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Abstract

Systematic properties of the first excited state are presented for various ring
sizes and spin quantum numbers which are only partly covered by the theo-
rem of Lieb, Schultz and Mattis. For odd ring sizes the first excited energy
eigenvalue shows unexpected degeneracy and related shift quantum numbers.
As a byproduct the ground state energy as well as the energy of the first
excited state of infinite chains are calculated by extrapolating the properties
of only a few, finite, antiferromagnetically coupled Heisenberg rings using the
powerful Levin sequence acceleration method.
PACS: 75.10.Jm, 75.40.Cx

I. INTRODUCTION AND SUMMARY

Exact diagonalization methods [1–5] make it possible to investigate small spin rings for
various numbers N of spin sites and spin quantum numbers s, for instance in the Heisenberg
model. The symmetries of the isotropic Heisenberg Hamilton operator allow to decompose
the Hilbert space H into a set of mutually orthogonal subspaces H(S,M, k) according to
the quantum numbers of the total spin S, the total magnetic quantum number M and the
translational quantum number k of the cyclic shift operator. Since these subspaces are much
smaller, a complete or partial diagonalization of the Hamilton matrix is feasible.

The interest in the Heisenberg model, which is known already for a long time, was
renewed by the successful synthesis of small magnetic molecules, among them nearly perfect
ring structures of paramagnetic ions like Fe3+ [6–8]. One can say that in the majority of these
molecules the ions couple antiferromagnetically and the spectrum is rather well described
by the Heisenberg model with isotropic next neighbour interaction.

Looking at the properties of the calculated spin rings one realizes that not only the ground
states, but also the first excited states share systematic properties which are understood
only for Heisenberg spin rings of an even number of spin sites (bipartite systems), i.e. they
can in part be derived from the theorem of Lieb, Schultz and Mattis [9,10]. Non-bipartite
rings which have an odd number of sites, and thus can be characterized as frustrated, show
unexpected properties in degeneracy and translational quantum number.

Knowing systematic rules for quantum numbers also of non-bipartite systems would be
very useful for comparison of theoretical results with measurements in ESR/EPR, torque
magnetometry or neutron scattering, see e.g. [1,11]. One could employ knowledge about
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quantum numbers of ground and first excited states in order to understand the thermal
behaviour of quantities like the magnetic susceptibility. In addition these exact values may
help to improve low temperature approximations. Usually the high temperature behaviour
of observables is well known, e.g. from classical spin dynamics [12], but at low temperature
such approximations are poor. The knowledge of ground and first excited states could
already be sufficient for a considerable improvement.

Having evaluated the spectra of small Heisenberg rings with isotropic next-neighbour
interaction one can approximate the infinite chain limit, which for the s = 1

2
ground state

is known as the Bethe-Hulthén limit [13,14]. Because the sequences converge rather slowly
and only a limited number of energy eigenvalues can be evaluated, the Levin u-sequence
acceleration method [15,16] is employed, which leads to impressive estimates of the antifer-
romagnetic ground state energies as well as of the excitation gap for infinite rings or chains
of larger spin quantum numbers.

II. SYSTEMATIC PROPERTIES OF THE SPECTRUM

The Hamilton operator of the Heisenberg model with antiferromagnetic, isotropic next
neighbor interaction between spins of equal spin quantum number s is given by

H∼ = −2J
N∑
x=1

~s∼(x) ·~s∼(x+ 1) , ∀x : s(x) = s , J < 0 , N + 1 ≡ 1 . (1)

H∼ commutes with the total spin ~S∼ and its three-component S∼
3. In addition H∼ is invariant

under cyclic shifts generated by the cyclic shift operator T∼ . T∼ is defined by its action on the

product basis (3)

T∼ |m1, . . . ,mN−1,mN 〉 = |mN ,m1, . . . ,mN−1 〉 , (2)

where the product basis is constructed from single-particle eigenstates of all s∼
3(x)

s∼
3(x) |m1, . . . ,mx, . . . ,mN 〉 = mx |m1, . . . ,mx, . . . ,mN 〉 . (3)

The translational quantum number k = 0, . . . , N − 1 modulo N labels the eigenvalues of T∼
which are the N-th roots of unity

z = exp

{
−i2πk

N

}
. (4)

Exact diagonalization methods [5,4] allow to evaluate eigenvalues and eigenvectors of H∼ for

small spin rings of various numbers N of spin sites and spin quantum numbers s. Systematic
investigations [17–21] revealed interesting properties of ground state quantum numbers,
compare table I, which only for bipartite rings can be explained by the theorem of Lieb,
Schultz and Mattis [9,10]. The ground state spin quantum number and the degeneracy, for
example, depend solely on N ·s. If N ·s is integer, then the ground state has S = 0 and is
non-degenerate; if N ·s is half integer, then the ground state has S = 1/2 and is fourfold
degenerate [21].
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It appears that for the properties of the first excited state such rules do not hold in
general, but only for “high enough” N (N > 5). Then, as can be anticipated from table I,
we can conjecture that

• if N is even, then the first excited state has S = 1 and is threefold degenerate, and

• if N is odd and the single particle spin is half-integer, then the first excited state has
S = 3/2 and is eightfold degenerate, whereas

• if N is odd and the single particle spin is integer, then the first excited state has S = 1
and is sixfold degenerate.

Except for small odd N also the cyclic shift quantum numbers k of the first excited state
show an interesting regularity.

• For odd N ≥ 7, k assumes a certain value for all integer spins and another value for all
half-integer spins. We conjecture that the k quantum numbers for half-integer spins
are k = 3b(N + 1)/4c and k = N − 3b(N + 1)/4c. b(N + 1)/4c symbolizes the greatest
integer less or equal to (N + 1)/4. For integer spins numerical data are poor but it
seems that k is as close as possible to N/2, i.e. k = bN/2c and k = N − bN/2c.

• For even N the shift quantum number k is N/2, if N/2 is also even; if N/2 is odd,
k = 0 for half-integer spin and k = N/2 for integer spin.

For spin-1
2
-rings these properties may be also derived using the Bethe ansatz [13,14].

III. INFINITE CHAIN LIMITS

Besides the importance of the above presented results for magnetic molecules
[1,22,7,23,11,24], the obtained energy eigenvalues enable us to estimate the antiferromag-
netic ground state energy E0(N) in the large N limit for a variety of spin quantum numbers.
Of course this calculation cannot compete with nowadays DMRG results, but reaches as-
tonishingly close.

As one can see in table I or Fig. 1 (l.h.s.) the convergence of energy eigenvalues with
N is rather slow. Therefore, an improved estimate is calculated using the Levin u-sequence
acceleration method [15], which is appropriate if the series elements form an approximately
linear function in 1

ik
with a certain positive k, which to first approximation is the case for

the sequences of table I. This observation is in accordance with the Wess-Zumino-Witten
model, see e.g. [25], which yields

E0

N
≈ ε∞ −

α

N2
. (5)

Let us denote the elements of our series by U1, U2, U3, . . . . In order to construct monotonic
sequences the alternating series for a certain spin are divided into two monotonic subseries
e.g. for s = 1

2
: U1 = E0(N = 2), U2 = E0(N = 4), U3 = E0(N = 6), . . . . The differences

between successive sequence elements are labeled u1 = U1, u2 = U2 − U1, u3 = U3 − U2, . . . .
Then the Levin u-estimate using n series elements reads
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U [n] =

∑n
k=1(−1)k−1

(
n
k

)
kn−2 Uk

uk∑n
k=1(−1)k−1

(
n
k

)
kn−2 1

uk

. (6)

The following example for the sequence built of the energies for even numbers of spin s = 1/2
demonstrates how fast the Levin u-estimate approaches the correct limit

{U [n]} = {1.5, 1.2, 0.8735510038, 0.8885066176, 0.8858640679, 0.8863719562, (7)

0.8862817068, 0.8862961998, 0.8862941347, . . . } → 0.8862943611 = 2 ln 2− 1

2
.

Roughly one can say that, if the deviations from a power-law behaviour are small, n sequence
elements lead to an accuracy of about n − 4 digits, see Fig. 1 (r.h.s.). Of course the limit
can only be as accurate as the individual sequence elements.

The procedure is also applied to spin values s = 1, 3/2, 2, 5/2 and the results are depicted
in Fig. 2. The hatched areas indicate the interval according to the gained accuracy of the
sequence acceleration method, the attached number denotes the mean value of the interval.
Since the sequences built from values for even N converge much faster, they determine the
results.

In the upper left of Fig. 2 the estimate for the infinite chain limit for spin s = 1 is shown.
The estimated ground state energy of E0/(NJ) = 2.802967 ± 0.0000005 agrees very well
with the result 2.802968077942(4) found in Ref. [30] and also with other DMRG and TMRG
calculations, see e.g. [31,32]. Also for s = 3/2 the limit is rather well approximated, the value
of E0/(NJ) = 5.65681± 0.00001 suggests new discussion of the results 5.65666± 0.00002 of
Ref. [33] and 5.658 of Ref. [32]. For these sequences previously obtained exact diagonalization
results have been used, too [26–29,31].

The excitation energies of the first excited state, see table I, enable us to approach the
gap for infinite chains or rings. It vanishes for half integer spins and remains finite for integer
spins, Haldane conjecture [34,35]. The following example shows the Levin u-sequence for
s = 1/2 and even N

{U [n]} = {4., 3.,−2.464274955, 0.26749212, 0.05231106824,−0.04294415611, (8)

0.01234278872,−0.003416797715, 0.0001536344576363, . . . } → 0 .

In Fig. 3 one can see that the behaviour of the sequence is much smoother for even N ,
whereas the somewhat strange behaviour for small odd N destroys a fast convergence. The
convergence of the gap sequences is slowed down by much stronger logarithmic corrections
to the power-law behaviour than present in the ground state energy sequences. Thus the
gained accuracy for higher spin quantum numbers is rather limited and larger rings together
with methods like DMRG have to be used, see e.g. [31,37,38].
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TABLES

s N

2 3 4 5 6 7 8 9 10

1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 E0/(NJ)
1
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846 ∆E/|J|
1
2 3 4 3 2 3 8 3 8 3 deg

1 3/2 1 1/2 1 3/2 1 3/2 1 S

0 0 2 0 0 1, 6 4 3, 6 0 k

4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 E0/(NJ)
1 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S

0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.929 1.441 1.714 1.187 1.540 1.050 ∆E/|J|
1 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S

1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704†† E0/(NJ)
3
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938†† ∆E/|J|
3
2 3 16 3 8 3 8 3 8 3 deg

1 3/2 1 3/2 1 3/2 1 3/2 1 S

0 0, 1, 2 2 2, 3 0 1, 6 4 3, 6 0 k

12 6 10 8.456 9.722 9.045 9.630 9.263†† 9.590†† E0/(NJ)
2 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S

0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.922 1.394 1.652 1.091 1.431†† 0.906†† ∆E/|J|
2 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S

1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

17.5 8.5 15 12.434 14.645 13.451 14.528† 13.848†† 14.475†† E0/(NJ)
5
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1,4 3 2, 5 0 2, 7 5 k

TABLE I. Properties of ground and first excited state of AF Heisenberg rings for various N
and s: ground state energy E0, gap ∆E, degeneracy deg, total spin S and shift quantum number
k. † – O. Waldmann, private communication. †† – projection method [36]. Values for higher N
are available from the author.
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FIGURES

FIG. 1. L.h.s: Ground state energies (symbols) for antiferromagnetic coupled Heisenberg rings
of s = 1/2 compared to the large N limit of Bethe and Hulthén (solid line). R.h.s: Relative
deviation of the Levin u-estimate from the limit of Bethe and Hulthén. Plus symbols are used for
even N , crosses for odd N . The circled symbols show how much the ground state energies itself
deviate from the limit.

FIG. 2. L.h.s: Ground state energies (symbols) for antiferromagnetic coupled Heisenberg rings
compared to the Levin u-estimate (hatched area, sometimes shrunk to a line). Plus symbols are
used for even N , crosses for odd N .
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FIG. 3. Excitation energy of the first excited state for antiferromagnetic coupled Heisenberg
rings and the Levin u-estimate (hatched area). Plus symbols are used for even N , crosses for odd
N . To generate these figures also previously obtained exact diagonalization results of other authors
have been used [26–29,31].
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