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Abstract For many spin systems with constant isotropic antiferromagnetic next-
neighbour Heisenberg coupling the minimal enerdigs,,(S) form a rotational
band, i. e. depend approximately quadratically on the total spin quantum number
S, a property which is also known as Landiterval rule. However, we find that

for certain coupling topologies, includingeently synthesised icakidecahedral
structures this rule is violated for high total spins. Instead the minimal energies are
a linear function of total spin. This anomaly results in a corresponding jump of the
magnetisation curve which otherwise would be a regular staircase.
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1 Introduction

It appears that for spin systems with constant isotropic antiferromagnetic next-
neighbour Heisenberg exchange the minimal enéfgy,, (.S) for given total spin
guantum numbesS is typically a strictly convex function of. For many spin
topologies like rings, cubes, icosahedra etc. this functionis very close to a parabola
[:g.']. For certain systems this behaviour has been explained with the help of the un-
derlying sublattice structurc'_e: [2]. Experimentally this property has been described
as “following the Lan’interval rule” [3,%,5,6]. In the classical limit, where the
single-spin quantum numbergoes to infinity, the functior®,,;,, (.5) is even an
exact parabola if the system possesses co-planar ground ig.'tates [7].

However, we find that for certain coupling topologies, including the cubocta-
hedron and the icosidodecadreh [8], this rule is violated for high total spins. More
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precisely, for the icosidodecadron the last four points of the gragt),gf, versus
S, i. e. the points witht' = S,,,,,. t0.S = S,.a — 3, lie on a straight line

Epin(S) = 60Js* — 6J5(30s — 9) . (1)

An analogous statement holds for the last three points of the corresponding graph
for the cuboctahedron. These findings are based on numerical calculations of the
minimal energies for several both for the icosidodecahedron as well as for the
cuboctahedron. For both systems, additionally, we have a rigorous proof of the
high spin anomaly for the case ef = 1/2. This proof rests on an inequality
which says that all points of the graph Bf,,;,, versusS lie above or on the line
connecting the last two points (“bounding line”). The proof can be easily applied
to a wide class of spin systems, e.g. to two-dimensional spin arrays.

The observed anomaly — linear instead of parabolic dependence — results in
a corresponding jump of the magnetisation cutveversusB. In contrast, for
systems which obey the Laadnhterval rule the magnetisation curve at very low
temperatures is a staircase with equal steps up to the highest magnetisation.

The anomaly could indeed be observed in magnetisation measurements of the
so-called Keplerate structufgMorzFeso} which is a recently synthezised mag-
netic molecule where 30 E€ paramagnetic ions (spiss= 5/2) occupy the sites
of a perfect icosidodecahedron and interact via isotropic, negtbeur antifer-
romagnetic exchange;[9]. Unfortunately, the magnetisation measurerents [10, 11]
performed so far suffer from too high temperatures which smear out the anomaly.

Nevertheless, it may be possible to observe truely giant magnetisation jumps in
certain two-dimensional spin systems which possess a suitable coupling topology.
In such systems the magnetisation jump can be of the same order as the number
of spins, i.e. the jump remains finite — or is macroscopic — in the thermodynamic
limit N — oo.

The article is organized as follows. In section 2 we introduce basic definitions
and explain how the results have been obtained. In segtion 3 the high spin anomaly
is discussed and proven for the case ef 1/2. We provide an outlook in section

4.

2 Definitions and Numerics

The Heisenberg Hamilton operator of the investigated spin systems is

1
g = 5 (Z) Ju,’u E(u) ' E(U) =+ gMBB‘gz (2)
u,v

J
D) Z s(u) - s(v) +gusBS: , §z=Z§Z(u),

(u,v)el’ u

where the exchange parametdys, are considered as the components of a sym-
metric matrixJ, i.e. every bond is taken inaccount twice. In particular, we as-
sumeJ, , € {J,0} andJ > 0 which corresponds to antiferromagnetic coupling.
In equation -_(b)g is the spectroscopic splitting factor ang the Bohr magneton.
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The vector operators(u) are the spin operators (in units bf of the individual

N paramagnetic ions with constant spin quantum numb&ecause the matrix

J couples only next-neighbours (see F:_i'g. 1) the second sui_ﬂl in (2) runs over the
set I' of all next-neighbour pair$u, v) of spins of a single molecule at sites
andwv. I" can be regarded as the set of “edges” of the corresponding undirected
graph describing the coupling scheme of the molecule. The “vertices” of the graph
correspond to the spin sités2, ..., N. For each spin site let I"(u) denote the

set of neighbours of. Throughout this article we will assume that the number of
neighbours per site is constant, §&)(u)| = j. The “distance” between two spin
sitesu, andv will be the minimal number of edges connectimgndw (similar to

the Manhattan distance).

10 1

Fig. 1 Planar projection of an icosidodecahedron (l.h.s.) and a cuboctahedron ({:h.s.) [8].
Solid lines denote couplings with a single exchange parandeter

As mentioned already in the introduction the anomaly was found numerically.
For this purpose the Hamilton matrix had to be diagonalized. The total matrix is a
huge object of dimensiof2s+1)" x (2s4-1)" which must be block-diagonalized
in advance. Using that the Hamilton operator commutes #iittthe Ising product
states which are a natural basis can be groagedrding to the quantum numbers
M, thereby dividing the Hilbert space into orthogonal suaesgsH (). A further
reduction of dimension is achieved if the symmetries of the spin array are ex-
ploited. The icosidodecahedron for instance shows a tenfold shift symmetry lead-
ing to Hilbert subspace®((M, k) with &k = 0,...,9. Within these subspaces a
Lanczos procedure was applied in order to obtain the respective minimal energies.

3 High spin anomaly
3.1 Observations
The resulting minimal energids, ,;, (S) are shown by dashes onthe L.h.s. of Fig. 2

for the isosidodecahedron and on the L.h.s. of Rig. 3 for theoctahedron. The
straight lines denote the bounding lines, which connect the highest four levels in
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the case of the isosidodecahedron and the highest three in the caseudfabtae
hedron. AtT" = 0 this behavior leads to jumps of the magnetisatidn

M = —%tr {guBgze“”f} , Z:tr{e“”f} : 3)

Due to the effect that the states lie exactly on the bounding line in the graph of
E..in versussS they “take over” for the new total ground state at the same value of
the magnetic field, therefore the magnetisation immediately jumps to the highest
value. The jumps are marked by arrows in the magnetisation curves of the isosido-
decahedron (r.h.s. of Fig. 2) and the cubeoctahedron (r.h.s. 6t Fig. 3).

20F7 1
icosidodecahedron, s=1/2 5

M/(gug)

0 2 4 8 8 10 12 u 00 05 10 15 20 25 30 35
S gugB/I

Fig. 2 Icosidodecahedron: L.h.s. — minimal energy levgls;, (S) as a function of total
spinS. R.h.s. — magnetisation curve&t= 0.
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cuboctahedron, s=1/2
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Fig. 3 Cuboctahedron: L.h.s. — minimal energy levels;,, (S) as a function of total spin
S. R.h.s. — magnetisation curveBt= 0.

For systems which follow the Laedinterval rule, i.e. wherév,,;,,(S) is a
parabolic function ofS, the corresponding magnetisation curve would consist of
equal steps.

3.2 Idea of the proof

A necessary condition for the anomaly is certainly that the minimal energy in the
one-magnon space is degenerate. Therefore, localized one-magnon states can be
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constructed which are also of minimal energy. When placing a second localized
one-magnon eigenstate on the spin array there will be a chance that it does not
interact with the first one if a large enough separation can be achieved. This new
two-magnon state is likely the state of minimal energy in the two-magnon Hilbert
space because for antiferromagnetic interaction twgfoa bound states do not
exist (at least fors = 1/2). This procedure can be continued until no further
independent magnon can bapéd on the spin array. In a sense the system behaves
as if it consists of non-interacting bosons which, up to a limiting number, can
condense into a single-particle ground state.

In more mathematical terms: In order to prove the high-spin anomaly we first
show an inequality which says that all poirfi$ F,,;,(S)) lie above or on the
line connecting the last two points. This inequality holdsdes 1/2 and all sys-
tems with constant antiferromagnetic exchange parameter and a constant number
of neighbours foreach spin site. For specific systems as those mentioned above
what remains to be done is to construct particular states which exactly assume the
values ofE,,;,, corresponding to the points lying on the bounding line, then these
states are automatically states of minimal energy.

Note that the high spin anomaly does not contradict the strict convexity of
the graph ofF,,;,, versusS in the classical limit, since in the limi — oo the
interval where the anomaly occurs, e 9= Syaz — 3105 = S, becomes an
infinitesimally small fraction of the total spin range.

We setJ = 1 throughout this section.

3.3 Bounding line fos = 1/2

Let H, denote the eigenspace 6f with eigenvalueM = N/2 —a, a =

0,1,...,N. It has the dimensiodim(H,) = (Z) An orthonormal basis of

H, is given by the product states denoted|hy, ..., n,) with1 < n; < ny <
-+ < mg < N where then; denote the sites with flipped spin = —1/2. A state
of this form will be called_isolatedff (n;,n;) ¢ I'foralll < i < j < a.In
other words, the flipped sites of an isolated state must not be neighdmmansiing
to the coupling schemé{:*° will denote the subspace @f, spanned by isolated
states.

We will embed the Hilbert space of the spin system into some sort of Fock
space for magnons. More precisely,fe{H; ) be the totally symmetric (i. e. bosonic)
subspace of9),_; , Hi. If Ay : Hy — My is alinear operatoi3, (A;) will

denote the restrictionol; ® 1®--- @1+ +1®---® 1® A; ontoB,(H1).
An orthonormal basis 0B, (H; ) is given by the bosonic states

§|n1>®---®|na>, (4)

wherel < n; <nz <--- <n, <N and the “symmetrisatorS denotes the sum
over alla! permutations of the product state dividedy!. The linear extension
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ofthe map|ni,...,n.) — S|n1)®---@ | n, ) defines an isometric embedding

Ja:Ho — Ba(Ha) . (5)

~

Let H, denote the restriction of the Hamilton operaf_d;r (2) (with zero magnetic
field) ontoH, and

H,

~

JoBa(H1)T a- (6)
We will show the following

Proposition 1 H,, = %Nj + Ija if restricted to the subspadeis°.

j is the number of neighbours, which is assumed to be constaear spin site.

Proof: Let |ny,...,n,) be an arbitrary isolated basis state and split) -
s (v) into
1
s(u) - sv) = 5:(Ws-(0) + 5(sT (W () + 5~ (Ws @), @)

analogoushl, = H'!, + H" andH, = Ija/ + Ija”. First, let us consider

B o) =1 0 (s @) (@) + 5 @) @) ms ) ()
(u,v)el’

el

= Z Sort|my, ..., ng) 4+ Z Sort|ny, ..., mg)

mi1€l(ny) mag€l(ng)

Here Sort denotes the procedure which re-arranges a list of integers into its non-
decreasing order. Note that further summation constraints of the/#ormg ns,

..., ng etc. would be superfluous sin¢e, . . ., n, ) was assumed to be isolated.
Now consider
~ I
I;Ia |n1,...,na>ZZZBa(g¥)§|n1>®---®|na> 9

1
:Z‘ZZ< Yo Slm)@-@ |na)

mi1€l(ny)

tot Y Sm)®-w |ma>>

maq € (ng)

> osortmy,..na)+eo+ Y Sortng, ..., mg)

1

4
mi€l(ny) mae € (ng)

I;I”|n1,...,na>. (20)

Now we turn toH;,. Recall that there is a total number bf= 2 links between
different sites. For a given basis stdte, . .., n, ) we write

L=Liy+Li +L__, (11)
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whereL | denotes the number of links between two= +1/2-sites, etc. Hence

for isolated stated, = 0. Each basis state is an eigenstategf with eigen-
value

1 1

gL+ — Lo+ L) = (L —2L4). (12)

For isolated states_ = ja, butin generall,_ = ja — 2L__ since each-—
link “deletes” two+— links of a corresponding isolated state. Hence

1 /Nj .
Ij;|n1,...,na>=—(—‘7—2]a—|—4L__> [n1,...,nq) (13)

4\ 2
1 /Nj .
:Z(TJ—Z]CL) |n1,...,na>. (14)
Similarly one can show that
~ 7 a (Nj .
I;Ia|n1,...,na>:z(7]—2]> [n1,...,ng). (15)
From {15), (14), and (10) the proposition follows immediately. [
If we drop the condition thai ny,...,n,) is isolated we ought to slightly
modify our calculations. First, we would have to introduce extra summation con-
straints of the formn; # no, ..., ny etc.in (8) in order to be sure that the resulting

states lie iri,. AlthoughB,(H 1) in general will produce some unphysical states

with two magnons localized at the same site, these states will be annihilated by
. ~ I

J s Hence agaitly) [n1,...,nq) = Ho |n1,...,74).

For H, andlja/ the situation is different. The foregoing arguments show that
the difference between the left and the right hand side of propoi_sition 1is some op-
erator with eigenstatesn,, ..., n, ) and corresponding eigenvalués _ which
are> 0. This shows that propositid_lh 1 generalizes to

Proposition 2 H, > 122Nj + H,, .

Now let £/, denote the smallest energy eigenvaluélf Note thatF, ;. (S =

N/2 —a) > E,, since the energy eigenvalues for given total spin quantum num-

ber S are assumed within each subspace of magnetic quantum nuhiber

-S,...,S. We expect that,,,;,(S = N/2 — a) = E, holds generally for the

spin systems under consideration, this has been proven only for so-called bi-partite

systems:[12,13], but numerically shown to hold for much more systers [14].
Analogously we defines, for H,. Since for bosons the ground state energy

is additive,a 1 will be the smallest energy eigenvalue®fi ;). We further con-
clude E, > aF) sinceE, = (B|Ha|P) = (JuP|B(H1)|Ju®) if Ha|P) =
E, | ®). Together with propositior 1 this implies

Proposition 3 E, > :%Nj + aFE; .

This inequality says that the minimal energigs, resp.E,,;» (S = N/2 — a),
lie above or on the “bounding liné(a) = 154 Nj + aFE;.
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3.4 Ground states of independent magnons

According to what has been said above in order to rigorously prove the high spin
anomaly it suffices to construct states which assume the energy values of the
bounding linel(a) for certain values ofi > 1. By the results of the previous
subsection it is clear that these energy values must be minimal and the states must
be eigenstates df, in the cases = 1/2. Actually we conjecture that these states
are also minimal energy statesidf, for arbitrary spin, which conjecture is numer-
ically supported for all cases where we have calculdgdbut we cannot prove it
at the moment. Nevertheless, we will assume an arbitrarysspithis subsection.

We first consider the case of the icosidodecahedronalet 1. Recall that
a general state ifi,, is of the formZﬁf=1 ¢n |n), wheren denotes the spin site
where the magnetic quantum number is decreased by 1. The eigenvalieareaf
of the form

1 . ) .
E, = 5stQ + (Ja — J)5s (16)
wherej,,a =1,..., N are the eigenvalues of the coupling matfiXxn our case,

N = 30, j = 4, and the minimal eigenvalug, is —2, hence
E; = 60s® — 6s. (17)

The corresponding eigenspacef®f is ten-fold degenerate. It is possible to find
linear superpositions which are states of minimal energy and have some intu-
itive geometric interpretation as localized one-magnon states corresponding to
even subrings of the icosidodecahedron. These states have alternatlitgdeap
¢, = =£1 for sitesn of the subring and vanishing amplitudes for the remaining
sites. The smallest even subrings generating such states are the “8-loops” circum-
scribing two adjacent pergans, e. g(1,2,3,4,9,17,18,10) according to the
numbering of sites in Fig, 1 Other even subrings are the “equators” with 10 sites
or the “curly equators” with 12 sites which need not be further considered here.
Now leta = 2. If a two-magnon ground state lies on the bounding lie,
as it is suggested by numerical diagonalization, we would have

Fy = 60s* — 12s. (18)

In fact, this energy is assumed by the following state: Consider two 8-1bops,

with a distance of 2, e. g. Iy = (1,2,3,4,9,17,18,10) and

Ly = (12,13,22, 28,29, 30, 26, 21) according to Fig'_.llsm,nl € Ly andd,,, ne €

L, denote the amplitudes which define the one-magnon ground-states described
above. Then a two-magnon ground-state with the energiy_'of (18) can be defined by

@2 = Z 67,,15"2 | ni, N2 > (19)

ni1€L1,n2E€L2

Since this state lies entirely iH%* it can be considered as a ground-state of two
non-interacting magnons.
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Table 1 Definition of an),-symmetric three-magnon ground-state by assignment of am-
plitudes to representative triple states.

|n1,m2,m3) Length of orbit  Amplitude
[1,3,14) 60 1
[1,3,15) 120 -1
[1,3,22) 120 -1
[1,3,23) 120 1
[1,3,28) 120 1
[1,3,29) 60 —2
[1,7,15) 120 1
[1,7,18) 60 1
[1,7,23) 120 -1
[1,7,24) 120 -1
[1,7,29) 60 2
[1,8,21) 120 -1
[1,8,25) 30 2
[1,8,26) 120 -1
[1,8,27) 120 2
|1,8,28) 30 —2
[1,13,16) 20 -2
[1,13,24) 60 -1
[1,13,30) 60 2
|1,14,30) 20 -1

Unfortunately, an analogous construction of three mutually isolated one-magnon
states is no longer possible far= 3. Here we have to determine an appropri-
ate state by numerical diagonalization. One possible state of three independent
magnons is a state which is completely symmetric under the action of the sym-
metry group of the icosidodecahedron, i.e. the icosahedral group with reflections
Y, of order120. Hence it will suffice to define this state by assigning an ampli-
tude to only one triple of sites within each orbit of the symmetiyugr. The other
triples obtained by applying symmetry operatigns ), to each site will have,
by definition, the same aplitude. The complete definition of this state (without nor-
malization) can be found in Tabié 1. The calculation of the corresponding energy
E, = 60s? — 18s can be done by a computer algebra software. Also this state lies
entirely within%*°. Thus we have obtained a rigorous proof of the anomaly also
for the caser = 3 ands = 1/2.

The case of the cuboctahedron is largely analogous, up to the fact that here
we have only one point of anomaly far= 2. The corresponding two-magnon
ground state can be constructed by using two separated 4-loopgle2g3, 4)
and (9,10, 11,12) in Fig. 4 (r.h.s.).
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3.5 Generalization to the XXZ-model

The above proof holds also for the more general Hamiltonian of the XXZ-model

H=2 3 {85050+ 5:)5:0) + 5,5,0)}) . (20)

(uv)er

with A > 0. Since the total spirb is no longer a good quantum number, the
minimal energies”,,;,, have to be considered as a function of the total magnetic
guantum numbef/ instead. For the existence of the bounding line and the cor-
responding magnetisation jump this aspect is irrelevant. The only change in the
proof is a multiplication off{;, and Ija/ by A, which does not change the argu-
mentation. Also the construction of eigenstates, as carried out in subsgection 3.4, is
not altered by the anisotropy in (:_2'(_1), since these states are isolated.

4 Qutlook

The shown proof offers a method to create spin arrays which by construction sup-
port a finite number of independent magnons. The basic idea is to design a unit cell
which can host a localized one-magnon state, that is an eigenstate of the Hamilto-
nian. Triangles play a key role in the construction of such cells because they help
to prevent localized magnons from escaping. The total spin array is then obtained
by properly linking serveral unit cells. Figl. 4 shows an example. The unit cell is
one quarter of the structure. It can host a single magnon

Lmagnon = 2 (1)~ [2) + 13) ~ [4)) (21)
which is an eigenstate of the Hamiltonian with minimal energy in the one-magnon
space. One easily notices that in total four localized independegriona fit into
the structure. In general it might be possible that more independent magnons, like
in the case of the icosidodecahedron, can occupy the spin array. For the example
of Fig. 4 this is not the case.

The latter example offers the perspective of observing truely giant magnetisa-
tion jumps in two-dimensional spin systems. The number of independent magnons
which can be placed on thetfige is proportional to the number of spins itself —
N/6 is the example of Fig;: 4 — and thus a macroscopic quantity. This will be the
subject of a forthcoming publication.

AcknowledgementsJ. Richter and J. Schulenburg thank the Deutsche Forschungsgemein-
schaft for support (project Ri 615/10-1).
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