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Abstract

A quasi-particle theory for monatomic gases in equilibrium is formulated and evaluated to
yield the exact virial contributions to the thermodynamic state functions in lowest order
of the density. Van der Waals blocking has necessarily to be accounted for in occupation
number statistics. The quasi-particle distribution function differs from the Wigner function
by a bilinear functional thereof. The progress made so far is promising with respect to a
corresponding version of kinetic theory.
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1 Introduction and summary

The quasi-particle concept serves as a camouflage of interaction in many-body systems. The
aim is to explain a macroscopic system in equilibrium as an ensemble of noninteracting and
countable units called ”quasi-particles”. Non-equilibrium may then be described by a kinetic
theory for these quasi-particles.

In this article the interaction-free theory is occupation number statistics which yields the en-
tropy as a functional of the quasi-particle distribution functionf . Interaction between gas atoms
is taken care of by modelling the elementary cell volume and by suitable constraints forf .

Our theory reproduces the exact quantum mechanical density corrections to the distribution
function and to equilibrium thermodynamics. The only partial success of related attempts (e.g.
[1]) stems from an insufficient handling of the combinatorial entropy, i.e. the neglect of van der
Waals blocking.
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2 One-particle distribution function

The one-particle distribution functionf(~p1;~r; t) of gas kinetics enables the calculation of den-
sities (in position space) for macroscopic quantities by taking moments over momentum space.
We insist the two simplest ones be the number densityn

n(~r; t) =
Z

d3p1 f(~p1;~r; t) (1)

and the density of linear momentum~�

~�(~r; t) =
Z

d3p1 ~p1 f(~p1;~r; t) : (2)

Any justification of gas kinetics within the frame of a more fundamental theory starts with a
definition off which one is free to choose, provided the interpretation of the moments (1) and
(2) is correct. Our quantum statistical ansatz reads

f(~p1;~r; t) := fW (~p1;~r; t) + 	(~p1;~r; t) ; (3)

wherefW is the Wigner distribution function

fW (~p1;~r; t) = (2�~)�3
Z

d3r0 h y(~r +
~r0

2
; t) (~r � ~r

0

2
; t) i exp

�
i

~
~p1 �~r0

�
(4)

and	 is a bilinear functional thereof

	(~p1;~r; t) := (5)Z
d3p2d

3p01d
3p02 E(~p;~p0)�

�
~P � ~P

0� h
fW (~p1;~r; t)fW (~p2;~r; t)� fW (~p01;~r; t)fW (~p02;~r; t)

i

+
Z

d3p2d
3p01d

3p02 O(~p;~p0)�
�
~P � ~P

0� h
fW (~p1;~r; t)fW (~p2;~r; t) + fW (~p01;~r; t)fW (~p02;~r; t)

i
;

with ~P ; ~P
0
and~p;~p0 denoting centre-of-mass and relative momenta throughout the article

~P =~p1 +~p2 ; ~p = 1
2
(~p1 �~p2) : (6)

The even kernel

E(~p;~p0) = E(~p0;~p) = E(�~p;�~p0) (7)

and the odd kernel
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O(~p;~p0) = �O(~p0;~p) = O(�~p;�~p0) (8)

remain to be specified. The structure of	 reminds of Boltzmann’s collision integral although
there is no�-function for the kinetic energies of relative motionEp,Ep0 which are defined by

Ep =
~p2

2mrel
=
~p2

m
: (9)

In any case equations (1) and (2) hold:

n(~r; t) = h y(~r; t) (~r; t) i =
Z

d3p1 f(~p1;~r; t) =
Z

d3p1 fW (~p1;~r; t) (10)

and

~�(~r; t) =
Z

d3p1 ~p1 f(~p1;~r; t) =
Z

d3p1 ~p1 fW (~p1;~r; t) : (11)

There is not only a quantum statistical motivation to the definition (3), but it also allows a
quasi-particle interpretation.

3 Quantum statistical background

Explicit expressions for the kernelsE andO follow from the theory of Kadanoff and Baym
[2], from which in the spatially homogeneous case and inT -matrix approximation the kinetic
equation

@t(fW +	) = JB[fW ] (12)

is obtained [3,4] withJB[fW ] as Boltzmann’s collision integral depending onfW . Here	 is
just the functional (5) with the kernels

O(~p;~p0)=
1

4
(2�~)3P(Ep � Ep0) (13)n
jh~p j T�(Ep0 + i�) j~p0 ij2 � jh~p0 j T�(Ep + i�) j~p ij2

o

and
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E(~p;~p0) = �(2�~)3�(Ep � Ep0) (14)

Im
�
h~p j T�(Ep0 + i�) j~p0 i�h~p j T 0

�(Ep0 + i�) j~p0 i
�

+
1

4
(2�~)3P 0(Ep � Ep0)n
jh~p j T�(Ep0 + i�) j~p0 ij2 + jh~p0 j T�(Ep + i�) j~p ij2

o
:

The T -matrix occurring here is the properly symmetrized momentum representation of the
two-particle operator

T (z) = V � V
1

H � z
V ; T 0(z) =

d

dz
T (z) ; (15)

withH = Hkin+V being the Hamiltonian of relative motion.P is the principle value distribu-
tion andP 0 it’s derivative. The upper sign inT� (and elsewhere) refers to bosons and the lower
sign to fermions.

In equilibrium, quantum statistical mechanics yields the density expansion forf = fW + 	,
which up to second order reads

feq(~p1) =
n

(2�m�T )3=2
e�

~p2
1

2m�T (1 + n(2B(T ) + �(~p1))) ; (16)

with � being Boltzmann’s constant and

�(~p1)=��3(T ) e�
~p2
1

2m�T � �3(T )
Z

d3p2 e
�

~p2
2

2m�T

� ~F (p)

�T
+ ~G(p)

�
:

Here we have introduced the thermal wave length

� =
2�~p
2�m�T

: (17)

The quantities~F and ~G as well as the second virial coefficientB(T ) are given as functionals
of theT -matrix:

~F (p) = 1
2
(2�~)3 Re(h~p j T�(Ep + i�) j~p i) ; (18)

~G(p) =
�

2
(2�~)3

Z
d3q � (Ep � Eq) (19)

� Im
�
h~p j T�(Eq + i�) j~q ih~q j T 0

�(Eq + i�) j~p i�
�
;
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B(T )=B0(T ) +B1(T ) +B2(T ) (20)

B0(T )=�2�5=2 �3 ; B1(T ) =
hh ~F ii
�T

; B2(T ) = hh ~G ii ;

wherehh � ii denotes the thermal average, e.g.

hh ~F ii=
R

d3p expf�Ep

�T
g ~F (p)R

d3p expf�Ep

�T
g : (21)

These formulae are exact if the two-particle interaction does not allow any bound states.B1

essentially accounts for long-range attraction andB2 for hard repulsion, this correspondence
being most striking in the van der Waals limit (cf. section 6).

4 Quasi-particle picture for equilibrium

We just work out the usual idea:

(1) The entropy densitys is represented as a functional of the one-particle distribution func-
tion. This is an outcome of occupation number statistics (combinatorial entropy)

s = ��
Z

d3p1
�
f(~p1) ln

�
vel(~p1)f(~p1)

�
(22)

�
 

1

vel(~p1)
� f(~p1)

!
ln
�
1� vel(~p1)f(~p1)

��

with vel as the volume of an elementary cell in six-dimensional�-space,vel accommo-
dating one single-particle quantum state. Eq. (22) is well known as a standard result for
non-interacting particles. However, the choice ofvel and the constraints forf may provide
a camouflage of interaction.

(2) For equilibrium the distribution functionf is the one which minimizess subject to appro-
priate constraints.

(3) The constraints are a given number densityn,

n =
Z

d3p1 f(~p1) ; (23)

and a given energy densityu,

u =
Z

d3p1 "(~p1) f(~p1) : (24)

The quasi-particle interpretation is now introduced by way of ansatz (eqs. (25), (26)), its aim
being to account for interaction effects in lowest order of the density. Strong repulsion reduces
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the freely accessible volume for gas particles. Because of this effect, called ”van der Waals
blocking”, more than just(2�~)3 is needed as an elementary cell volume

vel(~p1) = (2�~)3
�
1 +

Z
d3p2 G (j~pj) f(~p2)

�
: (25)

Also, an interacting gas particle carries with it a correlation cloud giving rise to an interactive
contribution which changes the kinetic energy of a particle into the energy of a quasi particle

"(~p1) =
~p21
2m

+
Z

d3p2 F (j~pj) f(~p2) : (26)

For our variational problem the functionsG andF are considered as given though, for the time
being, unknown. They will be determined afterwards by comparing the equilibrium solution
f = feq with the corresponding expression from many-body quantum theory. The resulting
thermodynamics then serves as a further touchstone of the quasi-particle interpretation.

The solution of the variational problem is obviously equivalent to

 
�s

�f(~p)

!
f=feq

=
1

#

 
�u

�f(~p)
� �

�n

�f(~p)

!
f=feq

(27)

with # and� as Lagrange parameters due to the the constraints forf . Comparison with the
thermodynamic identity for the entropyS at constant volume

dS =
1

T
(dU � �dN) (28)

reveals that# means the temperature,# = T , and� means the chemical potential,� = �.
According to (27)f = feq is equivalently determined by the fixed-point equation

f(~p1) =
�

vel(~p1)

exp
n
��

�
~p2
1

2m
+K(~p1)

�o
1� � exp

n
��

�
~p2
1

2m
+K(~p1)

�o (29)

with

� =
1

�T
; � = exp f��g (30)

and
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K(~p1) =
Z

d3p2

8<
: 2f(~p2)F (j~pj) (31)

� (2�~)3

�v2el(~p2)
ln
�
1� vel(~p2)f(~p2)

�
G (j~pj)

9=
; :

5 Lowest-order density corrections

The fugacity� can be given as a power series inn

� = n�3 (1 + 2nB(T ) + � � � ) (32)

and the fixed point equation (29) may be iterated starting off with a Maxwellian normalized
to n. This yields a density expansion according to which – apart from third and higher order
contributions – one regains eq. (16) forf , but now with

�(~p1)=��3 e��
2
Ep1 (33)

� 2�3

(2�~)3

Z
d3p2 e

�
�
2
Ep2 f�F (j~pj) +G (j~pj)g :

Therefore, the quasi-particle picture independently explains eq. (16), if and only if

F (p) = ~F (p) (34)

and

G(p) = ~G(p) (35)

Having determinedf up to second order inn, we deduce the entropy with its lowest order
density corrections from eq. (22):

s = n�

�
5

2
� ln

�
n�3

�
� n [B(T ) + TB0(T )]

�
; (36)

with B(T ) defined by eqs. (20). Analogously evaluating eq. (24), we obtain the two leading
contributions to the energy density:

u = n�T

�
3

2
� nTB0(T )

�
: (37)
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The last two results imply the pressure equation of state

p = n

 
@ u

@ n

!
s=n

� u = n�T f1 + nB(T )g : (38)

The exact density corrections, i.e. virial contributions have thus been obtained.

6 Classical van der Waals approximation

Considering distinguishable particles, one has to neglect quantum statistical contributions. This
means

B0 = 0 : (39)

Then with (20), (34) and (35)

B(T )=
hh F ii
�T

+ hh G ii (40)

holds and suggests a comparison with the van der Waals version of the second virial coefficient

BvdW (T )=� a

�T
+ b ; (41)

which is readily obtained from the model equation of state

�
p+ n2a

�
(1� nb) = n�T (42)

and the corresponding density expansion

p=n�T

�
1 + n

�
b� a

�T

��
+ o(n3) : (43)

The van der Waals limit therefore obviously means

hh F ii= const= �a and hh G ii = const= b : (44)

This model assumption is actually quite reasonable as we are going to demonstrate for4He
atoms interacting via a Lennard-Jones-potential lacking bound states [5]:
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V (r)= 4V0

"�
�

r

�12

�
�
�

r

�6
#
; V0 = 10:22K � ; � = 2:56 Å : (45)

Because the interaction is radially symmetric the following relations between the (anti-) sym-
metrizedT -matrix, the scattering amplitudef�(p; �) and phase shifts�l(p)

f�(p; �)=��2m~h~p j T�(Ep + i�) j~q i ; j~pj = j~qj ; ~p �~q = j~pjj~qj cos(�) (46)

f�(p; �)=
~

p

X
l

0 (2l + 1) ei �l(p) sin(�l(p)) P (cos(�)) (47)

may be used (see e.g. [6]), where the summation runs over evenl for bosons and oddl for
fermions.F (p) andG(p) (compare to eqs. (18) and (19)) can then be expressed in terms of
phase shifts which is compatible with the Beth Uhlenbeck result forB(T ) [7]

F (p)=�4�~2

m
f~p(0) = �4�~2

m

~

2p

X
l

0 (2l + 1) sin [2�l(p)] (48)

G(p)=�~
Z

d
 Im

"
(f~p(�))

� @

@ p
f~p(�)

#
= �4�~

~
2

p2

X
l

0 (2l + 1) sin2 [�l(p)]
@ �l

@ p
:

Fig. 1. F and G as functions ofk� (thick solid lines) and thermal weight functions
w / p2 exp f�Ep=(�T )g for two temperatures.

Figure 1 nicely shows that for a large region of temperatureshh F ii and hh G ii may be
nearly considered as constants, i.e. not depending on temperature. In this case the single particle
energy, the elementary cell volume and the mean energy are easily determined as

"(~p1) =
~p21
2m

� an ; vel(~p1) = (2�~)3 [1 + bn] ; u = n�T

�
3

2
� na

�T

�
: (49)
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7 Physical meaning of the quasi-particles

One may imagine a quasi-particle to be a gas particle together with its surrounding correlation
cloud which is described by the radial distribution functiong(r; T ). This interpretation suggests
itself because the virial correction to the energy of the ideal gas (eq. (37)) is mainly determined
by g(r; T ) in an obvious way. The interpretation is immediately evident in the classical case
where

B(T )=Bcl(T ) = �1
2

Z
d3r (g0(r; T )� 1) (50)

with

g0(r; T )= g0;cl(r; T ) = exp

(
�V (r)

�T

)
(51)

as the first term of the density expansion

g(r; T )= g0(r; T ) + ng1(r; T ) + n2g2(r; T ) + � � � : (52)

Therefore

n2�T TB0
cl(T )=

n2

2

Z
d3r g0;cl(r; T )V (r) (53)

is the classical virial correction to the internal energy.

In general, however, for a homogeneous system

g(r; T )=
1

n2
hh  y(~r0) y(~r0 +~r) (~r0 +~r) (~r0) ii (54)

=
2

n

�ffree

�V (r)
(55)

with ffree being the free energy per particle, whence

g0(r; T )= 2�T
�B(T )

�V (r)
: (56)

Then quantum mechanically [8,4]

Z
d3r g0(r; T )V (r)= 23=2�3

Z
d3p e��Ep (�)h~p j V� j~p i(�) ; (57)
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where the scattering eigenstatesj~p i(�) satisfy the Lippmann Schwinger equation which reads
in momentum representation

h~p0 j~p i(�) = �(~p0 �~p)� (Ep0 � Ep � i�)h~p0 j V j~p i(�) : (58)

The virial correction to the energy density (eqs. (24), (37)) is made up of three terms

n2�T TB0(T )=
Z

d3p1
~p21
2m

	M(~p1) +
Z

d3p1 d3p2 fM(~p1) fM(~p2) F (p) (59)

+
Z

d3p1
~p21
2m

n2fW;2(~p1) :

HerefM is the Maxwellian normalized ton and	M is our functional (5) withfW replaced by
fM . fW;2 denotes the second term in the density expansion of the Wigner function

fW (~p1)= fM(~p1) + n2fW;2(~p1) + � � � : (60)

Looking more closely at eq. (59) and taking account of (57) one can show that

Z
d3p1

~p21
2m

	M(~p1) +
Z

d3p1 d3p2 fM(~p1) fM(~p2) F (p)=
Z

d3r g0(r; T )V (r) : (61)

Therefore, in the classical limit the last term in eq. (59) must vanish.
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