X(t) as

3

2

a2
R(t) + a2

I(t)

aR(t)
=
〈 q(t) | (~x∼− ~r(t))

2 | q(t) 〉

〈 q(t) | q(t) 〉
= 3σ2

X(t) (5)

and determines in how far the wave packet is of minimal uncertainty. The product

of the variances

σ2
X σ2

K =
1

4

(
1 +

a2
I

a2
R

)
(6)

shows that for aI = 0 one has the minimum–uncertainty packet where σXσK = 1
2

,

while for aI 6= 0 the uncertainty can become arbitrarily large. This means that the

particle occupies more than (~/2π)3 of phase space volume but at a lower phase

space density, such that other fermions can find place at the same area in phase

space.

Besides the parameters for the spatial part of the wave packet there are two

parameters χ(t) and φ(t) for the spin degree of freedom. If one parameterizes the

trial spin–state by

〈ms |χ(t), φ(t) 〉 =

{
cos χ(t)

2
: ms = 1

2

sin χ(t)
2

eiφ(t) : ms = −1
2

, (7)

the relation between the parameters and the corresponding spin operators is

~σ(t) =
〈 q(t) | ~σ∼ | q(t) 〉

〈 q(t) | q(t) 〉
, (8)

where ~σ(t) = (sinχ(t) cosφ(t), sinχ(t) sinφ(t), cosχ(t)) is a vector in the 3–dimensional

real space and the quantization axis is the 3–axis. Thus ~σ(t) can be regarded as

the “classical” spin direction just like ~r(t) or ~p(t), although there is no classical spin

degree of freedom which can vary only its direction but not its magnitude as it is

the case for ~σ(t).

In principle the same parameterization can be chosen for the isospin part | ξ 〉. A

time–dependent isospin would mean that for example due to the exchange of charged

pions neutrons can dynamically transform into protons and vice versa. Isospin sym-

metry is, however, only an approximate symmetry, the Coulomb interaction and the



Fermionic Molecular Dynamics 11

difference in proton and neutron mass break it. A linear superposition of protons

and neutrons in one wave packet would impose undesired artificial symmetries. For

example only the proton component would feel the Coulomb repulsion and its cen-

tre of the wave packet would be accelerated away from the centre for the neutron

component. Therefore, either one gives each component its own wave packet or one

does not allow proton neutron mixing in the trial state. In this paper we shall not

consider rotations in isospin space but assume | ξ 〉 to be independent of time and

either | ξ 〉 = | proton 〉 or | ξ 〉 = |neutron 〉.

To describe a system with A fermions we construct a Slater determinant |Q(t) 〉

with these parameterized single–particle states | qk(t) 〉

| q1(t), q2(t), · · · , qA(t) 〉 ≡ |Q(t) 〉 =
1

〈 Q̂(t) | Q̂(t) 〉
1
2

| Q̂(t) 〉 , (9)

where the antisymmetrized but not normalized state | Q̂(t) 〉 is given by

| Q̂(t) 〉 =
1

A!

∑
all π

sgn(π) | qπ(1)(t) 〉 ⊗ | qπ(2)(t) 〉 ⊗ · · · ⊗ | qπ(A)(t) 〉 . (10)

The sum runs over all permutations π and sgn(π) is the sign of the permutation. It

should be noted that qk(t) = {~rk(t), ~pk(t), ak(t), χk(t), φk(t), ξk} denotes the set of

parameters specifying the single–particle state with number k. The parameter set

for the many–body state thus reads

Q(t) = {~r1(t), ~p1(t), a1(t), χ1(t), φ1(t), ξ1; ~r2(t), · · · ; ~rA(t), · · · , ξA}

= { qν(t) | ν = 1, · · · ,NA} , (11)

where N is the number of real parameters per particle, in our case N=10. Whenever

q carries a Greek index it is an individual parameter, whereas a Latin index implies

that qk is the whole set for the state | qk 〉.

Due to antisymmetrization FMD is constrained to the antisymmetric subspace

of the Hilbert space and hence the Pauli principle is a priori incorporated. Further-

more, the projection (10) from a product state onto the antisymmetric subspace

destroys for overlapping Gaussians the localization of the particles and introduces

shell model states. This will be discussed and explicitly shown in section 3.2. If

the single–particle states | qk 〉 are not overlapping, the antisymmetrization has no
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effect anymore and the particles are localized in the individual wave packets. In this

limit we return to classical Newtonian mechanics for ~rk(t) and ~pk(t), which however

can still be coupled to the non–classical variables ~σk(t) for the spin directions and

the widths ak(t). Of course also in this limit the particles are indistinguishable and

it is not possible to decide which particle occupies which Gaussian packet.

Even though eqs. (3) - (5) and (8) provide unique relations between the param-

eters and the expectation values of the corresponding operators, this is no longer

true for the antisymmetrized many–body state. To illustrate this important aspect

let us regard a two–body state of two packets which for simplicity have the same

real width parameter a1 = a2 = aR and the same spin, but different ~r1, ~r2 and ~p1, ~p2

| q1, q2 〉a =
1
√

2N

{
| q1 〉 ⊗ | q2 〉 − | q2 〉 ⊗ | q1 〉

}
. (12)

with the normalization

N = 〈 q1 | q1 〉〈 q2 | q2 〉 − |〈 q1 | q2 〉|
2 (13)

= 〈 q1 | q1 〉〈 q2 | q2 〉
(
1− exp

{
−ξ2

12

})
, ξ2

12 = (~r1 − ~r2)
2/aR − (~p1 − ~p2)2aR ,

where ξ12 measures the distance in phase space.

The operator for the position of particle 1, ~x∼(1) = ~x
∼⊗

1
∼, (which by the way is

not an observable because it is not symmetric under particle permutation) has the

following expectation value

a〈 q1, q2 | ~x∼(1) | q1, q2 〉a (14)

=
1

2N

{
〈 q1 | ~x∼ | q1 〉 + 〈 q2 | ~x∼ | q2 〉 − 2Re(〈 q1 | ~x∼ | q2 〉〈 q2 | q1 〉)

}
=

1

2
(~r1 + ~r2) .

The result is not ~r1 as presumed from Ehrenfest type arguments, however,〈
~x
∼(1) + ~x

∼(2)
〉

= ~r1 + ~r2.

Another example is the relative distance between two identical fermions, ~x∼(1)−

~x
∼(2), (again not an observable, but used for example in its classical meaning in the

collision term of QMD [18]) with the expectation value

a〈 q1, q2 | ~x∼(1)− ~x
∼(2) | q1, q2 〉a = 0. (15)

If the spin of the two fermions is the same, the two–body state has to be antisymmet-

ric in coordinate space and hence this expectation value is always zero, independent
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on the actual value of ~r1 and ~r2. The same holds true if the spins are anti-parallel.

If the spins are not parallel the ”distance” depends on the spin orientations, which

only reflects that ~r1 − ~r2 is not the mean distance between the two fermions.

An observable is for example the rms–distance |~x∼(1) − ~x
∼(2)| which, however,

also depends on the spin directions and the relative momentum. The reason is

that for the component of the trial state in which the two fermions have total spin

S = 0 the radial part of the wave function is symmetric, while for the three S = 1

components it is antisymmetric. Hence the rms–distance is different for the singlet

and the triplet component. In addition the exchange term contributes less if the

relative momentum becomes large. The Pauli principle, which demands that two

fermions cannot be in the same phase space cell, is of course the origin of these

classically not existing correlations in the rms–distance.

Another example for an observable which is even used to motivate a so called

”Pauli potential” is the kinetic energy [23, 24]. For equal spins and equal widths

a1 = a2 = aR we get〈
T
∼

〉
=

1

2m
a〈 q1, q2 |

~k
∼

2

(1) + ~k
∼

2

(2) | q1, q2 〉a (16)

=
1

2m

1

N

{
〈 q1 |

~k
∼

2

| q1 〉 + 〈 q2 |
~k
∼

2

| q2 〉 − 2Re(〈 q1 |
~k
∼

2

| q2 〉〈 q2 | q1 〉)

}
=

1

2m

1
2

(~p1 − ~p2)2 + (~r1 − ~r2)2/aR exp {−ξ2
12}

1− exp {−ξ2
12}

+
1

4m
(~p1 + ~p2)2 +

3

2maR
.

One sees that the kinetic energy is not simply (~p 2
1 + ~p 2

2 )/(2m) but depends also on

the ”relative distance” ~r1 − ~r2 and on the distance in phase space ξ12. But one has

to be aware that for wave packets which are not of minimal uncertainty (i.e. the

imaginary part aI of the width parameter a is not zero) the whole expression is

completely different and |〈 q2 | q1 〉|2 can be zero even when the packets fully overlap

spatially. A non-vanishing aI is nothing exceptional, it describes for example the

well–known spreading of the packets in free space. Therefore, the constraint aI = 0

is not appropriate for the dynamical case and leads actually to unphysical scatterings

and strong hindrance of evaporation.

In section 3.2 we shall show for an A–body system that even if all parameters for

the momenta vanish, i.e. ~p1 = ~p2 = · · · = ~pA = 0, the kinetic energy is neither zero
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nor the sum of the zero-point energies 3/(2maR), but the momentum distribution

is that of a Fermi gas with a sharp edge at the Fermi momentum.

To summarize this discussion, one should always carefully distinguish between

parameters and physical observables. The parameters are in general not the expec-

tation values of the corresponding operators.

2.2 Time–dependent variational principle

After having set up the many–body trial state |Q(t) 〉 one has to construct equations

of motion for the set of parameters Q(t) = { qν(t) | ν = 1, 2, 3, · · · } which are

the generalized coordinates of the system. As shown in the previous section the

parameters may loose their original physical meaning due to antisymmetrization.

Therefore one must not simply use the classical equations of motion for the position

and momenta. In addition, even without antisymmetrization, classical physics does

not tell how the complex width parameter ak should be evolved in time. Also the

equations for the angles (χk, φk) of the spin direction ~σ, which turn out to be of the

Bargmann–Michel–Telegdi type [31], are not self–evident.

Therefore, the equations of motion for the Fermionic Molecular Dynamics model

are derived from the following time–dependent variational principle

δ

∫ t2

t1

dt 〈Q(t) | i
d

dt
−H∼ |Q(t) 〉 = 0 (17)

in which the trial state |Q(t) 〉 is to be varied. This has the advantage that the

geometry of the manifold of trial states is automatically taken care of, irrespective

of how the parameters of the states are defined. Furthermore, conservation laws

follow in a transparent way from invariance properties of the trial state and the

Hamiltonian, see section 2.3.

The variation has to be performed with respect to each parameter qν(t) with

the end points kept fixed, i.e. δqν(t1) = δqν(t2) = 0. The operator H∼ is the total

Hamiltonian of the system. (Throughout the paper operators in Hilbert space will

be underlined with a twiddle to distinguish them from parameters or expectation

values.)
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The Euler–Lagrange equations

d

dt

∂L

∂q̇ν
−
∂L

∂qν
= 0 , ν = 1, 2, · · · , N (18)

which result from the variation (17) are written in terms of the Lagrange function

L
(
Q(t), Q̇(t)

)
:= 〈Q(t) | i

d

dt
−H∼ |Q(t) 〉

= L0

(
Q(t), Q̇(t)

)
− H(Q(t)) , (19)

with

L0

(
Q(t), Q̇(t)

)
:= 〈Q(t) | i

d

dt
|Q(t) 〉 =

∑
ν

〈Q(t) | i
∂

∂qν
|Q(t) 〉 q̇ν , (20)

in which Q̇(t) = { q̇ν(t) ≡ dqν/dt | ν = 1, 2, · · · } is the set of generalized veloci-

ties and H(Q(t)) is the Hamilton function defined as the expectation value of the

Hamiltonian H∼:

H(Q(t)) = 〈Q(t) | H∼ |Q(t) 〉 . (21)

Different from classical mechanics the Lagrange function (19) is linear in the veloc-

ities q̇ν but at the same time the set Q(t) = {qν(t)} contains both, coordinates and

momenta.

Using the general structure (19) of the Lagrange function the Euler–Lagrange

equations (18) in their most general form can be written as∑
ν

Aµν(Q) q̇ν = −
∂H(Q)

∂qµ
(22)

or, if Aµν is not singular [32] the equations of motion are

q̇µ = −
∑
ν

A−1
µν (Q)

∂H(Q)

∂qν
, (23)

where

Aµν(Q) = −Aνµ(Q) =
∂2L0

∂q̇µ∂qν
−

∂2L0

∂q̇ν∂qµ
, (24)

is a skew symmetric matrix, which depends in general on all variablesQ(t) = {qν(t)}.

For details see ref. [28].
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With help of the matrix Aµν one can define generalized Poisson brackets [30] as

{H,B} :=
∑
µ,ν

∂H

∂qµ
A−1
µν

∂B

∂qν
, (25)

such that the time derivative of an expectation value

B(t) = 〈Q(t) | B∼ |Q(t) 〉 (26)

of a time–independent operator B∼ calculated with the trial state |Q(t) 〉 is given by

d

dt
B(t) =

d

dt
〈Q(t) | B∼ |Q(t) 〉 =

∑
ν

q̇ν
∂ B

∂qν

=
∑
µ,ν

∂H

∂qµ
A−1
µν

∂B

∂qν
= {H,B} . (27)

Equation (27) has the symplectic manifold structure of Hamiltonian dynamics [33],

but in the general case the parameters qν cannot be grouped into pairs of canon-

ical variables. However, according to Darboux’s theorem [33] canonical variables

exist locally. They are non–linear functions of the parameters qν and have to be

constructed such that A−1
µν assumes the canonical form

A−1
µν =

(
0 −1

1 0

)
, (28)

where 1 is the unit matrix. Their choice, however, is not unique.

2.3 Conservation laws

After having solved the equations of motion (23) for the parametersQ(t) = {qν(t) | ν =

1, · · · ,N} the trial state |Q(t) 〉 is known at all times. Thus one can calculate the

expectation value G(t) = 〈Q(t) | G∼ |Q(t) 〉 of an arbitrary time–independent opera-

tor G∼. With the definition (25) for the Poisson brackets the time derivative of this

expectation value can be written as

d

dt
G = {H,G} . (29)

The expectation value is conserved in time if [34]

{H,G} =
∑
µ,ν

∂H

∂qµ
A−1
µν

∂G

∂qν
= 0 (30)
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SinceA−1
µν is skew symmetric the energyH itself is always conserved by the equations

of motion, provided they are derived from the variational principle (17). This is

completely independent on the choice of the trial state .

For other constants of motion we consider a unitary transformation with G
∼ as

the hermitean generator

U
∼ = exp

(
i ε G∼

)
, ε real . (31)

If U∼ maps the set of trial states onto itself

U
∼ |Q 〉 = |Q′ 〉 ∈ { |Q 〉} , (32)

then, as a result of the equations of motion, it can be shown [28] that

{H,G} = 〈Q(t) | i
[
H
∼,
G
∼

]
|Q(t) 〉 . (33)

This means that for this class of generators the generalized Poisson bracket is just

the expectation value of the commutator with iH∼.

Relation (33) is very useful for two reasons. First, if G∼ commutes with the

Hamiltonian H∼ and exp(iεG∼) |Q 〉 = |Q′ 〉 then 〈Q(t) | G∼ |Q(t) 〉 is automatically a

constant of motion.

Second, this relation is an important guidance for the choice of the trial state

|Q 〉. If one wants the model to obey certain conservation laws then the set of

trial states should be invariant under the unitary transformations generated by the

constants of motion. For example, total momentum conservation implies that a

translated trial state is again a valid trial state. This is fulfilled for the trial states

specified in section 2.1. The Gaussians defined in eq. (2) can be translated or Galilei

boosted, the latter taking care of the conservation of the centre of gravity.

Conservation of total spin ~J
∼ = ~L

∼+ ~S
∼ is guaranteed if rotation of the trial state

in coordinate and spin space results again in a trial state. This implies that the

Gaussian (2) has to have either a spherical shape or the width parameter has to be

replaced by a complete tensor with 12 real parameters. It also means that all spin

directions in |φ, χ 〉 have to be allowed, otherwise the rotation would in general lead

out of the manifold of trial states.

If G∼ does not commute with H∼, relation (33) sheds some light on the quality of

the variational principle (17). It says that under the premise that exp(iεG∼) does not



18 H. Feldmeier and J. Schnack

map out of the set of trial states the time derivative of the expectation value of G∼
calculated with a trial state is exact.

d

dt
G(t) =

d

dt
Gexact(t) , (34)

where the exact solution with the initial state |Q(t) 〉 is

Gexact(t+ τ ) = 〈Q(t) | e
iτH∼ G

∼ e
−iτH∼ |Q(t) 〉 . (35)

Due to the fact that |Q(t+ τ ) 〉 is only the approximate time evolution of |Q(t) 〉

for some time τ later G(t+ τ ) will begin to deviate from Gexact(t+ τ ) for larger τ .

The kinetic energy T
∼ is such a generator. Since our trial state (9) is the exact

solution of the Schrödinger equation without interactions it fulfills

exp(−iτT∼) |Q(t) 〉 = |Q(t+ τ ) 〉 . (36)

With the two–body interaction included, |Q(t) 〉 is not an exact solution anymore,

but the expectation value of the total kinetic energy, which then is not a conserved

quantity any longer, is well approximated in the sense of equation (34).

2.4 Two–body Hamiltonian

2.4.1 Effective nucleon–nucleon interaction

Up to now the interaction V∼ contained in the Hamiltonian was not specified. Since

in this paper we shall investigate small and medium–heavy nuclei, we choose an

effective two–body potential suited for mass numbers up to about 50. This inter-

action is repulsive at small and attractive at larger distances. The repulsive core

is, however, rather weak and one should regard the potential as a phenomenological

ansatz for a G–matrix rather than the free nucleon–nucleon interaction which has a

very strong repulsion for distances smaller than 0.5 fm. In this paper we are using

a potential of the form

V
∼(i, j) = V

∼a (wa +maP∼
r + baP∼

σ + haP∼
τ) (37)

+ V
∼b (wb +mbP∼

r + bbP∼
σ + hbP∼

τ )

+ V
∼c (wc +mcP∼

r + bcP∼
σ + hcP∼

τ )



Fermionic Molecular Dynamics 19

where P∼
r, P∼

σ, P∼
τ denote the various exchange operators for coordinate, spin and

isospin. The radial dependences are of Gaussian type given by

〈~xi, ~xj | V∼a,b,c(i, j) |~xk, ~xl 〉 = Va,b,c exp

{
−

(~xi − ~xj)2

r2
a,b,c

}
(38)

×δ3(~xi − ~xk)δ
3(~xj − ~xl)

which allows to calculate all matrix elements and their derivatives analytically. The

parameters

Va = −7.10MeV ; ra = 1.16fm (39)

Vb = −31.90MeV ; rb = 2.22fm

Vc = +81.65MeV ; rc = 0.735fm

wa = 8.700, ma = 5.610, ba = 7.860, ha = −21.170

wb = 0.133, mb = 0.514, bb = 0.085, hb = 0.268

wc = 1.000, mc = 0.000, bc = 0.000, hc = 0.000

were determined in order to reproduce the binding energies of a wide range of

medium–heavy isotopes.

2.4.2 Coulomb interaction

The Coulomb interaction is included in the Hamilton operator, it is given by

〈~xi, ~xj | V∼c(i, j) |~xk, ~xl 〉 =
1.44MeVfm

|~xi − ~xj|
P
∼
p
⊗ P∼

p
δ3(~xi − ~xk)δ

3(~xj − ~xl) , (40)

where P∼
p

denotes the projection operator on the protons

P
∼
p | qm 〉 =

1

2
(1 + ξm) | qm 〉 . (41)

The isospin variable ξm takes values ξm = 1 for protons and ξm = −1 for neutrons,

respectively.

In order to speed up computing time the expectation values of the two–body

potentials are approximated as given in the appendix and spin degrees have been

kept fixed in the following calculations.
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3 Ground states in FMD

The ground state of a nucleus is the many–body state |QGS 〉 in which the energy

H = 〈QGS | H∼ |QGS 〉 is an absolute minimum with respect to variation of all

parameters qν , therefore

∂

∂qν
H = 0 . (42)

This implies that the FMD ground state is completely time–independent (up to

an overall phase) and the time derivatives of all parameters vanish because, by

definition, all generalized forces ∂H/∂qµ are zero and hence

q̇ν = −
∑
µ

A−1
νµ

∂H

∂qµ
= 0 . (43)

Requirement (42) not only determines the positions ~rk and momenta ~pk but also the

complex widths ak and the spin directions (χk, φk).

Since we do not correct for the centre of mass motion in the dynamical calculation

we use the expectation value of the Hamilton operator as the ground state energy

and do not subtract the centre of mass energy. The centre of mass energy is of the

order of 10MeV for all isotopes, so that its contribution to the energy per particle

vanishes for larger mass numbers. An ansatz for the many–body state where centre

of mass and relative motion separate is introduced in ref. [35].

Besides the ground state energy we also calculate the root–mean–square radius

of the charge distribution.

EGS = 〈QGS | H∼ |QGS 〉 (44)

R2
rms =

1

Z

A∑
i=1

〈QGS | (~x∼(i)− ~X
∼CM )2P

∼
p
(i) |QGS 〉+R2

proton , (45)

where the centre of mass position operator is

~X
∼CM

=
1

A

A∑
i=1

~x
∼(i) . (46)

The operator P∼
p
(i) projects on protons and Rproton = 0.876 fm takes the finite

charge radius of the proton into account.
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3.1 Ground states of nuclei

In table 1 we summarize ground state binding energies and charge radii and compare

them with experimental results. The interaction (37) describes a wide range of

isotopes with a satisfying accuracy.

experiment FMD experiment FMD

Isotope EGS EGS/A 〈 H∼ 〉 〈 H∼ 〉 /A Rrms Rrms

( MeV ) ( MeV ) ( MeV ) ( MeV ) ( fm ) ( fm )

4He -28.296 -7.07 -28.32 -7.08 1.63 1.63
12C -92.163 -7.68 -91.36 -7.61 2.42 2.79
16O -127.62 -7.98 -127.7 -7.98 2.73 2.84
19F -147.80 -7.78 -143.3 -7.54 2.87

24Mg -198.256 -8.26 -196.7 -8.19 2.95 3.17
27Al -224.952 -8.33 -216.9 -8.03 2.95 3.13
28Si -236.537 -8.44 -238.3 -8.51 3.04 3.24
32S -271.783 -8.49 -273.4 -8.54 3.20 3.35

40Ca -342.056 -8.55 -349.0 -8.72 3.50 3.44

Table 1: Ground state energies and charge radii in FMD. The experimental bind-

ing energies are taken from ref. [36, 37] and the charge radii from ref. [38, 39].

All experimental errors are at most in the last digit.

In fig. 2 and fig. 3 we display the density of different ground states in coordinate

and momentum space, respectively. The densities are defined as

ρx(~x) = 〈~x | ρ∼
(1) |~x 〉 and ρk(~k) = 〈~k | ρ∼

(1) |~k 〉 , (47)

where ρ∼
(1) is the one–body density operator. The crosses indicate the centres ~rl and

~pl of the wave packets. One should however keep in mind that a Slater determinant

is invariant under transformations among the occupied single–particle states. In

the coordinate representation the density is integrated over the z–direction, the

momentum representation is shown as a cut at kz = 0.

In fig. 2 one sees that the ground states are intrinsically deformed. The 12C

nucleus for instance arranges as three α–clusters, whereas this α–symmetry is broken
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Figure 2: Contour plot of spatial densities integrated over z–direction for differ-

ent ground states. Crosses indicate centroids of wave packets. Contour lines are

at 0.9, 0.5, 0.1 and 0.01 of the maximum density.

Figure 3: Contour plot of momentum distributions cut at kz = 0 for different

ground states. Crosses indicate centroids of wave packets. Contour lines are at

0.03, 0.06, 0.09, 0.12 and 0.15 fm3.
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in 19F and 27Al. The true ground state, which is an eigenstate of the total spin, is

a superposition of all orientations of the intrinsically deformed ground state [28].

The momentum distributions shown in fig. 3 reflect the Fermi motion of the

ground states. Although all single–particle wave–packets are stationary (and even

centred at ~p = 0) the system possesses Fermi motion. In FMD the Fermi mo-

tion is a quantum mechanical zero–point motion and not a random motion of the

packet centroids. In the ground state ~rk and ~pk and all other parameters are time–

independent otherwise it would be not the ground state of the system. Using a

product state for the many–body system [17, 18, 20, 40, 41, 42, 43] it might be

possible to use a momentum dependent Pauli potential in order to mock up the

momentum distribution. Nevertheless such a system has the thermodynamic prop-

erties of distinguishable particles, which are different from those of a Fermi system

especially at low excitations.

3.2 Shell structure in FMD

It is not immediately obvious that FMD includes shell–model features like the nodal

structure of single–particle orbits since the states are localized in coordinate and

momentum space. But due to the invariance of a Slater determinant under linearly

independent transformations among the occupied single–particle states, after anti-

symmetrization, any set of single–particle states which is complete in the occupied

phase space is as good as any other. This applies also to non–orthogonal states.

To illustrate this we take four one–dimensional real Gaussians with the same real

width parameter a and zero mean momentum and displace them by d = 0.75
√
a

(see l.h.s. of fig. 4). The one–body density can be written in terms of orthonormal

states |ψm 〉 as

ρ
∼

(1) =
A∑

k,l=1

| qk 〉 Okl 〈 ql | =
A∑

m=1

|ψm 〉〈ψm | , (48)

where the orthonormal eigenstates of ρ∼
(1) are given by

|ψm 〉 =

A∑
k=1

| qk 〉 (O
1
2 )km (49)

and Okl is the inverse of the overlap matrix 〈qk|ql〉. They are displayed on the right

hand side of fig. 4 and compared to harmonic oscillator eigenstates (dashed lines).
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Figure 4: Antisymmetrization of the four Gaussians on the left hand side leads to

harmonic oscillator states. Dashed lines are the exact eigenstates of the oscillator.

One sees that the occupied single–particle states |ψm 〉 consist of an s-, p- ,d- and

an f-state, all very close to harmonic oscillator states. The difference between both

sets can be made arbitrarily small by letting d/
√
a approach zero.

A second example is illustrated in fig. 5, where we consider 100 equally spaced

Gaussians in one dimension [44]. Again all mean momenta are zero and the width

a is real. In the upper part of fig. 5 the width
√
a is 0.2 of the mean distance d

so that the wave packets are well separated. Therefore the spatial density ρx and

the momentum density ρk are not changed by antisymmetrization. In the lower

part the width has been increased to
√
a = d. Without antisymmetrization (dash

dotted line) the spatial density is uniform and the momentum distribution is that

of a single packet. After antisymmetrization (full lines) one obtains the typical

shell model oscillations in coordinate space and a Fermi distribution in momentum

space. It is amazing to see how in eq. (48) the superposition of Gaussians by means

of the inverse overlap matrices can create a fully occupied momentum state, see for

example in fig. 5 the lower right momentum distribution at k = 0.8kF , where the

individual Gaussians give practically zero probability to measure this momentum.

We also calculated the eigenstates of the kinetic energy in the occupied space and

got perfect sinusoidal waves.

These two examples illustrate nicely that even localized single–particle states

with zero mean momentum build up FMD many–body trial states which describe

the harmonic oscillator shell model or even the Fermi motion of a gas of fermions in

which plane waves are occupied up to the Fermi momentum.
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Figure 5: Upper part: section of spatial density of hundred Gaussians (not over-

lapping in coordinate space) and corresponding momentum distribution (same

for all). Antisymmetrization does not change the distribution. Lower part: same

as above but for overlapping Gaussians. Full line with antisymmetrization, dash–

dotted line without. For details see text.

If one wants to simulate this effect by a ”Pauli potential”, disregarding the

momentum distribution in each wave packet, the resulting ground state momentum

distribution is unsatisfactory [24].

4 Heavy ion reactions

It is the aim of Fermionic Molecular Dynamics to describe the phenomena seen in

heavy–ion collisions at laboratory energies of E <
∼200 AMeV, as there are fusion,

incomplete fusion, dissipative reactions, evaporation of nucleons and fragmentation.

In order to gain a predictive power that goes beyond global phenomena dominated

by conservation laws three basic conditions are indispensable.



26 H. Feldmeier and J. Schnack

The first condition concerns the ground state properties. Many observables like

for instance fragment multiplicities depend strongly on ground state energies and

radii. Thermodynamic properties like the specific heat are related to the exchange

symmetry of the many–body state. Equilibration is strongly influenced by the mean

free path of the constituents, which is usually much larger for Fermi systems than

for classical systems.

The second condition is that the trial state has to have the necessary degrees of

freedom for the phenomena one wants to account for. Mean positions and momenta

of the single–particle wave–packets are obvious degrees of freedom. For reasons of

simplification the width is often chosen as real and time independent, but it could

be shown that this degree of freedom is not only useful to reproduce the free motion

exactly, but is needed to describe evaporation of nucleons and fragmentation of

nuclei [28, 45].

The third important condition, which is related to the second, refers to sym-

metries. The deterministic equations of motion of FMD preserve all symmetries

in the initial state under which the Hamilton operator is invariant. It is therefore

desirable to use a Hamilton operator that breaks as many symmetries as possible.

This Hamilton operator should not only contain a central potential, as it is the case

in the present calculations, but also spin–orbit and tensor interactions, which are

expected to break spin symmetries of the ground states during the dynamics. In

addition short range correlations have to be considered, which lead to more momen-

tum transfer in the reaction. These short range correlations are responsible for hard

collisions of nucleons, a role that is played by the fluctuating collision term in QMD

or AMD. First steps into this direction are already taken [46].

The model is chosen to be a molecular dynamics model because it addresses

the large fluctuations observed especially in multifragmentation reactions. In the

model the molecular aspect is expressed through the localization of single–particle

wave–packets; this can be regarded as a quantization of the particle number at any

time. It means, fragments have always integer particle number, in contrast to time–

dependent Hartree–Fock, see for instance [47, 48]. Another aspect is that the FMD

single–particle wave–packets are not allowed to split, therefore tunneling through

a barrier cannot be described. But this quantal process is of less importance in

fragmentation reactions because it takes much longer than the involved time scales.
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The equations of motion of FMD are deterministic, therefore the event ensemble

does not arise from random fluctuations of the collision term during the time evolu-

tion, but from the average over all orientations of the intrinsically deformed ground

states. Although these orientations superimpose coherently in the true ground state

their relative phases are randomized during the collision so that they add up inco-

herently in the exit channels. The same holds true for the summation over different

impact parameters [28, 49].

4.1 Deeply inelastic reactions

As a first example for heavy–ion collisions described with FMD a dissipative reaction

is presented. The reaction of 19F and 27Al at a laboratory energy of 5.9 AMeV was

investigated at the SMP Tandem accelerator in Catania [50]. At this low energy the

reaction is dominated by two processes. For impact parameters b up to about 5 fm

the system fuses completely, for larger b the reaction shows the typical dissipative

phenomena of deeply inelastic collisions. The experiment focussed on the latter

process. In order to understand the reaction a view on the nucleus–nucleus potential

Figure 6: 19F–27Al static nucleus–nucleus potential. The solid line shows the

FMD result using the nucleon–nucleon interaction (37) and frozen ground states,

the crosses indicate the parameterization by Krappe, Nix and Sierk.

might be helpful. In fig. 6 the solid line displays the total energy of the 19F–27Al

system (less the ground state energies) as a function of the distance between the
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two centres of mass as it arises from the two–body interaction (37) and (40). The

many–body state of the two nuclei was taken to be the respective ground states and

not changed as a function of the distance. Therefore, antisymmetrization induces a

strong repulsion below d = 5 fm. Above d = 5 fm this static interaction compares

nicely to the parameterization of the nucleus–nucleus interaction by Krappe, Nix

and Sierk [51], which was adjusted to bulk properties of nuclei and successfully

applied in earlier studies of heavy–ion dynamics, e.g. in ref. [5].

Figure 7: d2σ/(dθcmdTKE) for 19F–27Al collisions at 5.9 AMeV: FMD calcula-

tions are displayed on the l.h.s., experimental results on the r.h.s.. Subsequent

contours differ by a factor of 5.

In the impact parameter range of 4.8 fm ≤ b ≤ 10 fm 509 events were generated

with FMD. The results were filtered with the experimental angular acceptance 3o ≤

θLab ≤ 54o. Below b = 4.8 fm the system was fusing.

Figure 7 shows the double differential cross section d2σ/(dθcmdTKE) as a function

of the centre of mass scattering angle θcm and the total kinetic energy TKE of the

two scattered nuclei. On the left hand side the FMD calculations are presented as

a contour plot. Each event (θcm,TKE) contributes as a Gaussian (∆|θcm| = 2o and

∆TKE = 2 MeV) in order to smoothen the distribution. For impact parameters

smaller than the one leading to a grazing collision (|θcm| ≈ 15o, TKE ≈ 65 MeV)

the approaching nuclei feel the nuclear attraction, θcm gets smaller and becomes

negative. The total kinetic energy TKE is decreasing due to internal excitation of

the nuclei. The major part of the cross section is observed at negative angles. For
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even smaller impact parameters the nuclei stick together so long that they appear at

positive angles again. One observes a flat distribution in θcm at the Viola energy of

TKE ≈ 20 MeV. On the right hand side the experimental result is given. Comparing

both sides of fig. 7 one sees that FMD is capable to describe the dissipative character

of the reaction dynamics.

Figure 8: Diffusion plot d2σ/(dZ dTKE) for 19F–27Al collisions at 5.9 AMeV:

FMD calculations are displayed on the l.h.s., experimental results on the r.h.s..

Subsequent contours differ by a factor of 5.

The diffusion plot d2σ/(dZ dTKE), fig. 8, samples fragments in the mentioned

angular range of 3o ≤ θLab ≤ 54o, which are mostly projectile like. For the experi-

ment, r.h.s. of fig. 8, the data are limited by an energy threshold seen at low TKE

and high Z, which is not imposed on the analysis of the FMD simulations. The

FMD events (Z,TKE) are smoothened with ∆ Z = 0.5 and ∆TKE = 2 MeV.

Both contour plots, FMD (l.h.s.) and experiment (r.h.s.), show the typical broad-

ening of the charge distribution with increasing dissipated energy and the lack of

charge drift for TKE above the Viola energy of TKE ≈ 20 MeV for the completely

relaxed events. A drift to smaller Z values, which means that the 19F nucleus is

giving away nucleons to the 27Al, is seen in the measured and the calculated cross

sections for large energy losses where all the initial kinetic energy is dissipated and

the reaction lasts very long.

Figure 9 presents the second part of the diffusion plot for Z ≥ 12 which has
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Figure 9: Diffusion plot d2σ/(dZ dTKE) for 19F–27Al collisions at 5.9 AMeV

calculated with FMD for target like fragments (Z ≥ 12). Subsequent contours

differ by a factor of 5.

not been measured. Besides the deeply inelastic reactions one now also sees at TKE

values close to zero the evaporation residues from fusion reactions with charges

ranging from Z = 16 to the total charge of Z = 22 with a maximum around Z = 20.

Here one should note that the FMD time evolution was followed only up to 1200 fm/c

so that the loss of charges due to evaporation was not complete yet. Nevertheless

the broad distribution of evaporation residues shows that FMD is not unrealistic in

this respect.

4.2 Multifragmentation

In this section the same system of 19F and 27Al is investigated, but at an energy of

32AMeV where multifragmentation is expected.

How multifragmentation happens in heavy ion collisions is still a matter of de-

bate. Explanations reach from nucleation over self organization, spinodal decom-

position to cold break-up and survival of initial correlations. For an overview see

ref. [52]. A key question is the time scale of the reaction. Slow processes like nu-

cleation or self organization are hindered if the expansion of the whole system is

too fast. Another issue is the relaxation time for thermal and chemical equilibrium
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which is important when statistical models are used to explain multifragmentation

[53, 54, 55].

If one considers the decay of excited spectator matter which has not been com-

pressed one expects a slow expansion so that there might be enough time for global

equilibration. On the other hand the excitation energies are not so high, so that

the mean free path, due to the Pauli principle, is still not small compared to the

diameter of the nuclear system. Therefore it is not obvious that global thermal

equilibrium is achieved.

For the participant matter the compression is much stronger and the excitation

energy much higher. This provides a short mean free path, but the whole system

is expanding and cooling fast so that the time available for equilibration is rather

short and it is questionable if there are enough collisions to ensure local equilibrium

until freeze out.

It is very difficult to measure temperature and flow profiles [56, 57, 58] and even

harder or impossible to infer experimentally on the time scale of the evolution of the

system. Therefore, microscopic transport models which do not assume equilibration

are needed for a better understanding. These models should go beyond the mean

field approach, which is a kind of equilibrium assumption in itself, so that in principle

they are capable to describe many–body correlations like the formation of fragments.

QMD, AMD and FMD are molecular dynamics models which assert this claim. How

equilibrium is achieved can then be studied by comparing distributions, for example

of mass, charge, kinetic energy etc, with equilibrium distributions.

FMD calculations show that correlations play an important role. Since the time

evolution of FMD is deterministic, correlations or symmetries can be broken only

either in the ground state, e.g. in 27Al there is no α–symmetry, but in 28Si there

is, or during the time evolution if the Hamilton operator breaks these symmetries

dynamically. In models like AMD or QMD a randomly fluctuating collision term,

which models the short–range repulsion as a Langevin force, destroys existing cor-

relations and symmetries. We do not want to follow this line, because it is unknown

to which extent correlations of the initial state survive during the collision and it

even might be an important mechanism for cluster formation in nature.

In the previous section we investigated beam energies of about 6 AMeV which
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Figure 10: 19F–27Al collisions at 32 AMeV, b = 0.5 fm: the one–body density in

coordinate space integrated over z is shown. The contour lines depict the density

at 0.01, 0.1, 0.5fm−2.

led to dissipative reactions with two out-coming nuclei with about the same mass

number as in the entrance channel. The energy was not high enough to break neither

the fused nor the scattered nuclei into pieces.

Now we chose an energy of 32 AMeV that corresponds to a relative velocity

between the nuclei of about the Fermi velocity. One expects that at this large

collective velocity a common mean field cannot be established any more.
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Figure 11: 19F–27Al collisions at 32 AMeV, b = 1.5 fm: for explanation see

fig. 10.

The following figures show a variety of events as contour plots of the one–body

density in coordinate space. This density is integrated over the z–direction. Fig-

ure 10, 11 and 12 present runs at different impact parameters. Within a figure

different columns show runs with initial states that differ in the orientation of the

intrinsically deformed ground states. Figure 10 presents four time evolutions at an

impact parameter of b = 0.5 fm. The time is given in the upper right corners. One

sees that at this impact parameter and energy a rather long living source is created
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Figure 12: 19F–27Al collisions at 32 AMeV, b = 2.5 fm: for explanation see

fig. 10.

which fragments into pieces of all sizes. In fig. 11 for a higher impact parameter

of b = 1.5 fm the situation is similar but the source is stretched. Figure 12 finally

shows runs with an impact parameter of b = 2.5 fm where the angular distribution

of the fragments is more forward–backward peaked than for the central events where

it is isotropic.

Analyzing the time evolution of a cluster one sees that the correlations between

the wave packets which finally compose the fragment can be followed back for rather
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long time.

In the ground state the wave packets arrange in phase space such that the total

energy is minimized. This FMD ground state is an intrinsic state in which the rela-

tive positions and orientations of the wave packets reflect many–body correlations.

If one destroys these correlations by randomly moving all position parameters ~rk by

only 0.2 fm, which leaves the one–body density almost unchanged, a 56Fe nucleus for

example achieves already 90 MeV excitation energy. A typical Q–value to break up

lighter fragments (up to about 16O) into smaller clusters is 10 MeV. Therefore, for

not too high excitation energies where the mean free path between hard nucleon–

nucleon collisions is not yet small compared to the diameter of the fragment, one

expects the many–body correlations which characterize a bound cluster to survive

to a large extend. Since the nucleons are indistinguishable one can of course not say

which nucleon from the projectile or target ends up in a given final fragment. Even

the wave packets sometimes exchange rapidly ~r and ~p, reminding of a Landau–Zener

crossing.

It is also interesting to note that in most of the runs several α–particles are

created (small spheres in the plots), which is in accord with experimental findings

at a similar energy of E = 35 AMeV in 40Ca–40Ca collisions [59].

At this point a few remarks concerning the time–dependent width might be in

place, since this degree of freedom is used exclusively in FMD, but not in AMD or

QMD and led to a discussion about its role [35, 60].

It was shown not only in our own investigations [45, 44, 28], but also in AMD

calculations [61, 62, 63], that a time evolution with fixed width parameters does not

produce evaporation or fragmentation. The reason is that a fixed width implies a

zero–point energy in each packet of about εkin = 3/(4mNaR) ≈ 10 MeV. Inside the

nucleus this energy is part of the kinetic energy in the Fermi motion. Outside the

nucleus the zero–point energy of an emitted particle is determined by the amount

of its localization at the end of the emission process. If the width is kept fixed the

nucleon carries besides its mean energy always these additional 10 MeV, which is

much more than the experimentally observed 2 · · · 3 MeV and thus a wave packet

with fixed width has little probability to escape.

Compared to that a wave packet with a dynamical width escapes from an excited
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nucleus by spreading in coordinate space [44], which has two effects: first, the large

spatial extend reduces the overlap with the other nucleons and the negative potential

energy tends to zero, second, the positive zero–point energy also becomes small so

that the sum of both need not change too much during the emission. Classically

spoken, a particle leaving the nucleus has to climb up the potential wall at the surface

loosing almost all of its kinetic energy before escaping. FMD gives values of about

2 MeV for the kinetic energy of evaporated particles in accord with experimental

findings.

For fragmentation the dynamical variation of the width parameters is also needed.

Here a change in the width parameters allows the density to notch so that it may

break.

In AMD this lack of evaporation and fragmentation is removed by a subtraction

of spurious zero–point energy [62] which also takes care of the localization energy in

the center of mass motion of the fragments.

5 Statistical properties of FMD

Fragmentation reactions show large fluctuations, for example in the mass distribu-

tion, which are beyond an ensemble averaged mean–field treatment. In this context

it is important to understand the statistical properties of molecular dynamic models

especially at low temperatures [29].

There are two aspects. One concerns the thermostatic properties of a molecular

dynamic model where the attribute thermostatic refers to the properties of the

static canonical statistical operator, which are contained in the partition function

Z(T ) = Tr(exp{−H∼/T}). Once the partition function is calculated within a given

model, its thermostatic properties can be deduced by standard methods like partial

derivatives of lnZ(T ) with respect to temperature T or other parameters contained

in the Hamilton operator H∼.

In the case of Fermionic Molecular Dynamics the trace in the partition function

can be evaluated exactly because the model is based on antisymmetric many–body

states which form an over-complete set covering the whole Hilbert space. Also the

states of Antisymmetrized Molecular Dynamics (AMD) [29, 61] provide a represen-



Fermionic Molecular Dynamics 37

tation for the unit operator. As the calculation of the trace does not depend on

the representation all thermostatic properties like Fermi–Dirac distribution, specific

heat, mean energy as a function of temperature etc. ought to be correct and fully

quantal using FMD or AMD trial states.

The issue of this section is more the other and even more important aspect,

namely the dynamical behaviour of a molecular dynamics model. A dissipative

system which is initially far from equilibrium is expected to equilibrate towards the

canonical ensemble. The simulation of such a system within the model provides a

crucial test of its thermodynamic behaviour.

The time–evolved FMD state is in general not the exact solution of the Schrödinger

equation, so the correct thermostatic properties do not a priori guarantee correct

thermodynamic properties. In other words the question is: does the FMD state as

a function of time explore the Hilbert space according to the canonical weight?

Since the parameters of the single–particle wave packets follow generalized Hamil-

ton equations of motion, one is tempted to infer that the dynamical statistical prop-

erties might be classical [64, 65]. This conjecture, that classical equations of motion

always imply classical statistics, is disproved by the following examples, in which

we compare time–averaged expectation values of wave–packet molecular dynamics

with the equivalent ones of the canonical ensemble at the same excitation energy.

Within Fermionic Molecular Dynamics we study the equilibration of four iden-

tical fermions enclosed in a one dimensional harmonic oscillator. The particles in-

teract by a weak repulsive two–body potential which is necessary to convert the

integrable harmonic oscillations into chaotic motion. The important result is that

the initial many–body state, which is far from equilibrium, approaches the canonical

ensemble with Fermi–Dirac statistics in an ergodic sense. The time–averaged occu-

pation numbers of the harmonic oscillator eigenstates are practically identical with

the Fermi–Dirac distribution of the canonical ensemble, provided the canonical en-

semble is taken at the time–independent mean excitation energy of the many–body

state.

When distinguishable particles, which are described by a product state of wave

packets, are considered, the molecular dynamic equations for the parameters of the

wave packets lead to a Boltzmann distribution for the occupation numbers of the
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single–particle eigenstates.

A further important result is, that the use of time averages provides us with a tool

for establishing relations between well–defined quantities of a molecular dynamic

model such as excitation energy and statistical quantities like temperature. This

will be done in subsection 5.3 where we investigate excited nuclei and the nuclear

liquid–gas phase transition which is of great experimental [56, 57, 66] and theoretical

interest [54, 67, 68, 69, 70, 71, 72, 73].

5.1 Thermostatic properties

In order to describe the thermostatic properties of a given system by means of model

states exactly, it is necessary that these model states span the whole Hilbert space.

The question, whether the thermostatic properties of FMD are correct, therefore re-

duces to the question whether its model states are complete. Starting from coherent

states the following short explanation proofs that this is the case.

5.1.1 Completeness relation with coherent states

Coherent states |~z 〉 which are defined as the eigenstates of the harmonic oscillator

destruction operator ~a∼,

~a
∼ |~z 〉 = ~z |~z 〉 , H

∼HO = ω

(
~a
∼

+ ~a
∼+

3

2

)
(50)

form an over-complete set of states. Their completeness relation reads

1
∼

(1) =

∫
d3Re (z) d3Im (z)

π3

|~z 〉〈~z |

〈~z |~z 〉
(51)

=

∫
d3r d3p

(2π)3

|~r, ~p 〉〈~r, ~p |

〈~r, ~p |~r, ~p 〉

=

∫
d3r d3p

(2π)3

| q 〉〈 q |

〈 q | q 〉
,

where all three lines are equivalent notations; |~z 〉 labeling coherent states by their

eigenvalue with respect to ~a
∼, the phase space notation |~r, ~p 〉 labeling the states

by their expectations values of the coordinate and momentum operators and | q 〉

being the FMD notation. Coherent states are extensively discussed in ref. [74].
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Since we are dealing with fermions the spin degree of freedom has to be considered

and consequently the resolution of unity changes to

1
∼

(1) =

∫
d3r d3p

(2π)3

∑
ms

| q 〉〈 q |

〈 q | q 〉
, (52)

where the sum runs over the different magnetic quantum numbers ms which are

included in the set of parameters denoted by q (see eq. (7)).

Proceeding one step further the unity operator in the antisymmetric part of the

two–particle Hilbert space is the antisymmetric product of two single–particle unity

operators

1
∼

(2) = A
∼

(2)
(

1
∼

(1) ⊗ 1
∼

(1)
)
A
∼

(2) (53)

=
1

2

(
1− P∼12

) (
1
∼

(1) ⊗ 1
∼

(1)
) 1

2

(
1− P∼12

)
,

which may be expressed with antisymmetric two–body states | q1, q2 〉a as

1
∼

(2) =

∫
d3r1 d3p1

(2π)3

∑
ms(1)

∫
d3r2 d3p2

(2π)3

∑
ms(2)

| q1, q2 〉a a〈 q1, q2 |

〈 q1 | q1 〉〈 q2 | q2 〉
(54)

where | q1, q2 〉a :=
1

2
( | q1 〉 ⊗ | q2 〉 − | q2 〉 ⊗ | q1 〉) .

Following this line the resolution of unity in the antisymmetric part of the A–body

Hilbert space is just the antisymmetric product of single–particle unity operators.

Be | Q̂ 〉 the unnormalized Slater determinant of single–particle states | q 〉 and |Q 〉

the normalized Slater determinant

| Q̂ 〉 =
1

A!

∑
π

sgn(π)
(
| qπ(1) 〉 ⊗ · · · ⊗ | qπ(A) 〉

)
(55)

|Q 〉 =
1

〈 Q̂ | Q̂ 〉
1
2

| Q̂ 〉 .

Then the unity operator can be written as the projection of the A–body unit operator

onto the antisymmetric subspace of the Hilbert space

1
∼

(A) =

∫
dµ(Q) |Q 〉〈Q | , (56)

with a measure

dµ(Q) = 〈 Q̂ | Q̂ 〉
A∏
k=1

1

〈 qk | qk 〉

d3rk d3pk
(2π)3

∑
ms(k)

, (57)
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that accounts for antisymmetrization by means of the ratio between the norm of

the Slater determinant 〈 Q̂ | Q̂ 〉 and the norm of the corresponding product state∏A
k=1 〈 qk | qk 〉 (see also [64]). In a sampling where the values of ~rk and ~pk are chosen

according to Monte Carlo methods this measure determines the probability to find

the state |Q 〉 belonging to this configuration Q = {~r1, ~p1; ~r2, ~p2; . . .} in Hilbert

space. If for example two fermions with the same spin are close in ~r and ~p then this

measure is small because the norm 〈 Q̂ | Q̂ 〉 = det{〈qk|ql〉} will be small.

Coherent states are Gaussian wave–packets with fixed width, but the single–

particle states of FMD

〈~x | q 〉 ∝ exp

{
−

(~x− ~r)2

2a
+ i ~p · ~x

}
⊗ |χ, φ 〉 ⊗ | ξ 〉 (58)

contain more degrees of freedom, for instance the width parameter a, the spin angles

χ and φ and the isospin–3 component ξ. Since coherent states are already complete

the additional degrees of freedom aR and aI do not bother. They can be integrated

keeping track of the normalization as it is shown in (59) and the isospin is summed

over like the spin

1
∼

(1) =
1

ΩR ΩI

∫
d3r d3p

(2π)3

∑
ms,ξ

∫
ΩR

daR

∫
ΩI

daI
| q 〉〈 q |

〈 q | q 〉
, (59)

where ΩR and ΩI denote the intervals the width a = aR + iaI is integrated over.∫
ΩR

daR = ΩR ,

∫
ΩI

daI = ΩI .

The measure then changes to

dµ(Q) = 〈 Q̂ | Q̂ 〉
A∏
k=1

1

〈 qk | qk 〉

d3rk d3pk

(2π)3

daR
ΩR

daI
ΩI

∑
ms(k),ξ(k)

. (60)

5.1.2 The partition function

Once the resolution of unity is given in terms of model states the partition function

can be evaluated. Eq. (56) is very useful in calculating traces by means of Monte

Carlo sampling [64]. For instance the canonical partition function is given by

Z(T ) = Tr (exp {−H∼/T}) (61)

=

∫
dµ(Q) 〈Q | exp {−H∼/T} |Q 〉 .



Fermionic Molecular Dynamics 41

5.1.3 Example

In the following the above considerations are illustrated with the example of A

identical fermions in a common one–dimensional harmonic oscillator potential [46].

Starting from the Hamilton operator

H
∼ =

A∑
n=1

h
∼HO(n) , h

∼HO(n) =
~k
∼

2(n)

2m
+

1

2
mω2~x
∼

2(n) (62)

the mean energy of the A–fermion system can be derived from the partition function

Z(T ) (61) as the derivative with respect to T

〈〈 H∼ 〉〉
∣∣ T = T 2 ∂

∂T
ln(Z(T )) (63)

=

∫
dµ(Q)W(T )

∑A
m,n Onm(T )

[
T 2 ∂

∂T
〈qm| exp

{
− h
∼HO/T

}
|qn〉
]

∫
dµ(Q)W(T )

,

where two the abbreviations W(T ) and O−1(T ) are introduced as

W(T ) =
det
(
〈qk| exp{−h∼HO/T} |ql〉

)
det
(
〈qk|ql〉

) , (64)

(
O−1(T )

)
kl

= 〈qk| exp{−h∼HO/T} |ql〉 .

The matrix elements can be evaluated in closed form [46]. Figure 13 shows the result

of a Monte–Carlo simulation for a system of four identical fermions in a harmonic

oscillator with ~ω = 8 MeV by open circles. The solid line shows the same result,

but calculating the partition function with eigenstates of the Hamilton operator,

which obviously gives the same relation. For comparison the classical dependence is

shown as a dashed–dotted line.

5.2 Canonical versus ergodic ensemble

Fermionic Molecular Dynamics is a deterministic microscopic transport theory. Given

the Hamilton operator and a state |Q(t0) 〉 at a certain time t0 the state |Q(t) 〉 is

known for all times.

Expectation values are well–defined in FMD so that one can easily calculate

quantities like the excitation energy of a nucleus or the probability of finding the
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Figure 13: Excitation energy as a function of temperature, calculated with FMD

model states (circles) or with eigenfunctions of the harmonic oscillator (solid line).

The dashed–dotted line shows the classical result.

system in a given reference state. But it is not obvious how intensive thermody-

namical quantities, such as the temperature, might be extracted from deterministic

molecular dynamics with wave packets. In classical mechanics with momentum–

independent interactions the partition function

Zclassical(T ) =

∫ A∏
k=1

d3rk d3pk

(2π)3
exp

{
−

1

T
Hclassical(~r1, ~p1, · · · )

}
(65)

=

∫ A∏
k=1

d3pk exp

{
−

1

T

A∑
i=1

~p 2
i

2mi

}
×

∫ A∏
l=1

d3rl

(2π)3
exp

{
−

1

T
V(~r1, ~r2, · · · )

}
is a product of a term with the kinetic energy and a term containing the interactions.

Therefore, the momentum distribution can be used to determine the temperature T .

In the quantum case eq. (61) has to be employed which does not show this factoriza-

tion. A simple example for this behaviour is the ground state of the free Fermi gas

where finite momenta are occupied, nevertheless the temperature is zero. Another

example is the ground state of a nucleus for which the momentum distribution has

a smeared out Fermi edge due to the finite size and not because of temperature.

In this section time averaging is compared with a statistical ensemble. If the sys-

tem is ergodic both are equivalent and statistical properties of molecular dynamics

can be evaluated by means of time averaging.
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For this the ergodic ensemble is defined by the statistical operator R∼erg as

R
∼erg := lim

t2→∞

1

(t2 − t1)

∫ t2

t1

dt |Q(t) 〉〈Q(t) | . (66)

The ergodic mean of an operator B∼ is given by

〈 B∼ 〉
∣∣ 〈 H∼ 〉 := Tr

(
R
∼erg B∼

)
= lim

t2→∞

1

(t2 − t1)

∫ t2

t1

dt 〈Q(t) | B∼ |Q(t) 〉 . (67)

In general the statistical operator R∼erg is a functional of the initial state |Q(t1) 〉,

the Hamilton operator H∼ and the equations of motion. If the ergodic assumption is

fulfilled, the statistical operator should only depend on 〈 H∼ 〉 , which is actually a

constant of motion. Thus the average in the ergodic ensemble is always performed

at the same expectation value of the Hamilton operator. In our notation this is

denoted by the condition ” 〈 H∼ 〉 ” in eq. (67).

5.2.1 Canonical ensemble of fermions in a harmonic oscillator

With the statistical operator of the canonical ensemble for A identical fermions (all

spin up) in a one–dimensional common harmonic oscillator potential H∼HO given by

R
∼(T ) =

1

Z(T )
exp

{
−
H
∼HO

T

}
(68)

H
∼HO =

A∑
l=1

h
∼(l) , h

∼(l) = ω

∞∑
n=0

(
n+

1

2

)
c
∼

+
n
c
∼n ,

the statistical mean of an operator B∼ is calculated as

〈〈 B∼ 〉〉
∣∣ T := Tr (R∼(T ) B∼) (69)

=
1

Z(T )

∫
dr1 dp1

2π
· · ·

drA dpA
2π

〈 Q̂ | B∼ exp
{
−
H
∼HO

T

}
| Q̂ 〉

=
1

Z(T )

∑
n1<···<nA

〈n1, · · · , nA | B∼ |n1, · · · , nA 〉 exp

{
−
E(n1, · · · , nA)

T

}
.

As already mentioned the FMD states are a representation of the unit operator

and hence can be used to calculate traces. For numerical convenience, however,

the mathematically identical third line in eq. (69) is used, where |n1, · · · , nA 〉

denotes the Slater determinant composed of single–particle oscillator eigenstates

|n1 〉, · · · , |nA 〉 and

E(n1, · · · , nA) = ω

A∑
i=1

(
ni +

1

2

)
(70)
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are the eigenenergies of H∼HO . In eq. (69) the subscript T indicates that the average

is taken at a constant temperature T .

In the following a system of four fermions in a common one–dimensional har-

monic oscillator is investigated. The frequency of the oscillator is chosen to be

ω = 0.04 fm−1 in order to get a spacing of 8 MeV between the single–particle

eigenstates. For the canonical ensemble fig. 14 shows the dependence of the excita-

tion energy on the temperature (l.h.s.) and displays how the lowest eigenstates are

occupied in the four–fermion system for five different temperatures (r.h.s.).

Figure 14: A system of four fermions in a common oscillator described by the

canonical ensemble. L.h.s.: Excitation energy as a function of temperature (solid

line). The dashed–dotted line shows the result for a product state (Boltzmann

statistics). R.h.s.: Occupation numbers p(n) of the oscillator eigenstates for five

temperatures (eq. (71)). The lines are drawn as a guide for the eye.

The mean occupation probabilities are given by

p(n) = 〈〈 c∼
+
n
c
∼n 〉〉

∣∣ T , (71)

where c
∼

+
n denotes the creation operator of a fermion in the oscillator eigenstate

|n 〉.

5.2.2 Ergodic ensemble of fermions in a harmonic oscillator

In this section the averages of the occupation numbers in the ergodic ensemble

are evaluated and compared with those of the canonical ensemble discussed in the
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previous section. As pointed out already, in Fermionic Molecular Dynamics the time

evolution of Gaussian wave packets in a common oscillator is exact, and thus the

occupation probabilities of the eigenstates of the Hamilton operator do not change

in time. In order to equilibrate the system a repulsive short–range interaction V∼I is

introduced. The strength of the interaction is chosen such that the resulting matrix

elements of V∼I are small compared to the level spacing ω and the excitation energy

E∗. The contribution of 〈 V∼I 〉 to the total energy is of the order of 0.1 . . . 1.0 MeV.

The initial state is prepared in the following way. Three wave packets with a

width of a = 1/mω are put close to the origin at x = (−d, 0, d) — with d = 0.5/
√
mω

— whereas the fourth packet with the same width is pulled away from the centre in

order to obtain the desired energy. As the mean momenta are all zero, the excitation

is initially only in potential energy which has to be converted into thermal energy

by means of the small interaction V∼I .

The initial system, which is far from equilibrium, is evolved over about 2000 pe-

riods of the harmonic oscillator (2π/ω = 157 fm/c). The equilibration time is rather

large as we are using a very weak interaction in order not to introduce correlations

which would destroy the ideal gas picture implied in the canonical ensemble (68) of

non–interacting particles. The time averaging of the occupation numbers (72) starts

at time t1 = 10000 fm/c in order to allow a first equilibration.

〈 c∼
+
n
c
∼n 〉

∣∣ 〈 H∼ 〉 = lim
t2→∞

1

(t2 − t1)

∫ t2

t1

dt 〈Q(t) | c∼
+
n
c
∼n |Q(t) 〉 (72)

Figure 15 gives an impression of how the occupation numbers evolve in time.

The part to the left shows the time evolution without interaction which is just a

unitary transformation in the one–body space. Thus the occupation numbers do not

change in time although the wave packets are swinging. This has been expected since

the c
∼

+
n create eigenstates of the Hamiltonian H

∼HO . It also serves as an accuracy

test of the integrating routine. The part to the right displays the evolution with

interaction at three later times. The occupation probabilities are reshuffled due

to the interaction and they fluctuate in time. In fig. 16 (l.h.s.) the chaotic time

dependence of 〈Q(t) | c∼
+
n
c
∼n |Q(t) 〉 for n = 0, 3 and 6 is depicted.

The result of time averaging is seen in fig. 17 (symbols) for four different initial

displacements which correspond to four different excitation energies of the fermion

system. To each case we assign a canonical ensemble which has the same mean
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Figure 15: Time evolution of the occupation probabilities for four fermions in a

common harmonic oscillator potential without (l.h.s.) and with two–body inter-

action (r.h.s.). The distributions at t = 0 and t = 30000fm/c are connected by a

solid line.

Figure 16: L.h.s.: Occupation probabilities versus time — n = 0: circles, n = 3:

squares, n = 6: triangles. R.h.s.: Variance of the fluctuations ∆p2(n) calculated

in the canonical ensemble (solid line) and in the ergodic ensemble (triangles).

energy. The solid lines in fig. 17 show the corresponding distributions of occupation

probabilities for these canonical ensembles. Their temperatures T are also quoted

in the figure. It is surprising to see that there is almost no difference between the

ergodic and the canonical ensemble:

〈 c∼
+
n
c
∼n 〉

∣∣ 〈 H∼ 〉 ≈ 〈〈 c∼
+
n
c
∼n 〉〉

∣∣ T ∀ n , (73)
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Figure 17: Occupation numbers calculated in the ergodic ensemble (symbols, eq.

(72)) compared with the canonical ensemble (solid line, eq. (71)).

provided both have the same excitation energy

E∗ = 〈 H∼HO −E0 〉∣∣ 〈 H∼ 〉 = 〈〈 H∼HO − E0 〉〉∣∣ T , E0 = 8 ω . (74)

The relation between E∗ and T is given by eq. (69) and displayed in fig. 14.

This result is not trivial because, firstly, the system is very small, consisting

of only four particles, and secondly, the equations of motion are approximated by

FMD. The one to one correspondence between the occupation probabilities of the

ergodic ensemble and the ones of the canonical ensemble, which has the same mean

energy 〈 H∼ 〉 as the pure state, is an impressive demonstration that the system is

ergodic and that the FMD many–body trajectory covers the phase space according

to Fermi–Dirac statistics.

Not only the one–body distributions of the two ensembles coincide, but also the
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variances of the fluctuations ∆p2(n),

∆p2(n) := 〈〈
(
c
∼

+
n
c
∼n
)2
〉〉∣∣ T − 〈〈 c∼+

n
c
∼n 〉〉

∣∣ T2 , (75)

as is demonstrated in fig. 16 (r.h.s.). The ergodic mean converges to the result of

the canonical ensemble which is ∆p2(n) = p(n)(1− p(n)).

5.2.3 Canonical and ergodic ensemble for distinguishable particles

In this section it is shown that time averaging results in quantum Boltzmann statis-

tics if the fermions are replaced by distinguishable particles. For this end the an-

tisymmetrized many–body state is replaced by a product state of Gaussian wave

packets. The resulting equations of motion differ from the FMD case in the skew–

symmetric matrix Aµν(Q) (given in eq. (22)) which does not couple the generalized

velocities of different particles any longer.

For product states the ergodic ensemble is again investigated at different energies

and compared with the canonical ensembles with the same mean energies. The

appropriate relation between temperatures and excitation energies in the canonical

ensemble for distinguishable particles

E∗ = 〈〈 H∼HO − E0 〉〉∣∣ T = 4
ω

2

[
coth

( ω

2T

)
− 1
]
, E0 = 2 ω (76)

is shown by the dashed–dotted line in fig. 14.

Since distinguishable particles are not affected by the Pauli principle, the occupa-

tion numbers for the many–body ground state look quite different. For instance for

zero temperature all particles occupy the eigenstate | 0 〉 of the harmonic oscillator

(fig. 18, l.h.s.).

The initial single–particle states of the interacting system are chosen analogue to

the fermion case. Again the time evolution of the system exhibits ergodic behaviour

for all excitation energies. As an example fig. 18 (r.h.s.) is showing the case of

E∗/A = 2.05 MeV (T = 5 MeV) after a time averaging of about 2000 periods. The

ergodic ensemble (triangles) and the Boltzmann canonical ensemble (solid line) are

the same within the size of the symbols. The result for Fermi–Dirac statistics with

the same temperature is included to demonstrate the difference (dotted line).
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Figure 18: Occupation probabilities for a product state (Boltzmann statistics).

L.h.s.: Occupation probabilities p(n) of the oscillator eigenstates for five temper-

atures for the canonical ensemble. R.h.s: Occupation probabilities calculated in

the ergodic ensemble (symbols) compared with those calculated in the canonical

ensemble (solid line) for an excitation energy of E∗ = 2.05 AMeV which corre-

sponds to a temperature T = 5 MeV in the canonical ensemble. The dotted line

shows the result for Fermi–Dirac statistics at the same temperature.

This result shows that equations of motion which are not influenced by the Pauli

principle lead to the quantum Boltzmann distribution. The only difference to ”true

classical” equations is the presence of the width parameters as dynamical variables.

Only if they are removed from the equations of motion the statistical behaviour of

the ergodic ensemble is that of classical statistics.

5.3 Caloric curve for finite nuclei

As an outlook of this chapter a method will be presented that allows to investigate

the caloric curve of finite charged self–bound Fermi systems like nuclei.

The concept of determining the temperature is to bring a reference system, for

which thermodynamic relations between temperature and measurable quantities are

known, into thermal equilibrium with the investigated system. The weakly inter-

acting ideal gas, where the temperature is given by the mean kinetic energy of the

particles, may serve as an example. The reference system is called a heat bath if its

heat capacity is much larger than that of the system and it is called a thermometer
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if its heat capacity is much less.

Figure 19: Sketch of the setup: the self–bound excited nuclear system is rep-

resented by Gaussian wave packets (solid lines) which are enclosed in a broad

container potential. For the thermometer only one wave packet is shown (dashed

line), it is contained in a different oscillator.

As the nuclear system is quantal and strongly interacting its temperature cannot

be deduced from the momentum distribution or the mean kinetic energy of the

nucleons. Therefore, the concept of an external thermometer which is coupled to

the nuclear system is used in the present investigation. The thermometer consists

of a quantum system of distinguishable particles moving in a common harmonic

oscillator potential different from the container potential as shown in fig. 19.

The time evolution of the whole system is described by the FMD equations of

motion. For this purpose the many–body trial state is extended and contains now

both, the nucleonic degrees of freedom and the thermometer degrees of freedom

|Q 〉 = |Qn 〉 ⊗ |Qth 〉 . (77)

The total Hamilton operator including the thermometer is given by

H
∼ = H

∼n(ω) +H
∼th +H

∼n−th , (78)

whereH∼n(ω) denotes the nuclear Hamiltonian with an additional external field which

serves as a container. H∼th is the Hamilton operator of the thermometer system, i.e.
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the Hamiltonian of a harmonic oscillator. The week repulsive interaction between

thermometer wave packets and nucleons is given by H∼n−th.

The determination of the caloric curve is done in the following way. The nucleus

is excited by displacing all wave packets from their ground–state positions randomly.

Both, centre of mass momentum and angular momentum are kept fixed at zero. To

allow a first equilibration between the wave packets of the nucleus and those of the

thermometer the system is evolved over a long time (14000 fm/c). After that a time

averaging of the energy of the nucleonic system as well as of the thermometer is

performed over 2000 steps covering a time interval of 2000 fm/c. During this time

interval the mean of the nucleonic excitation energy

E∗ =
1

Nsteps

Nsteps∑
i=1

〈Qn(ti) | H∼n |Qn(ti) 〉 −E0(N,Z) (79)

is evaluated. E0(N,Z) denotes the FMD ground–state energy of the isotope under

consideration. The time–averaged energy of the thermometerEth which is calculated

during the same time interval determines the temperature T through the relation

for an ideal gas

T = ωth

[
ln

(
Eth/Nth + 3

2
ωth

Eth/Nth −
3
2
ωth

)]−1

. (80)

The system is then cooled and after another 2000 fm/c, in which the system equili-

brates, the averaging is done again. Repeating this procedure one follows the caloric

curve from high excitations to low excitations.

The relation between the excitation energy and the temperature is evaluated

for the three nuclei 16O, 24Mg and 40Ca using the same container potential with

~ω = 1 MeV.

The caloric curves shown in the graph on the left hand side of fig. 20 clearly

exhibit three different parts. Beginning at small excitation energies the temperature

rises steeply with increasing energy as expected for the shell model. The nucleons

remain bound in the excited nucleus which behaves like a liquid drop of fermions.

At an excitation energy of 3 MeV per nucleon the curve flattens and stays almost

constant up to about 11 MeV. This plateau at T ≈ 5 MeV indicates the coexistence

of liquid and vapour phases, the latter consisting of evaporated nucleons which

are in equilibrium with the residual liquid drop due to the containment. Around
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Figure 20: L.h.s.: caloric curve of 16O, 24Mg and 40Ca at ~ω = 1 MeV, r.h.s.:

time averaged radial density distribution of 24Mg at various excitation energies

in the coexistence region.

E∗/A ≈ 11 MeV all nucleons are unbound and the system has reached the vapour

phase. This is indicated by the steep rise of the caloric curve beyond this point.

One has to keep in mind that the plateau is not the result of a Maxwell construction

as in nuclear matter calculations. In the excitation energy range between 3 and

11 MeV per particle an increasing number of nucleons is found in the vapour phase

outside the liquid phase. This can be seen in the density plot on the right hand

side of fig. 20, where the radial dependence of the time–averaged density for 24Mg

at three excitation energies in the coexistence region is shown. For small excitations

(E∗/A = 4.0 MeV) the nucleus, which due to recoil is bouncing around, is surrounded

by very low density vapour (solid line). The dashed line (E∗/A = 7.4 MeV) and

the dashed–dotted line (E∗/A = 11.2 MeV) show that with increasing energy the

vapour contribution is growing and the amount of liquid decreasing. However, in

the high energy part of the plateau the averaged one–body density shown here does

not represent the physical situation adequately. The time–dependent many–body

state shows the formation and disintegration of several small drops, which due to

time–averaging cannot be seen in fig. 20. Above E∗/A ≈ 13 MeV only vapour is

observed.

In how far the experimental result, fig. 21, where the temperature is determined

from isotope ratios [56], can be compared to our time–averaged temperature and
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Figure 21: Caloric curve extracted from spectator fragmentation by the ALADIN

collaboration (picture taken from ref. [56]).

excitation energy is still under investigation.

The results on the caloric curve of nuclei present another example for the wide

applicability of Fermionic Molecular Dynamics. A correct equilibrium behaviour is

of course a necessary condition for further investigations of non–equilibrium situa-

tions as in nucleus–nucleus collisions. These investigations are followed up presently.
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A Interaction matrix elements

A.1 Approximation of the matrix elements

A large fraction of the numerical effort of FMD is caused by the evaluation of the

interaction matrix elements

V(Q) ≡ 〈 V∼ 〉 = Tr
(
v
∼
ρ
∼

(2)
)

=
1

2

A∑
k,l,m,n

〈qkql| v∼ |qmqn〉
(
OmkOnl −OmlOnk

)
. (81)

This effort grows with A4 because Gaussian wave packets are not orthogonal. In

order to reduce the computation time two types of approximations were tested [45,

46]. Both approximation schemes use that antisymmetrization effectively reduces

the strength of the interaction.

The first ansatz [45]

V(Q) ≈
∑
k<l

〈qkql| V∼ |qkql〉a
〈qkql|qkql〉

exp

{
−

1

4
ckl

}
(82)

ckl =
A∑

m6=k,l

(
〈qkqm|qmqk〉

〈qkqm|qkqm〉
+
〈qlqm|qmql〉

〈qlqm|qlqm〉

)
.

takes all matrix elements 〈qkql| V∼ |qkql〉 and 〈qkql| V∼ |qlqk〉 into account which are

scaled with an overall factor counting the overlapping wave packets.

The second ansatz [46] reduces this effort even further since it needs only the

direct matrix elements

V(Q) ≈
∑
k<l

〈qkql| V∼ |qkql〉a
〈qkql|qkql〉

(
(1− γkl) + γkl exp

{
−
〈qkql|qlqk〉

〈qkql|qkql〉

})
(83)

γkl = erf

{
1

2
+

A∑
m6=k,l

(
〈qkqm|qmqk〉

〈qkqm|qkqm〉
+
〈qlqm|qmql〉

〈qlqm|qlqm〉

)}
.

Both schemes (82) and (83) provide a reasonable approximation for the expectation

value of the two–body interaction. In order to reproduce the nuclear binding energies

it can be necessary to readjust the strength of the original interaction.
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A.2 Coulomb interaction

This section briefly shows how the second approximation (83) works for the Coulomb

interaction (40)

〈~xi, ~xj | V∼c(i, j) |~xk, ~xl 〉 =
1.44MeVfm

|~xi − ~xj|
P
∼
p
⊗ P∼

p
δ3(~xi − ~xk)δ

3(~xj − ~xl) (84)

where P
∼
p

denotes the projection operator on the protons. The diagonal matrix

elements are

〈 qkql | v∼ | qkql 〉

〈qkql|qkql〉
=

1.44MeVfm

rkl
erf

{√
λklkl

2
rkl

}
P p
kk P

p
ll (85)

with

rkl = |~rk − ~rl | (86)

λklkl =
2akR alR

akR|al|2 + alR|ak|2

erf(x) :=
2
√
π

∫ x

0

du exp{−u2}

P p
kl = 〈 ξk | P∼

p | ξl 〉 =
1

2
(1 + ξl)〈 ξk | ξl 〉 (87)

The isospin variable ξk takes values ξk = 1 for protons and ξk = −1 for neutrons,

respectively.

Figure 22 shows the result of the approximation for two systems, two identical

protons and a 12C nucleus. The approximation (thin line) compares nicely to the

exact result (thick line).
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Figure 22: Approximation of the Coulomb energy. The l.h.s shows the Coulomb

energy of two protons with the same spin component as a function of the relative

distance, the r.h.s. shows the Coulomb energy of a 12C nucleus as a function

of the relative distance between the three alpha clusters. The thick solid line

represents the exact solution, the dashed line the direct term only and the thin

line the result of the approximation.
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