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Abstract.

For a class of frustrated spin lattices including e.g. the 1D sawtooth chain, the

2D kagomé and checkerboard, as well as the 3D pyrochlore lattices we construct exact

product eigenstates consisting of several independent, localized one-magnon states in

a ferromagnetic background. Important geometrical elements of the relevant lattices

are triangles being attached to polygons or lines. Then the magnons can be trapped

on these polygons/lines. If the concentration of localized magnons is small they can be

distributed randomly over the lattice. Increasing the number of localized magnons their

distribution over the lattice becomes more and more regular and finally the magnons

condensate in a crystal-like state.

The physical relevance of these eigenstates emerges in high magnetic fields where

they become groundstates of the system. As a result a macroscopic magnetization

jump appears in the zero-temperature magnetization curve just below the saturation

field. The height of the jump decreases with increasing spin quantum number and

vanishes in the classical limit. Thus it is a true macroscopic quantum effect.
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1. Introduction

The search for exact eigenstates of quantum spin systems attracts continuous attention

ever since the Heisenberg and related spin models are studied. Of course we have the

fully polarized ferromagnetic state as a trivial example. Furthermore the one- and two-

magnon states above the fully polarized ferromagnetic state can be calculated exactly

(see, e.g. [1]). A famous example for a very non-trivial eigenstate is Bethe’s solution for

the groundstate of the one-dimensional (1D) Heisenberg antiferromagnet (HAFM) [2].

The investigation of strongly frustrated magnetic systems surprisingly led to the

discovery of several new exact eigenstates. Whereas in general the treatment of
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frustrated quantum magnets is even harder than that of unfrustrated systems in some

exceptional cases one finds eigenstates of quite simple nature. The interest in these

eigenstates comes from the fact that often they become groundstates either for particular

values of frustration or in magnetic fields. Furthermore the spin correlation functions

can be calculated analytically. Therefore these exact eigenstates play an important role

either as groundstates of real quantum magnets or at least as reference states of idealized

models for more complex quantum spin systems. There are two well-known examples for

simple eigenstates of strongly frustrated quantum spin systems, namely the Majumdar-

Gosh state of the 1D J1 − J2 spin 1/2 HAFM [3] and the orthogonal dimer state in

the Shastry-Sutherland model [4]. Both eigenstates are products of dimer singlets and

become groundstates only for strong frustration. These eigenstates indeed play a role

in realistic materials. While the Majumdar-Ghosh state has some relevance in quasi-

1D spin-Peierls materials like CuGeO3 (see e.g. [5]), the orthogonal dimer state of the

Shastry-Sutherland model is the magnetic groundstate of the quasi-2d SrCu2(BO3)2[6].

Other frustrated spin models in one, two or three dimensions can be constructed having

also dimer singlet product states as groundstates (see e.g. [7, 8, 9]).

Less known is the so-called uniformly distributed resonating valence bond state

which is the groundstate of the J1 − J2 chain with ferromagnetic nearest-neighbour

(NN) bonds J1 < 0 and frustrating antiferromagnetic next NN bonds J2 = −J1/4 [10].

Another striking feature of the dimer singlet product groundstates is the existence of

magnetization plateaus at zero magnetization. These plateaus in quantum spin systems

currently attract a lot of attention from the theoretical as well as experimental side.

Recently it has been demonstrated for the 1d counterpart of the Shastry-Sutherland

model, the so-called frustrated dimer-plaquette chain (also known as orthogonal dimer

chain) [8, 11, 12], that more general product eigenstates containing chain fragments of

finite length lead to an infinite series of magnetization plateaus [13].

In this paper we discuss a recently discovered [14] class of quite universal eigenstates

of frustrated quantum antiferromagnets which become groundstates in strong magnetic

fields and lead to macroscopic jumps in the magnetization curve close to saturation. In

what follows we consider in more detail the sawtooth chain and the checkerboard lattice.

2. Localized magnon states

We consider N quantum spins of “length” s described by the Heisenberg Hamiltonian

Ĥ =
∑

ij

Jij

{

sx
i s

x
j + sy

i s
y
j + sz

i s
z
j

}

− hSz. (1)

Sz =
∑

i s
z
i is the z-component of the total spin, h is the magnetic field, and the Jij are

the exchange constants.

If the magnetic field h is sufficiently strong h ≥ hs, the groundstate of (1) becomes

the fully polarized ferromagnetic state (magnon vacuum state) |0〉 = | ↑↑↑ . . .〉 where

all spins assume their maximal sz
i -quantum number and M = 〈Sz〉 = Ns. The lowest

excitations for h > hs are one-magnon states |1〉 with M = Ns − 1. They can be



Exact eigenstates and magnetization jumps in frustrated spin lattices 3

written as |1〉 ∼ 1

c

∑N

i ais
−
i |0〉, where in general the excitation is distributed over the

whole system. However, for highly frustrated magnets having special bond geometry it

turns out that the excitation can be localized over a restricted area L of the system, i.e.

we have

|1〉 → |1〉L =
1

c

∑

i∈L

ais
−
i |0〉 = |ΨL〉|ΨR〉, (2)

where |ΨL〉 is the wave function of the magnon localized on area L and |ΨR〉 the

wave function of the fully polarized ferromagnetic remainder R containing all sites not

belonging to L. In (2) the constant c is chosen to normalize |1〉L. To demonstrate this we

split the Hamiltonian into three parts Ĥ = ĤL + ĤL−R + ĤR, where ĤL (ĤR) contains

only spins belonging to the local area L (remainder R) and ĤL−R is the interaction

term between L and R. We restrict our consideration to the case that the wave function

|ΨL〉 is an eigenstate of ĤL and has lowest one-magnon energy. Of course, the wave

function |ΨR〉 is an eigenstate of ĤR. Now we demand that the total wave function (2)

is an eigenstate of the full Hamiltonian ĤL + ĤL−R + ĤR. After some manipulation

one finds that the exchange couplings in the interaction term ĤL−R have to fulfill two

conditions[15], namely
∑

l∈L

Jrlal = 0 ∀ r ∈ R (3)

and
∑

r∈R

Jrl = const. ∀ l ∈ L. (4)

The first one comes from the xx and yy terms in ĤL−R and the second one from the

zz term (i.e. condition (4) is not relevant for the pure xy model). Eq. (3) leads to

condition on the bond geometry, whereas eq. (4) is a condition for the bond strengths

and is automatically fulfilled in uniform lattices with equivalent sites. Indeed one finds

that the above conditions are fulfilled for remarkably many different lattices/models such

as the kagomé and the sawtooth chain, the 2d kagomé, square-kagomé or checkerboard

lattices, the 3d pyrochlore lattice but also for a fractal lattice like the Sierpinski gasket.

In Fig.1 we illustrate the localized magnon states on the sawtooth chain with

J2 = 2J1 and on the checkerboard lattices. Both systems attract currently a lot of

attention as examples for novel low-energy physics in quantum systems (see e.g. [16, 17]).

We show in the figures only the localized magnons of minimum size. On the checkerboard

lattice localized magnons can sit on the four sites of an ’empty’ square but also on the√
N sites of a vertical, horizontal or sloping (45◦) line. On the sawtooth chain a magnon

can sit on the three neighbouring sites forming ’V’ but also on the N/2 sites on the

base line.

The next step is to construct eigenstates containing n > 1 localized magnons on

different localized areas Lα, α = 1, . . . , n. If these localized areas are separated from

each other one can still fulfill both conditions (3) and (4). This way one can find a

whole class of product eigenstates of the form |Ψ〉 = |ΨL1
〉|ΨL2

〉 · · · |ΨLm
〉|ΨR〉, where
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Figure 1. Localized magnon states on the checkerboard lattice and on the sawtooth

chain with J2 = 2J1. The position of the localized magnons are indicated by extra

thick lines. The numbers +1, -1, -2 at the corners represent the coefficients ai (see eq.

(2)).

the |ΨLα
〉 and |ΨR〉 are defined in analogy to (2). The system can be filled with separated

magnons as long as the magnons do not interact. The maximum number of localized

magnons depends on the lattice geometry. The state with maximum filling corresponds

to a ’magnon crystal’, i.e. to a state with a regular arrangement of magnons (see

Fig.1). The ’crystalline’ magnon state of the sawtooth chain (checkerboard lattice) is

twofold (fourfold) degenerated and breaks spontaneously the translational symmetry of

the lattice. Maximum filling for the checkerboard lattice is reached if magnons sit on

every forth ’empty’ square and for the sawtooth chain if magnons sit on every second

’V’. Each localized magnon lowers the magnetic quantum number M of total Sz by

one, i.e. one has M = Ns − n for a state with n localized magnons. Hence the

corresponding quantum number of the ’magnon crystal’ is M = Ns−N/8 (checkerboard)

and M = Ns − N/4 (sawtooth).

Due to the simple product form of the eigenstates one can calculate explicitely

the spin-spin correlation functions. They depend on the parameters ai. One has three

different types of correlations, namly within R, within L and between L nad R. As an

example we give the correlations for the checkerboard lattice with localized magnons on

’empty’ squares: 〈~s1~s2〉 = −1/4; 〈sz
1
sz
2
〉 = 0; 〈~s1~s3〉 = 1/4; 〈sz

1
sz
3
〉 = 0; 〈~s1~s4〉 = 〈sz

1
sz
4
〉 =

1/8; 〈~s1~s6〉 = 〈sz
1
sz
6
〉 = 〈~s1~s7〉 = 〈sz

1
sz
7
〉 = 1/16 and 〈~s4~s5〉 = 〈sz

4
sz
5
〉 = 1/4 (the numbers

correspond to those given in Fig. 1). Other correlation functions can be obtained

by symmetry arguments having in mind that there is no real distance dependence of

correlations within R and between L and R.

Finally, we mention that the existence of localized magnon states in regular spin

lattices is related to the existence of flat bands in the magnon dispersion[14].
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Figure 2. Magnetization m versus magnetic field h of the spin half Heisenberg

antiferromagnet on the sawtooth chain (J2 = 2J1, cf. Fig. 1) and on the checkerboard

lattice. For the finite checkerboard lattice of N = 40 only the upper part of the curve

was calculated.

3. Macroscopic magnetization jump

The interest in the above described eigenstates is not only an academic one. One can

show rigorously that these eigenstates under certain conditions become groundstates

in a magnetic field [18]. This is true for instance in many systems with translational

symmetry. We define as magnetization m = 〈Sz〉
Ns

= M
M0

, i.e. m is normalized to unity

for the fully polarized ferromagnetic state |0〉. Since the z component of the total

spin commutes with the Hamiltonian one can calculate the magnetization from the

lowest zero-field energies E(M) in each sector of M , i.e. E(M, h) = E(M) − hM and

h(M) = ∆E
∆M

. The eigenstates discussed in section 2 contain localized noninteracting

magnons and have therefore well defined energies E(M = Ns − n) = Ns2 − nε1, where
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ε1 is the energy difference between the magnon vacuum and state with one magnon and

n is the number of localized magnons. Hence we have a straight part in the E versus M

curve close to saturation leading to a jump in the m(h) curve. The height of the jump

∆m is determined by the maximal number nmax of localized magnons in the system and

on the spin ’length’ s, ∆m = nmax/Ns. Obviously the jump is a true quantum effect

and vanishes for s → ∞.

In Fig. 2 we show magnetization curves for the sawtooth chain and the checkerboard

lattice for s = 1/2 calculated with exact diagonalization for finite lattices. The height

of the jump for the sawtooth chain is ∆m = 1/2 and for the checkerboard lattice

∆m = 1/4. We emphasize that ∆m does not depend on the size of the system provided

the periodic boundary conditions of the finite lattice fit to the translational symmetry

of the ’magnon crystal’. For the sawtooth chain we see a well-pronounced plateau

preceding the jump. This plateau belongs to the ’magnon crystal’ state. Though such a

plateau is less pronounced for the checkerboard lattice there are general arguments[19]

that such a crystalline magnon state should have gapped excitations and may therefore

be connected with a magnetization plateau at m = 1− δm = 1−nmax/Ns. We mention

that the plateaus fulfill the condition of Oshikawa, Yamanaka and Affleck [20] derived for

plateaus in 1d systems not only for the sawtooth chain but also for the 2d checkerboard

lattice.

To our knowlegde the jump was not observed experimentally so far. To see the

jump and the preceding plateau in experiments one needs highly frustrated magnets

with small spin quantum number s and sufficiently small exchange coupling strength J

to reach the saturation field.
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