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I. INTRODUCTION

Rigorous results on spin systems like the Marshall-
Peierls sign rule1 and the famous theorems of Lieb,
Schultz, and Mattis2,3 have sharpened our understanding
of magnetic phenomena. They also serve as a theoretical
input for quantum computing with spin systems.4–6

Exact diagonalization methods yield the energy eigen-
values and eigenvectors for small spin rings of various
numbers N of spin sites and spin quantum numbers s
where the interaction is given by antiferromagnetic near-
est neighbor exchange7–12. One quantity of interest is the
shift quantum number k = 0, . . .N − 1 associated with
the cyclic shift symmetry of the rings. The correspon-
ing crystal momentum is then 2πk/N . Using the sign
rule of Marshall and Peierls1 or equivalently the theo-
rems of Lieb, Schultz, and Mattis2,3 one can explain the
shift quantum numbers for the relative ground states in
subspaces H(M) of total magnetic quantum number M
for rings with even N . In the case of single-spin quantum
number s = 1/2 one knows the shift quantum numbers of
the total ground states for all N via the Bethe ansatz.10

The sign rule of Marshall and Peierls as well as the the-
orems of Lieb, Schultz, and Mattis only apply to bipar-
tite rings, i. e. rings with even N . Nevertheless, even for
frustrated rings with odd N astonishing regularities are
numerically verified. This creates the need for a deeper
insight or – at best – an analytic proof for the simple
k-rule 1 (see below) which comprises all these results.
Unifying the picture for even and odd N , we find for the
ground state without exception:11,12

1. The ground state belongs to the subspace H(S)
with the smallest possible total spin quantum num-
ber S; this is either S = 0 for N ·s integer, then the
total magnetic quantum number M is also zero, or
S = 1/2 for N ·s half integer, then M = ±1/2.

2. If N · s is integer, then the ground state is non-
degenerate.

3. If N ·s is half integer, then the ground state is four-
fold degenerate.

4. If s is integer or N ·s even, then the shift quantum
number is k = 0.

5. If s is half integer and N · s odd, then the shift
quantum number turns out to be k = N/2.

6. If N·s is half integer, then k = b(N+1)/4c and k =
N − b(N + 1)/4c is found. b(N + 1)/4c symbolizes
the greatest integer less than or equal to (N+1)/4.

N s a

1 2 3 4 5 6 7 8 9 10 11

3 1/2 1,2 - - - - - - - - - -

3 1 1,2 0,1,2 0 - - - - - - - -

3 3/2 1,2 0,1,2 0,1,2 1,2 - - - - - - -

3 2 1,2 0,1,2 0,1,2 0,1,2 0,1,2 0 - - - - -

5 1/2 2,3 1,4 - - - - - - - - -

5 1 2,3 1,4 1,4 2,3 0 - - - - - -

5 3/2 2,3 1,4 1,4 2,3 0 2,3 1,4 - - - -

5 2 2,3 1,4 1,4 2,3 0 2,3 1,4 1,4 2,3 0 -

7 1/2 3,4 1,6 2,5 - - - - - - - -

7 1 3,4 1,6 2,5 2,5 1,6 3,4 0 - - - -

7 3/2 3,4 1,6 2,5 2,5 1,6 3,4 0 3,4 1,6 2,5 -

9 1/2 4,5 1,8 3,6 2,7 - - - - - - -

9 1 4,5 1,8 3,6 2,7 2,7 3,6 1,8 4,5 0 - -

11 1/2 5,6 1,10 4,7 2,9 3,8 - - - - - -

11 1 5,6 1,10 4,7 2,9 3,8 3,8 2,9 4,7 1,10 5,6 0

TABLE I: Numerically verified shift quantum numbers for
selected N and s in subspaces H(M). Instead of M the quan-
tity a = Ns − M is used. The shift quantum number for the
magnon vacuum a = 0 is always k = 0. The shift quantum
numbers are invariant under a ↔ 2Ns−a and hence only dis-
played for a = 1, 2, . . . , bNsc. Extraordinary shift quantum
numbers given in bold do not comply with Eq. 1.

In this article we will extend the knowledge about shift
quantum numbers to the relative ground states in sub-
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spaces H(M) for odd rings. Table I shows a small selec-
tion of shift quantum numbers for some N and s. The
dependence of k on N and M or, equivalently, on N and
the magnon number a = Ns−M can – for even as well
as for odd N – be generalized as given by the following

k-rule 1

If N 6= 3 then k ≡ ±ad
N

2
e mod N . (1)

Moreover the degeneracy of the relative ground state is

minimal.

Here dN/2e denotes the smallest integer greater than or
equal to N/2. “Minimal degeneracy” means that the
relative ground state in H(M) is twofold degenerate if
there are two different shift quantum numbers and non-
degenerate if k = 0 mod N or k = N/2 mod N , the latter
for even N .

It is noteworthy that the shift quantum numbers do not
explicitely depend on s. For N = 3 and 3s− 2 ≥ |M | ≥
1 we find besides the ordinary shift quantum numbers
given by (1) extraordinary shift quantum numbers, which
supplement the ordinary ones to the complete set {k} =
{0, 1, 2}. This means an additional degeneracy of the
respective relative ground state, which is caused by the
high symmetry of the Heisenberg triangle.

For even N the k-rule (1) results in an alternating
k-sequence 0, N/2, 0, N/2, . . . on descending from the
magnon vacuum with M = Ns, i. e. a = 0, which imme-
diately implies that the ground state in H(M) has the
total spin quantum number S = |M |, compare Refs. 1–3.

For odd N the regularity following from (1) will
be illustrated by an example: Let N = 11 and
s be sufficiently large. Then the k-sequence reads
0,±6,±1,±7,±2,±8,±3,±9,±4,±10,±5, 0, . . ., where
all shift quantum numbers are understood mod 11. The
sequence is periodic with period 11 and repeats itself af-
ter 5 steps in reverse order. In the first 5 steps each
possible k-value is assumed exactly once. Since ±8 = ∓3
mod 11, the shift quantum numbers for a = 5 and a = 6
are the same, likewise for a = 16 and a = 17 and so on.

The last finding can be easily generalized: For odd N
the k quantum numbers are the same in adjacent sub-
spaces H(M = Ns − a) and H(M ′ = Ns − (a + 1)) iff
N divides (2a + 1). In such cases one cannot conclude
that the ground state in H(M) has the total spin quan-
tum number S = |M |, nevertheless, in all other cases
including the total ground state one can, see section III.

The k-rule 1 is founded in a mathematically rigorous
way for N even,1–3 N = 3 (including extraordinary k
numbers, see section IV C), a = 0 (trivial), a = 1 (cf. sec-
tion IV A), a = 2 (but only in a weakened version, cf. sec-
tion IV D). For the ground state with N odd, s = 1/2
the k-rule follows from the Bethe ansatz, cf. section IV B.
An asymptotic proof for large enough N is provided in
section IV E for systems with an asymptotically finite ex-
citation gap (Haldane systems). The k-rule also holds for
the exactly solvable XY -model with s = 1/2, cf. section

VI. For N ·s being half integer field theory methods yield
that the ground state shift quantum number approaches
N/4 for large N .13 Apart from these findings a rigorous
proof of the k-rule still remains a challenge.

II. HEISENBERG MODEL

The Hamilton operator of the Heisenberg model with
antiferromagnetic, isotropic nearest neighbor interaction
between spins of equal spin quantum number s is given
by

H
∼

≡ 2

N∑

i=1

~s
∼i · ~s∼i+1 , N + 1 ≡ 1 . (2)

H
∼

is invariant under cyclic shifts generated by the shift

operator T
∼

. T
∼

is defined by its action on the product

basis | ~m 〉

T
∼

|m1, . . . ,mN 〉 ≡ |mN ,m1, . . . ,mN−1 〉 , (3)

where the product basis is constructed from single-
particle eigenstates of all s

∼
3
i

s
∼

3
i |m1, . . . ,mN 〉 = mi |m1, . . . ,mN 〉 . (4)

The shift quantum number k = 0, . . . , N − 1 modulo N
labels the eigenvalues of T

∼
which are the N -th roots of

unity

z = exp

{
−i

2πk

N

}
. (5)

Altogether H
∼

, T
∼

, the square ~S
∼

2, and the three-

component S
∼

3 of the total spin are four commuting op-

erators. The subspaces of states with the quantum num-
bers M,S, k will be denoted by HN (M,S, k).

The Hamilton operator (2) can be cast in the form

H
∼

= ∆
∼

+G
∼

+G
∼

† , (6)

where we introduced

∆
∼

≡ 2
N∑

i=1

s
∼

3
i s∼

3
i+1 , (7)

and the “generation operator”

G
∼

≡
N∑

i=1

s
∼

−
i s∼

+
i+1 (8)

together with its adjoint G
∼

†.

It follows that H
∼

is represented by a real matrix with

respect to the product basis. Hence if an eigenvector
of this matrix has the shift quantum number k, its com-
plex conjugate will be again an eigenvector with the same
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eigenvalue but with shift quantum number −k mod N .
Simultaneous eigenvectors of H

∼
and T

∼
can be chosen to

be real in the product basis only if k = 0 or k = N/2.
We define a unitary “Bloch” operator U

∼
for spin rings,

compare Refs. 2,14,

U
∼

≡ exp





2πi

N

N∑

j=1

j (s− s
∼

3
j )



 , (9)

which is diagonal in the product basis (4).
We then have, with a little bit of calculation,

T
∼
U
∼
T
∼

†U
∼

† = exp



−

2πi

N

N∑

j=1

(s− s
∼

3
j )



 (10)

= exp

{
−

2πi

N
a

}
, (11)

where the last line (11) holds in subspaces H(M = Ns−
a). Consequently, U

∼
is a shift operator in k-space and

shifts the quantum number k of a state |φ 〉 ∈ H(M) by
a:

If T
∼
|φ 〉 = exp

{
−

2πi

N
k

}
|φ 〉 (12)

then T
∼
U
∼
|φ 〉 = exp

{
−

2πi

N
(k + a)

}
U
∼
|φ 〉 .

We also observe that

U
∼
G
∼
U
∼

† = exp

{
−

2πi

N

}
G
∼
, (13)

and define the unitary “Bloch” transform of the Hamilton
operator

Ĥ
∼

(`) ≡ U
∼

`H
∼

(U
∼

†)` = ∆
∼

+ cos

(
2π`

N

) {
G
∼

+G
∼

†
}
(14)

−i sin

(
2π`

N

) {
G
∼
−G

∼

†
}
.

If we choose ` = `(N) = ±dN/2e, then cos
(

2π`
N

)
is as

close to −1 as possible. We will use the short-hand no-

tation H
∼B ≡ Ĥ

∼
(dN/2e) and equation (12) then yields

a relation between the eigenstates of H
∼B and H

∼
: If any

eigenstate |ΨB 〉 ofH
∼B has the shift quantum number kB

then the corresponding eigenstate of the original Hamil-
tonian has the shift quantum number k = kB − adN/2e.

Consequently the k-rule 1 is equivalent to

k-rule 2 For N 6= 3 the relative ground states of H
∼B

have the shift quantum numbers

k =

{
0 mod N : N even

0, a mod N : N odd
. (15)

Their degeneracy is minimal.

For later use we also define a “Frobenius-Perron” Hamil-
tonian as

H
∼FP(x) = ∆

∼
+ x

{
G
∼

+G
∼

†
}
, (16)

where x is an arbitrary real number. For negative x the
operator (16) satisfies the conditions of the theorem of
Frobenius and Perron15 with respect to the product ba-
sis. We will utilize the following version of this theorem,
adapted to the needs of physicists:

Let a symmetric matrix A have off-diagonal elements
≤ 0. Moreover, let A be irreducible, which means that
every matrix element of An is non-zero for sufficiently
high powers n of A. Then A has a non-degenerate ground
state with positive components.

Thus, in our case and for odd N the ground state of
H
∼FP(x) will have the shift quantum number k = 0.

The Bloch transform for even N results in a pure
Frobenius-Perron Hamiltonian, i. e. H

∼B = H
∼FP(−1),

whereas for odd N one obtains

H
∼B = H

∼FP(− cos
( π
N

)
) − i sin

( π
N

){
G
∼
−G

∼

†
}
. (17)

III. CONSEQUENCES OF THE K-RULE

In the following we only consider the new case of odd
N since the respective relations for even N are already
known for a long time.1–3

Subspaces H(M) and H(M ′) are named “adjacent” if
M ′ = M − 1 or, equivalently, a′ = a + 1. The ordinary
k-numbers for the respective relative ground states are
k = ±adN/2e mod N and k′ = ±(a+1)dN/2e mod N .
As mentioned above these quantum numbers are different
unless N divides 2a+ 1.

Relative ground states can be chosen to be eigenstates

of ~S
∼

2. As we are going to show, the k-rule helps to under-

stand that the total spin quantum number S of a relative
ground state in H(M ≥ 0) is S = M not only for even
N but also for odd N .

Let us consider M ′ = Ns − (a + 1) ≥ 0 and let
|φk(a+ 1) 〉 be a ground state in H(M ′). If this state van-
ishes on applying the total ladder operator S

∼
+ =

∑
i s∼

+
i ,

it is an eigenstate of ~S
∼

2 with S = M ′ = Ns− (a+ 1).

The question is now whether S
∼

+ |φk(a+ 1) 〉 6= 0 is

possible? If so, the resulting state would be an eigenstate
of the shift operator T

∼
with the same k-number, i. e.

k = ±(a+ 1)dN/2e. But on the other hand the resulting
state is also a ground state in H(M = Ns−a), because all
the energy eigenvalues in H(M = Ns−a) are inherited by
H(M ′ = Ns−(a+1)). Then, the k-rule applies, but now
for a instead of (a + 1), which produces a contradiction
unless for those cases where N divides (2a + 1). In the
latter cases one cannot exclude that the relative ground
state energies Emin(M) and Emin(M ′) are the same.

We thus derive an S-rule from the k-rule for odd N :
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• If N does not divide (2a + 1), then any relative
ground state in H(M = Ns− (a+1)) has the total
spin quantum number S = |M |. In accordance the
minimal energies fulfill Emin(M = S) < Emin(M =
S + 1).

• For the absolute ground state with a + 1 = Ns or
a + 1 = Ns − 1/2, N does never divide (2a + 1).
The k-rule therefore yields, that the total spin of
the absolute ground state is S = 0 for Ns integer
and S = 1/2 for Ns half integer.

As an example we would like to discuss the case of
N = 5 and s = 1, compare Table I. The magnon vacuum
a = 0 has the total magnetic quantum number M =
Ns = 5, k = 0, and S = Ns = 5. The adjacent subspace
with a = 1 has M = 4 and k = 2, 3, therefore, the
ground state in this subspace must have S = 4. If the
ground state had S = 5 it would already appear in the
subspace “above”. The next subspace belongs to a = 2,
i. e. M = 3. It again has a different k, thus S = 3. While
going to the next subspace H(M) the k-number does not
change. Therefore, we cannot use our argument. We only
know that the minimal energy in this subspace is smaller
than or equal to that of the previous subspace. Going
further down in M the k-values of adjacent subspaces
are again different, thus S = |M | and Emin(M = S) <
Emin(M = S + 1).

IV. PROOFS FOR SPECIAL CASES

A. The case a = 1

The eigenvalues of the Hamiltonian in the subspace
with a = 1 are well-known:

Ek = 2Ns2 − 4s+ 4s cos
2πk

N
, (18)

k = 0, 1, . . . , N − 1 ,

where k is the corresponding shift quantum number. Ob-
viously, the relative ground state is obtained for k = N

2

for even N and k = N±1
2 for odd N .

B. The ground state of odd s = 1/2 rings

In this case the ground state belongs to a = N−1
2 and

the k-rule (1) reads

k = ±a2 mod N = ±

(
N − 1

2

)2

mod N . (19)

This now is an immediate consequence of the Bethe
ansatz as we will show. Following the notation of Ref. 16,
chapter 9.3, the energy eigenvalues in the subspace with
M = 1/2 may be written as

E = 2ε−N/2, (20)

with

ε =

a∑

i=0

(1 − cos fi) (21)

and

Nfi = 2πλi +
∑

j

ϕij , (22)

where the λi are natural numbers between 0 and N − 1
satisfying |λi − λj | ≥ 2 for i 6= j and the ϕij are the en-
tries of some antisymmetric phase matrix. Hence the two

ground state configurations are ~λ = (1, 3, 5, . . . , N − 2)

and ~λ′ = (2, 4, 6, . . . , N−1) = −~λ mod N . According to
Ref. 16, p. 137, the shift quantum number of the ground
state will be

k =
∑

j

λj = ±a2 mod N , (23)

in accordance with (19).

C. The case N = 3

In this subsection we want to prove that the shift quan-
tum numbers k of relative ground states satisfy the rule

k =





1, 2 : a = 1

0 : a = 3s, s integer

1, 2 : a = 3s− 1/2, s half integer

0, 1, 2 : else

. (24)

By completing squares the Hamiltonian can be written
in the form

H
∼

= ~S
∼

2 − 3s(s+ 1) (25)

and can be diagonalized in terms of Racah 6j-symbols.
The lowest eigenvalues in H(M) are those with S = M =
3s − a. In order to determine the shift quantum num-
bers of the corresponding eigenvectors we may employ
the results in Ref. 17 on the dimension of the spaces
HN (M,S, k). Using equations (11) and (12) of Ref. 17
we obtain after some algebra

dim(H3(M,S = M)) = (26){
a+ 1 : 0 ≤ a ≤ 2s

6s− 2a+ 1 : 2s ≤ a ≤ b3sc
.

Now consider dim(H3(M,k)). The product basis in
H3(M) may be grouped into ν(a) proper cycles of three
different states { | ~m 〉, T

∼
| ~m 〉, T

∼
2 | ~m 〉}, and, if a = 0

mod 3, one additional state |λ, λ, λ 〉 having k = 0. Each
3-dimensional subspace spanned by a cycle contains a ba-
sis of eigenvectors of T

∼
with each shift quantum number
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k = 0, 1, 2 occuring exactly once, hence

dim (H3(M,k)) = (27)



ν(a) : a 6= 0 mod 3

ν(a) : k = 1, 2 and a = 0 mod 3

ν(a) + 1 : k = 0 and a = 0 mod 3.

.

Note further that S
∼
− : H(M) −→ H(M − 1) commutes

with T
∼

, hence maps eigenvectors of T
∼

onto eigenvectors

with the same shift quantum number. This leads to

dim(H3(M , S = M,k)) = (28)



µ(a) + 1 : k = 0, a = 0 mod 3

µ(a) − 1 : k = 0, a = 1 mod 3

µ(a) : k = 0, a = 2 mod 3

µ(a) : k = 1, 2

,

with

µ(a) ≡

{
0 : a = 0

ν(a) − ν(a− 1) : a > 0
. (29)

Comparison with (26) yields those values of a and s where
dim(H3(M,S = M,k)) vanishes for some k, i. e. where
not all possible shift quantum numbers occur for the rel-
ative ground states. Due to (28) this happens if µ(a) = 0
or µ(a) = 1.

For a = 1 only the values k = 1, 2 appear according
to subsection IV A, hence µ(a) = 1. If s is integer and
a = 3s, (26) yields dim(H3(M = 0, S = 0)) = 1, hence
only k = 0 appears for the ground state and µ(a) = 0. If s
is half integer and a = 3s−1/2, (26) yields dim(H3(M =
1/2, S = 1/2)) = 2, hence only k = 1, 2 appear for the
ground state and µ(a) = 1. For all other cases, µ(a) > 1
and all shift quantum numbers k = 0, 1, 2 occur. This
completes the proof of (24).

D. a = 2 and odd N

In this subsection all states considered will be in the
subspace H(M = Ns − 2), N being odd. We will prove
a weaker statement than k-rule 1, namely

k-rule 3 If there are relative ground states of H
∼

with

k 6= 0 then there are exactly two such states with k = 1
and k = −1.

We think that the possibility k = 0 can be excluded
for N > 3, but the proof of this apparently requires a
more detailed analysis of the energy spectrum and will
be published elsewhere. The situation in the case a = 2
is greatly simplified due to the following fact

T
∼
|ψ 〉 = |ψ 〉 ⇒ G

∼
|ψ 〉 = G

∼

† |ψ 〉 . (30)

To prove this we define the unitary reflection operator R
∼

by linear extension of

R
∼
|m1,m2, . . . ,mN 〉 ≡ |mN ,mN−1, . . . ,m1 〉 . (31)

Obviously,

R
∼
G
∼
R
∼

= G
∼

† . (32)

For a = 2 any reflected product state can also be obtained
by a suitable shift, i. e.

R
∼
| ~m 〉 = T

∼

n(~m) | ~m 〉 . (33)

Hence R
∼

maps any cycle { | ~m 〉, T
∼
| ~m 〉, . . . , T

∼
N−1 | ~m 〉}

onto itself and thus leaves states |ψ 〉 with T
∼
|ψ 〉 = |ψ 〉,

i. e. with shift quantum number k = 0, invariant. Now as-
sume T

∼
|ψ 〉 = |ψ 〉. We conclude G

∼
† |ψ 〉 = R

∼
G
∼
R
∼
|ψ 〉 =

R
∼
G
∼
|ψ 〉 = G

∼
|ψ 〉, since T

∼
G
∼
|ψ 〉 = G

∼
T
∼
|ψ 〉 = G

∼
|ψ 〉.

This concludes the proof of (30).
In the following EFP(x) denotes the lowest eigenvalue

of the Frobenius-Perron Hamiltonian H
∼FP(x) as defined

by Eq. 16. Since [H
∼FP(x), T

∼
] = 0 there exists a com-

plete system of simultaneous eigenvectors of H
∼FP(x) and

T
∼

. Especially, for x < 0 the eigenvector corresponding

to EFP(x) will have positive components in the product
basis (4) and hence the shift quantum number k = 0.

By using arguments based on the Ritz variational prin-
ciple one shows easily

x < y < 0 ⇒ EFP(x) < EFP(y) , (34)

and

x 6= 0 ⇒ EFP(−|x|) < EFP(|x|) . (35)

Equivalent to k-rule 3 is the corresponding statement on
H
∼B: If there are relative ground states of H

∼B with kB 6=

1, then there are exactly two such states with kB = 0 and
kB = 2.

Note that in our case kB = k + 2N+1
2 = k + 1 mod N .

Due to (17) and (30) H
∼B equals H

∼FP(− cos π
N ), if re-

stricted to the sector k = 0. The ground state in this
sector is non-degenerate according to the theorem of
Frobenius-Perron and will be denoted by |Φ 〉. It re-
mains to show that

(A) |Φ 〉 is also a ground state of H
∼B in the whole sub-

space {kB = 1}
⊥

which is orthogonal to the kB = 1
sector, and

(B) any other relative ground state of H
∼B has kB = 1 or

kB = 2.

The relative ground state of H
∼B with kB = 2 will

then be non-degenerate too. This is easily proven by re-
translating into the H

∼
-picture and employing the +k ↔

−k symmetry.
In order to prove (A) we consider an arbitrary eigen-

value E of H
∼B in H(M = Ns−2) which does not comply

with the shift quantum number kB = 1. We have to show
that

E ≥ EFP(− cos
π

N
) . (36)
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E is also an eigenvalue of H
∼

corresponding to an eigen-

vector |ψ 〉 with shift quantum number k 6= 0. Since
N is odd, there exists an integer ` 6= 0, unique modulo
N , such that 2` = N − k mod N . According to (12),
|φ 〉 ≡ U

∼
` |ψ 〉 satisfies

T
∼
|φ 〉 = |φ 〉, (37)

and, using (14) together with (30),

U
∼

`H
∼
U
∼

†` |φ 〉 = E |φ 〉 = H
∼FP(cosα`) |φ 〉 , (38)

where α ≡ 2π/N . Hence

E ≥ EFP(cosα`) , (39)

by the definition of EFP(x). If cosα` > 0, (34) and (35)
yield

EFP(cosα`) ≥ EFP(− cosα`) (40)

= EFP(cos(π − α`)) ≥ EFP(− cos
π

N
) ,

since ` 6= 0. For cosα` < 0 the analogous inequality
follows directly from (34). Hence

E ≥ EFP(− cos
π

N
) , (41)

and the proof of (A) is complete.
Turning to the proof of (B) we note that, because of

the strict inequalities (34) and (35), E = EFP (cosα`) =
EFP

(
− cos π

N

)
is only possible if

cos
2π`

N
= cosα` = − cos

π

N
. (42)

Using 2` = N − k mod N , after some elementary calcu-
lations this can be shown to be equivalent to

k = ±1 mod N , (43)

i. e.

kB = 0, 2 mod N , (44)

which completes the proof of (B) and k-rule 3.

E. Haldane systems

One idea to prove part of the k-rule 2 for odd N would
be to show that one of the relative ground states has
an overlap with another eigenstate of the shift opera-
tor whose shift quantum number is known to be zero.
A good candidate would be the relative ground state of
H
∼FP(− cosπ/N) (16) in H(M) which has k = 0. If this

state has overlap with a relative ground state of H
∼B (17)

the latter also possesses k = 0.
Let V

∼
= U

∼
(N+1)/2, |Ψ0 〉 and | Ψ̂0 〉 = V

∼
|Ψ0 〉 be one

of the relative ground states of H
∼

(2) and H
∼B (14), re-

spectively. |ΨFP 〉 denotes the relative ground state of
H
∼FP. Then part of the k-rule is implied by the following

k-rule 4 |ΨFP 〉 has a non-vanishing H
∼B-ground-state

component, i. e. 〈ΨFP | Ψ̂0 〉 6= 0.

The validity of this k-rule would immediately follow from
the sufficient (but not necessary) inequality

EFP −E0 < E1 −E0 , (45)

where E1 is the energy of the first excited state above
the relative ground state in H(M) and

EFP = 〈ΨFP |H
∼B |ΨFP 〉 = 〈ΨFP |H

∼FP |ΨFP 〉 . (46)

As a substitute for the lacking proof of k-rule 4 we submit
the inequality (45) to some numerical tests, see section V.

Looking at the large N behavior it is nevertheless pos-
sible to devise an asymptotic proof for systems which
possess a finite energy gap in the thermodynamic limit
N → ∞. These systems are called “Haldane systems”.
According to Haldane’s conjecture18,19 spin rings with an
integer spin quantum number s possess such gaps.

To start with the proof, let us look for an upper bound
to EFP −E0. Take |Ψ0 〉 to be a ground state of H

∼
with

real coefficients with respect to the product basis { | ~m 〉}.
Evidently,

EFP ≤ 〈Ψ0 |V∼
†H
∼FPV∼ |Ψ0 〉 (47)

≤ E0 + i sin
( π
N

)

×〈Ψ0 |V∼
†
{
G
∼
−G

∼

}
V
∼

† |Ψ0 〉 .

Further, in view of (13)

V
∼

†
{
G
∼
−G

∼

†
}
V
∼

= −
{
ei π

N G
∼
− e−i π

N G
∼

†
}
, (48)

and, because 〈 ~m |Ψ0 〉 being real, 〈Ψ0 |G∼−G
∼

† |Ψ0 〉 = 0.

Therefore,

EFP −E0 ≤ sin2
( π
N

)
〈Ψ0 |G∼ +G

∼

† |Ψ0 〉 . (49)

A rough upper estimate for the operator norm of {G
∼

+G
∼
†}

in H(M = Ns− a) can be deduced from the well-known
Geršgorin bounds for matrix eigenvalues (c. f.15, 7.2):

||G
∼

+G
∼

†|| ≤ 2 f(s) min(a,N, 2Ns− a) , (50)

where

f(s) =

{
(s+ 1

2 )2 s half integer

(s+ 1
2 )2 − 1

4 s integer
. (51)

We therefore conclude

EFP −E0 ≤ 2N sin2
( π
N

)
f(s) . (52)

Thus, with increasing N , (EFP −E0) approaches zero at
least like 1/N and therefore, above some N0, (EFP −E0)
must be smaller than the Haldane gap (E1 −E0).
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One would of course like to accomplish a similar proof
for half integer spin systems, but in this case (E1 − E0)
drops like 1/N itself as given by the Wess-Zumino-Witten
model, see e.g. Ref. 13. Thus for such systems a careful
analysis of the coefficient in front of the 1/N might be
very valuable. As shown in the next section, numerical
investigations indicate that (EFP − E0) approaches zero
faster than (E1 −E0).

V. NUMERICAL STUDIES

s N

3 5 7 9 11

-1.5 -3.736 -5.710 -7.595 -9.438 E0

1

2
-1.5 -3.736 -5.706 -7.589 -9.431 EFP

1.5 -1.5 -3.612 -5.872 -7.984 E1

-6.0 -13.062 -19.144 -24.960 -30.67 E0

1 -5.162 -12.180 -18.338 -24.235 -30.02 EFP

-4.0 -11.133 -17.431 -23.420 -29.26 E1

-10.5 -24.865 -37.370 -49.296 −60.98† E0

3

2
-9.788 -24.095 -36.663 -48.658 −60.40† EFP

-7.5 -22.237 -35.199 -47.458 −59.38† E1

-18.0 -42.278 -63.315 −83.364† −103.0†† E0

2 -16.506 -40.615 -61.789 −81.989† −101.8†† EFP

-16.0 -40.356 -61.663 −81.934† −101.7†† E1

-25.5 -62.168 -94.160 −124.63† −154.4†† E0

5

2
-24.188 -60.699 -92.814 −123.42† −153.3†† EFP

-22.5 -59.538 -92.006 −122.83† −152.9†† E1

-36.0 -87.666 −132.68† −175.55† −217.5†† E0

3 -33.936 -85.325 −130.55† −173.66† −215.8†† EFP

-34.0 -85.747 −131.06† −174.18† −216.3†† E1

TABLE II: Lowest energy eigenvalues of the Heisenberg
Hamiltonian (E0,E1) as well as of the respective Frobenius-
Perron Hamiltonian (EFP) for various odd N and s; † –
projection method,20 †† – Lánczos method. Note that we
find E0 ≤ EFP < E1 for all N if s ≤ 5/2. Except for
N = 5, s = 1/2 the first excited state has a higher total spin
than the ground state, i.e. S1 = S0 + 1.

The question (45) whether (EFP − E0) < (E1 − E0)
holds in H(M) with minimal |M | was investigated nu-
merically. For some of the investigated rings the respec-
tive energies are given in Table II.

Figure 1 shows the ratio (EFP−E0)/(E1−E0) for rings
with s = 1/2, . . . , 3 and various N . This ratio is smaller
than one for s = 1/2, 1, 3/2, 5/2 for all investigated N .
Only for s = 2, 3 the ratio reaches values above one.
Nevertheless, as discussed in the previous section, in the
cases of integer s this ratio must approach zero like 1/N
if (E1 −E0) tends to a nonzero Haldane gap. But also in
the cases of half integer spin one is led to anticipate that

FIG. 1: Dependence of (EFP−E0)/(E1−E0) on N for various
s. Crosses denote values obtained by exact diagonalization or
projection method, circled crosses denote values obtained by
a Lánczos method. For s = 1/2, where [G

∼
, G
∼

†] = 0, the ratio

(EFP − E0)/(E1 − E0) is extremely small, i. e. ≈ 10−2.

the ratio (EFP−E0)/(E1−E0) remains smaller than one
and that the curves rising with N for small N might even
bend down later and approach zero for large N . DMRG
calculations could help to clarify this question.

VI. GENERALIZATION TO OTHER SPIN

MODELS

It is a legitimate question whether the k-rule holds
for Heisenberg spin rings only or whether it is valid
for a broader class of spin Hamiltonians. In order to
clarify this question we investigate the following XXZ-
Hamiltonian

H
∼

(δ) = δ · ∆
∼

+G
∼

+G
∼

† , (53)

for various values of δ. The case δ = 1 corresponds to
the original Heisenberg Hamiltonian (6), δ → ∞ results
in the antiferromagnetic Ising model, δ → −∞ in the
ferromagnetic Ising model, and δ = 0 describes the XY-
model.

We have numerically investigated the cases of δ =
−1000,−1, 0, 0.5, 1000 for s = 1/2, . . . , 5/2 and N =
5, . . . , 8. For |δ| ≤ 1 no violation of the k-rule was found,
whereas the k-rule is violated for δ = ±1000.

In the limiting case of the Ising model the k-rule 1 is
in general violated. Any product state | ~m 〉 will be an
eigenstate of the Ising Hamiltonian and the shifted states
T
∼

ν | ~m 〉 belong to the same eigenvalueE~m. The set of the
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corresponding shift quantum numbers then depends on
the degree of symmetry of | ~m 〉: Let n denote the small-
est positive integer such that T

∼
n | ~m 〉 = | ~m 〉. Clearly, n

divides N . Then the corresponding shift quantum num-
bers will be of the form k = N

n ` mod N, ` = 0, 1, 2, . . ..
In most cases, n = N and hence all possible shift quan-
tum numbers will occur, which violates 1. On the other
hand consider the total ground state | ↑, ↓, ↑, ↓, . . . 〉 of an
even s = 1/2 antiferromagnetic Ising spin ring. Here we
have n = 2 and only the shift quantum numbers k = 0, N

2
occur, also contrary to 1. Figure 2 summarizes our find-
ings as a graphics.

−1 0 0.5 1 δ

FM ISING XY AFM ISINGHSB

−1000 1000

FIG. 2: Solid line: Estimated validity of the k-rule for various
parameters δ of the Hamiltonian (53). The numbers denote
the cases which have been examined numerically. The k-rule
is violated for δ = ±1000, no violation was found for |δ| ≤ 1.

It is not clear at which δ exactly the k-rule breaks
down. This quantum phase transition might very well
depend on N and s. It is then an open question whether
another k-rule takes over.

Finally we would like to mention that the exactly solv-
able s = 1/2 XY -model2,21 satisfies the k-rule (1). This
model is essentially equivalent to a system of a non-
interacting Fermions. More precisely, for odd a its energy
eigenvalues are of the form

E
(odd)
~k

= 2
a∑

ν=1

cos

(
2π

N
kν

)
, kν integer , (54)

with corresponding shift quantum numbers

k =
a∑

ν=1

kν mod N . (55)

Relative ground state configurations ~k for a = 1, 3, 5, . . .
and odd N are, for example,

~k =

(
N + 1

2

)
,

(
N ± 1

2
,
N + 3

2

)
, (56)

(
N ± 1

2
,
N ± 3

2
,
N + 5

2

)
, . . .

This leads to the shift quantum numbers

k =
N + 1

2
,
N + 3

2
,
N + 5

2
, . . . (57)

in accordance with (1). Similarly, the values

k =
N − 1

2
,
N − 3

2
,
N − 5

2
, . . . (58)

are realized. In the case of even a we have

E
(even)
~k

= 2

a∑

ν=1

cos

(
2π

N

2kν + 1

2

)
, kν integer ,(59)

with corresponding shift quantum numbers

k =

a∑

ν=1

(
kν +

1

2

)
mod N , (60)

and the k-rule 1 follows analogously.
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