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Abstract. Strongly frustrated antiferromagnets such as the magnetic molecule {Mo72Fe30},
the kagome, or the pyrochlore lattice exhibit a variety of fascinating properties like low-lying
singlets, magnetization plateaus as well as magnetization jumps. During recent years exact
many-body eigenstates could be constructed for several of these spin systems. These states
become ground states in high magnetic fields, and they also lead to exotic behavior. A key
concept to an understanding of these properties is provided by independent localized magnons.
The energy eigenvalue of these n-magnon states scales linearly with the number n of independent
magnons and thus with the total magnetic quantum number M = Ns − n. In an applied field
this results in a giant magnetization jump which constitutes a new macroscopic quantum effect.
It will be demonstrated that this behavior is accompanied by a massive degeneracy, an extensive
(T = 0)-entropy, and thus a large magnetocaloric effect at the saturation field. The connection
to flat band ferromagnetism will be outlined.

1. Introduction

Geometric frustration of interacting spin systems is the driving force of a variety of fascinating
phenomena in low-dimensional magnetism [1, 2, 3, 4]. In this context the term frustration

describes a situation where in the ground state of a classical spin system not all interactions
can be saturated simultaneously. A typical picture for such a situation is a triangle of
antiferromagnetically coupled spins, where classically the spins are not in the typical up-down-
up configuration, but assume a ground state that is characterized by a relative angle of 120◦

between neighboring spins. This special classical ground state characterizes among others
several frustrated spin systems which are built of corner-sharing triangles, among them the
giant Keplerate molecule {Mo72Fe30} which is a perfect icosidodecahedron [5] and the kagome
lattice antiferromagnet. The pyrochlore lattice, which consists of corner-sharing tetrahedra and
thus has a different structure, nevertheless shares several important properties with the above
systems.

Research in this field is naturally focused on the low-energy, i.e. low-temperature, low-field
behavior. A key observation is that the quantum spin systems possess many or even infinitely
many singlet states below the first triplet state and the classical counterpart systems display a
non-trivial ground state degeneracy [6]. Another important observation concerns a plateau in



the magnetization curve for T = 0, which for the systems made of corner-sharing triangles is at
M = Msat/3, see e.g. [7, 8], whereas for the pyrochlore it is at M = Msat/2, see e.g. [9].

In this article we focus on special properties of these systems which arise at low temperatures
but high magnetic fields. We will show that it is possible to construct exact many body states
which are product states of independent one-magnon states. These states become ground states
in high magnetic fields. In a wider perspective such an arrangement of independent single-
particle objects can be understood as condensation of bosons [10, 11, 12]. The linear scaling
of the minimal total energy with the number of these objects explains their unusual high-field
behavior which is expressed in magnetization jumps [13, 14], non-zero (T = 0)-entropy [15, 16],
and an enhanced magnetocaloric effect [17].

2. Concept of independent magnons

In the following we assume that the spin systems under consideration are modeled by an isotropic
Heisenberg Hamiltonian augmented with a Zeeman term, i.e.,

H
∼

= −
∑

u,v

Juv ~s
∼

(u) · ~s
∼

(v) + gµBBS
∼

z . (1)

~s
∼

(u) are the individual spin operators at sites u and S
∼

z is the z-component of the total

spin. Juv are the matrix elements of the symmetric coupling matrix. We will consider only
antiferromagnetic couplings.

Figure 1. Minimal energies Emin of a kagome
chain with N = 36 and s = 1/2. The
highest seven levels fall on a straight line.
The highlighted diamonds in the structure are
localized magnons.

Figure 2. (T = 0)-magnetization curve of
the kagome chain, Fig. 1 with N = 36. The
magnetization jump of ∆M = 6 is marked by
an arrow.

One of the early unexpected results was that for the icosidodecahedron (e.g. {Mo72Fe30})
the minimal energies Emin in each Hilbert subspace of H(M) of total magnetic quantum number
M scale linearly with M close to the saturation [10]. Figure 1 shows as another example the
minimal energy levels of a special kagome chain (introduced in [18]) where the seven highest
levels are on a straight line. In an applied magnetic field this leads to a simultaneous crossing
of the lowest Zeeman levels at the saturation field, which gives rise to an unusual magnetization
jump, that for the kagome chain is shown in Fig. 2.

It turns out that the linear dependence of Emin on M can be understood in terms of localized
independent magnons. Figure 3 shows the structure of a localized magnon on a part of a model
lattice as realized for instance in the kagome chain of Fig. 1. The one-magnon state is given by

| localized magnon 〉 =
1

2
( | 1 〉 − | 2 〉 + | 3 〉 − | 4 〉) , where (2)

| 1 〉 = s
∼

−(1) |m1 = s,m2 = s,m3 = s,m4 = s,m5 = s, . . . 〉 etc .



4

5

6

7

8

1 2

3

Figure 3. Localized one-magnon state on a
model lattice.
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Figure 4. Independent localized magnons
on the kagome lattice antiferromagnet. N/9
independent localized magnons can be placed
on the kagome lattice.

It can be shown that this state is an eigenstate of lowest energy in one-magnon space
H(M = Ns − 1). On an extended lattice such as the kagome chain, Fig. 1, or the two-
dimensional kagome lattice, Fig. 4, many of these objects can be placed in such a way that
they do not interact [10, 13]. Also in this case it can be shown that these states are eigenstates
of lowest energy in their respective n-magnon space.

3. Consequences

An immediate consequence of the independence of the localized one-magnon states and thus
of the linear dependence of the minimal energies Emin on M is the magnetization jump at the
saturation field Bsat as well as the high degeneracy of levels at this field value. In an infinite
lattice such as the kagome or pyrochlore lattice both quantities are macroscopic [13, 14, 15, 16],
although it turns out that it is rather involved to evaluate the exact degeneracy at the saturation
field due to possible relations between the n-magnon product states [19]. The ground-state
degeneracy at Bsat is related to a finite (T = 0) entropy per site, i.e. S(T = 0)/N > 0 (for the
kagome chain one obtains S(T = 0)/N ≈ 0.1604039 [15]). In the context of magnetocalorics
such a residual entropy gives rise to large adiabatic cooling rates

(

∂ T
∂ B

)

S
= −T

C

(

∂ S
∂ B

)

T
in the

vicinity of the saturation field [17].

4. Relation to flat bands

It is clear that the energetically degenerate independent localized one-magnon states on
translationally symmetric lattices can be superimposed to form eigenstates of the translation
operator with the same energy which leads to a flat band. Figure 5 shows the three energy
bands of the kagome chain introduced in Fig. 1. We observe that one third of all one-magnon
states form independent magnons or equally well belong to the flat band. Therefore a jump of
one third of the saturation magnetization occurs at Bsat for s = 1/2, see Fig. 2.

The emergence of flat bands has been already noted in the context of line graphs and flat-band

ferromagnetism, see e.g. [20, 21, 22, 23, 24, 25, 26]. A connection can be made by replacing
the Heisenberg model by a Hubbard model [16]. The roles of the magnetic exchange J and
the applied magnetic field are then played by the hopping integral t the chemical potential µ,
respectively. If the flat band is the lowest band, then non-interacting localized excitations can
be constructed for such fermionic systems in a manner very similar to the Heisenberg model,
and these fermionic systems exhibit similar thermodynamic properties, but now as function of
temperature and chemical potential. An example is given by Fig. 6 where the isentropes for free
spinless fermions [16] on the kagome chain (Fig. 1) are displayed. At µ = 2 t > 0 the ground
state is degenerate with an extensive (T = 0) entropy S(T = 0)/N = ln(2)/3 = 0.231049 . . ..
The value µ = 2 t corresponds to the saturation field Bsat of the Heisenberg model, and a very
similar behavior would be observed in its vicinity, e.g. the slopes of the isentropes correspond



to the adiabatic cooling rates [27]. However, at lower values of µ (B) there are qualitative
differences: free spinless fermions (whose dispersion is essentially given in Fig. 5) have no band
gaps, while the magnetization curve of the s = 1/2 Heisenberg model presumably has plateaus
(corresponding to gaps) at least at one third and two thirds of the saturation magnetization (see
Fig. 2).

It may be remarked here that flat-bands on partial line graphs do not need to be ground-state
bands [26].

-π -π/2 0 π/2 π
p

-6

-4

-2

0

(∆
E

 -
 g

 µ
B
 B

)/
(s

 |J
|)

Figure 5. One-magnon excitation energies
∆E for the kagome chain; the flat band
consists of N/3 degenerate levels.
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Figure 6. Lines of constant entropy for
free spinless fermions on the kagome chain.
The value of the entropy per site S(T )/N is
indicated next to each line.
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