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We consider the S = 1/2 antiferromagnetic Heisenberg model on a frustrated kagome-lattice
bilayer with strong nearest-neighbor interlayer coupling and examine its low-temperature magne-
tothermodynamics using a mapping onto a rhombi gas on the kagome lattice. Besides, we use
finite-size numerics to illustrate the validity of the classical lattice-gas description. Among our
findings there are i) the absence of an order-disorder phase transition and ii) the sensitivity of the
specific heat at low temperatures to the shape of the system just below the saturation magnetic
field even in the thermodynamic limit.
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I. FRUSTRATED BILAYER HEISENBERG
ANTIFERROMAGNETS

Two spins one-half entangled in a singlet state are
in the heart of quantum mechanics. In the theory of
spin lattices, singlets emerging due to the antiferromag-
netic Heisenberg interaction lead to various fascinat-
ing valence-bond solid or valence-bond liquid quantum
states. The resonating valence-bond state proposed by
P. W. Anderson as the ground state of spin liquids is a
famous example of the latter kind of states [1]. Valence-
bond solid states, on the other hand, imply a short-range
pairing and the formation of localized static bonds obey-
ing certain long-range order. On some lattices the anti-
ferromagnetic Heisenberg interaction promotes the emer-
gence of valence-bond crystal states as, for instance, in
the Majumdar-Ghosh model [2, 3]. Among such lattices
one may also mention frustrated bilayer lattices which
have been dealt with in a number of earlier publications,
see Refs. [4–18].

Frustrated bilayer systems consist of two identical lay-
ers, a and b, with an intralayer interaction J1, a nearest-
neighbor interlayer interaction J2, and a (frustrated)
next-nearest-neighbor interlayer interaction Jx, compare
Fig. 1 as an example. If J1 = Jx = J one faces the fully
frustrated case. For the fully frustrated case, a local sin-
glet on a J2 bond (| ↑a↓b⟩ − | ↓b↑a⟩)/

√
2 in the environ-

ment of the remaining polarized spins is an eigenstate of
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the Hamiltonian. Moreover, a product of such singlets
surrounded by the polarized spins is also an eigenstate of
the Hamiltonian. Furthermore, if J2 > J2c(J) for some
critical J2c(J), these states are the lowest-energy eigen-
states and therefore may dominate the low-temperature
magnetothermodynamics of the frustrated quantum spin
systems in question.

Since the localized eigenstates for the frustrated
square-, honeycomb-, and triangular-lattice bilayers can
be mapped onto spatial configurations of squares or
hexagons on the square or hexagonal/triangular lattice,
their contribution to thermodynamics is accounted for by
means of classical statistical mechanics [7, 13, 16]. The
most interesting prediction for these bilayers is an order-
disorder phase transition related to singlet ordering: Just
below the saturation magnetic field hsat the ground state
is the two-fold (square and honeycomb bilayers) or three-
fold (triangular bilayer) degenerate gapped localized-
singlet crystal state, which corresponds to an ordered
pattern of singlets respecting hard-core rules. Such a
(spontaneously chosen) ordered pattern persists up to
some finite temperature Tc(h) while further tempera-
ture increase drives the system into a disordered phase
through a phase transition of Ising (square and honey-
comb bilayers) or three-state Potts (triangular bilayer)
universality class [7, 13, 16].

Similarly, the localized eigenstates for the frustrated
kagome-lattice bilayer can be mapped onto rhombi on the
kagome lattice. However, since the kagome lattice can be
covered by hard rhombi (nearest-neighbor exclusion) in a
huge number of ways which grows exponentially with lat-
tice size, one cannot expect an order-disorder phase tran-
sition pertaining to singlet ordering. This difference be-
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Figure 1. Frustrated kagome-lattice bilayer. The lattice sites
are denoted by mαl, where m = m1e1 + m2e2, m1,m2 are
integers, e1 = 2i = (2, 0), e2 = i +

√
3j = (1,

√
3) are the

unit lattice vectors (here the triangle side has unit length),
α = 1, 2, 3 denote the sites of the unit cell within a layer, and
l = a, b is the layer label.

tween the already studied frustrated bilayers and the not
yet examined frustrated kagome-lattice bilayer inspired
us to take a closer look at the latter in this publication.

In the present paper, we consider the S = 1/2 isotropic
Heisenberg Hamiltonian

H =
∑
⟨pq⟩

Jpqsp · sq − h
∑
p

szp, (1)

where the first (second) sum runs over the edges (ver-
tices) of the frustrated kagome-lattice bilayer shown in
Fig. 1, all exchange interactions are antiferromagnetic
Jpq > 0, and h ≥ 0 is an external magnetic field.
The total Sz =

∑
p s

z
p commutes with H and the sub-

spaces with different good quantum numbers Sz can be
considered separately. As said above, we distinguish
the intralayer interactions J1, the nearest-neighbor in-
terlayer interactions J2, and the next-nearest-neighbor
interlayer interactions Jx (cf. black, red, and blue edges
in Fig. 1). We set (J1 + Jx)/2 = J = 1 to fix the
units. The goal of the present study is to examine thor-
oughly the ground-state and finite-temperature proper-
ties of the frustrated kagome-lattice bilayer quantum
Heisenberg antiferromagnet following the treatment of
Refs. [7, 13, 16].

The remainder of this paper is organized as follows.
We begin with numerics for finite-size systems, Section II,
focusing on the fully frustrated case J1 = Jx. Then we
turn to analytical studies in Section III. We discuss one-
magnon and many-magnon eigenstates as well as a map-
ping onto classical lattice models, and calculate the low-
temperature magnetothermodynamics of the frustrated
kagome bilayer. In Section IV, we present an effective
low-energy theory for a slightly violated fully frustrated
condition J1 ̸= Jx. Finally, we summarize our findings in
Section V.
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Figure 2. Zero-temperature magnetization curve for the S =
1/2 fully frustrated kagome-lattice bilayer with J = 1, J2 = 5,
N = 36 (red curve). Black curve corresponds to the square-
lattice counterpart, N = 32. There are no finite-size effects
for this set of parameters.

II. NUMERICAL CALCULATIONS FOR SMALL
FINITE-SIZE LATTICES

In our numerical calculations, we consider several
finite-size frustrated kagome-lattice bilayers, in particu-
lar, with N = 36 and N = 42 (i.e., with the number
of sites in one layer N = 18 and N = 21). Periodic
boundary conditions are imposed. Two shapes of the
cluster with N = 36 are determined by the edge vectors
a1 = (6, 0) = 3e1, a2 = (2, 2

√
3) = 2e2 (N = 36a) and

a1 = (6, 0), a2 = (0, 2
√
3) (N = 36b), see Appendix A.

The cluster with N = 42 is determined by the edge vec-
tors a1 = (7,−

√
3), a2 = (0, 2

√
3). For ideal flat-band ge-

ometry J1 = Jx = 1 we examine several J2 = 1, 2, 3, 5, see
Secs. II, III, and Appendix A. Small deviations from the
flat band geometry are represented by the set J1 = 1.1,
Jx = 0.9, J2 = 5, see Sec. IV. We use full diagonalization
for large Sz or the finite-temperature Lanczos method
[19, 20] to calculate various ground-state characteristics
(energy and degeneracy of low-lying levels, magnetization
curve) and temperature dependencies of magnetization,
susceptibility, entropy, specific heat. Finite-size calcula-
tions play a role of “experiments”, which are then ex-
plained by characterizing the low-energy eigenstates and
mapping onto lattice gases.

The typical ground-state magnetization curve for the
large-J2 regime shown in Fig. 2 as red curve, has a 0-, a
1/3-, and a 2/3-magnetization plateau for 0 < h < h1,
h1 < h < h2, and h2 < h < hsat, respectively. Here
h1 = J2, h2 = J2 + 2J , and hsat = J2 + 4J . The
plateau states are associated with the respective num-
ber of singlets in the unit cell. For example, the 2/3
plateau corresponds to one singlet and two polarized
triplets, whereas the 1/3 plateau corresponds to two sin-
glets and one polarized triplet within each unit cell. In-
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terestingly, both these plateau states have a large de-
generacy: For Sz/(N/2) = 2/3, WGS = 17, 20, 31 for
N = 36a, 36b, 42, respectively. The ground-state magne-
tization curve for the square-lattice bilayer, black curve in
Fig. 2, exhibits only a 0 and a 1/2 plateau for 0 < h < h1

and h1 < h < hsat. The former state corresponds to a
crystal of singlets at all J2 bonds. The latter state cor-
responds to a crystal state with checkerboard order of
singlets which alternate with polarized triplets; such a
state is only two-fold degenerate, see Refs. [5, 7].

More numerical results for the ground states and ex-
citations are reported in Appendix A. Most importantly,
the data for low-energy eigenstates in the subspaces with
Sz = N/2−1, . . . , N/3 clearly illustrate the emergence of
the large-J2 regime: For J2 > 2J , the low-energy eigen-
states have easily understandable energy and degeneracy,
see Sec. III below. Moreover, the ground-state degener-
acy WGS does not depend on J2, and WGS for the 2/3
plateau state is rather large and grows with increasing N
(17, 20 or 31 for N = 36a, 36b or N = 42). For J2 < 2J
the ground state and the first excitated state are of com-
pletely different nature without regularly varying ener-
gies and large degeneracies.

Numerical results for finite temperatures are reported
in Sec. III. In particular, we present data for the tem-
perature dependence of magnetization, susceptibility, en-
tropy, and specific heat. Moreover, we present some of
such data at zero and finite temperatures for the case
J1 ̸= Jx in Sec. IV.

III. ANALYTICAL AND COMPUTER-AIDED
CALCULATIONS

A. Flat bands and localized states

We begin this section with the one-magnon spectrum
of the system at hand to show that this lattice supports
completely dispersionless (flat) magnon bands. To this
end, we proceed as follows. First, set for a while h = 0 in
Eq. (1) and represent the Hamiltonian in the form: H =∑

l=a,b Hl +Hab, where Hl is the kagome-layer Hamilto-
nian and Hab stands for the interlayer coupling. Second,
for the one-magnon spectrum calculations, we have to re-
place sp ·sq → (s+p s

−
q +s+q s

−
p )/2−s+p s

−
p /2−s+q s

−
q /2+1/4

(here the term s+p s
−
p s

+
q s

−
q is omitted as irrelevant one).

Third, as usual, to convert from the m-space to the k-
space, we introduce

s±kαl =
1√
N

∑
m

e∓ik·ms±mαl,

s±mαl =
1√
N

∑
k

e±ik·ms±kαl, (2)

where k = (k1, k2) acquires N/3 values: k1,2 =
2πz1,2/L1,2, z1,2 obtains L1,2 integer values, L1L2 = N ,

N = N/2, and k1 = kx, k2 = (kx −
√
3ky)/2. Fourth,

it is convenient to use matrix notations. As a result, the
Hamiltonian (1) in one-magnon space can be cast into

H1m =

(
J1+Jx+

J2
4

)
N

+
∑
k

(
s−k1a s−k2a s−k3a s−k1b s

−
k2b s

−
k3b

)
H


s+k1a
s+k2a
s+k3a
s+k1b
s+k2b
s+k3b

,(3)

where the first term is the ferromagnetic-state energy,
and

H =

(
A B
B A

)
,

A = −
(
2J1+2Jx+

J2
2

)
1+J1K , B=

J2
2
1+JxK ,

K =

 0 1+e−ik1

2
1+e−ik2

2
1+eik1

2 0 1+ei(k1−k2)

2
1+eik2

2
1+e−i(k1−k2)

2 0

. (4)

The eigenvalues of matrix K (4) are as follows: κ1 = −1,
κ2,3 = (1 ∓ √

3 + 2γk)/2, where γk = cos k1 + cos k2 +
cos(k1 − k2). Now, we may use the formulas for de-
terminants of block matrices [21, 22]. Since A and B
commute, the sought eigenvalues of H follow from the

equations: det(A + B − Λ
(i)
k 1) = 0, i = 1, 2, 3 and

det(A−B− Λ
(i)
k 1) = 0, i = 4, 5, 6. As a result,

Λ
(1)
k = −3 (J1 + Jx) ,

Λ
(2,3)
k = −J1 + Jx

2

(
3±

√
3 + 2γk

)
,

Λ
(4)
k = − (3J1 + Jx + J2) ,

Λ
(5,6)
k = −

(
3J1+5Jx

2
+J2

)
∓ J1−Jx

2

√
3+2γk. (5)

In the presence of a magnetic field one has to add −hN
to the ferromagnetic-state energy and replace Λ

(i)
k by

Λ
(i)
k + h. Note that Λ

(1,2,3)
k depend on J1 + Jx = 2J

only and do not depend on J2. For the fully frus-
trated case J1 = Jx = J , there are four flat bands:

Λ
(1)
k = −6J and Λ

(4,5,6)
k = −(4J + J2). Furthermore,

Λ
(2,3)
k = −J(3 ± √

3 + 2γk) remain dispersive and Λ
(2)
k=0

touches the flat band Λ
(1)
k . The one-magnon spectrum

is illustrated in Fig. 3. Evidently, Eq. (5) is in perfect
correspondence with the numerical results for Sz = 17
(N = 36), see Appendix A.

By inspection, the flat-band states with the energy Λ
(1)
k

have the form

∝
[(
eik2−eik1

)
t−k1+

(
1−eik2

)
t−k2+

(
eik1−1

)
t−k3

]
|↑ . . .↑⟩

(6)
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Figure 3. One-magnon spectrum for J = 1, J2 = 5. The
lowest-energy flat band is three-fold degenerate; setting J1 =
1.1 ̸= Jx = 0.9 lifts the degeneracy and makes two of the three
lowest-energy bands slightly dispersive, see Eq. (5).

with t−kα=s−kαa+s−kαb. In them-space, these are the hard-
hegaxon states [23–27] associated with the two nearest
hexagons from different layers. Furthermore, the flat-

band states with the energies Λ
(4,5,6)
k to be denoted fur-

ther by ϵ0 = −(4J+J2) are the singlets localized on the
J2 bonds,

1√
2
(| ↑mαa⟩| ↓mαb⟩ − | ↓mαa⟩| ↑mαb⟩) , (7)

in the environment of all other fully polarized sites. In
the present study, we are interested in the case J2 > 2J
(the large-J2 regime), when the localized singlets, i.e.,

the localized magnons from the flat bands Λ
(4,5,6)
k , are

the lowest-energy one-magnon states. Importantly, the
local nature of the one-magnon flat-band states paves the
way to the construction of many-magnon ground states
in the subspaces with N/3 ≤ Sz < N − 1.

Another route to determine and characterize the eigen-
states of the frustrated bilayer Heisenberg Hamiltonian is
to introduce the total spin operator on the J2 bonds, i.e.,
tmα = smαa+smαb [28]. Moreover, we also introduce an-
other spin operator on the J2 bonds: dmα = smαa−smαb.
One can easily convinced oneself that the Hamiltonian
(1) in terms of these operators becomes as follows:

H =
∑
mα

[
−htzmα+

J2
2

(
t2mα−

3

2

)]
(8)

+
∑

⟨mαnβ⟩

(
J1+Jx

2
tmα·tnβ+

J1−Jx
2

dmα·dnβ

)
.

For the fully frustrated case J1 = Jx = J , the last
term in Eq. (8) drops out and the Hamiltonian depends
only on the total spin operators on the J2 bonds tmα.
Since t2mα commutes with the Hamiltonian for all mα
(local integrals of motion), the Hamiltonian eigenstates

can be labeled by the set of N good quantum numbers
t2 = t(t+1) assigned to each J2 bond. Obviously, t may
acquire only two values, t = 0 (singlet) or t = 1 (triplet).
In the latter case, when t = 1 for all mα, one arrives
at the S = 1 kagome-lattice Heisenberg antiferromagnet,
which is among the reference models of frustrated quan-
tum magnetism. This model represent the low-energy
physics of the S = 1/2 kagome-lattice bilayer for the fer-
romagnetic interlayer interaction J2 < 0. In the present
study, however, we focus on the case of large enough an-
tiferromagnetic interlayer interaction J2 > 2J > 0 and
h ≥ 0. Then localized singlets and (polarized) triplets
dominate the low-temperature properties and one arrives
at classical statistical mechanics problems.
Consider, for example, the eigenstates with only one

t = 0 and all others are polarized triplets, cf. Eq. (7).
Such eigenstates correspond to the flat-band states with
the energy ϵ0 = −(4J+J2). Indeed, each such a state has
the energy EFM−4J−J2, where EFM = (2J+J2/4)N is
the energy of the ferromagnetic state (polarized triplets
at all J2 bonds), cf. the first term in Eq. (3).
Because of the local character of the singlet state, there

is a class of many-magnon states, which are located on
J2 bonds sufficiently far from each other. More precisely,
this class of states contain n = 2, . . . , nmax, nmax = N/3
J2 bonds with t = 0 (the rest N−n J2 bonds carry polar-
ized triplets) and satisfy the geometrical restriction: The
singlets are not neighbors (hard-core rule), see Fig. 4, top.
Alternatively, such many-magnon states can be viewed
as hard-core dimers on an auxiliary honeycomb lattice,
see Fig. 4, top. The energy of hard-rhombi states is
EFM +nϵ0. And such states are the ground states in the
subspaces with Sz = N − 1, . . . ,N − nmax, nmax = N/3
if J2 > 2J . This picture perfectly agrees with numerical
data for Sz = 17, . . . , 12 (N = 36), see Appendix A.

There are two more classes of localized states which
are eigenstates of the fully frustrated Hamiltonian (8).
That is, i) the states with n = 2, . . . , 2nmax singlets on
the J2 bonds forming patterns with one (or more) pair(s)
which are neighbors, see Fig. 4, bottom, and ii) the states
with n = 3, . . . , 3nmax singlets on the J2 bonds forming
patterns with one (or more) triple(s) of singlets which
are neighbors. These states can visualized as containing
partially overlapping two rhombi (see Fig. 4, bottom) or
partially overlapping three rhombi. The energy penalty
for each overlap is J .
For sufficiently large J2/J the three classes of local-

ized eigenstates described above (their total number is
2N ) are the ground states and low-lying excited states
of the model at hand. Again, this picture of overlapping
rhombi is confirmed by numerical data for N = 36, see
Appendix A.

B. Mapping onto classical lattice gases

The hard-rhombi picture is a good starting point to
count the eigenstates described above. In Table I we
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Figure 4. Top: Pictorial representation of many-magnon
ground states for Sz = N−1, . . . , 2N/3. Localized singlets
(denoted by colored discs) obey hard-rhombi rule on the un-
derlying kagome lattice (thick black) and therefore can be pre-
sented as hard-core rhombi. They also can be viewed as hard-
core dimers on an auxiliary honeycomb lattice (thin brown).
Bottom: Partially overlapping (soft) rhombi represent other
localized eigenstates of the fully frustrated Hamiltonian (8).

report the number of spatial configurations of n hard
rhombi on the periodic N -site kagome lattice of two
shapes, gNa

(n) and gNb
(n). These numbers match per-

fectly the ground-state degeneracy WGS(S
z) for the ini-

tial frustrated quantum spin system (1) of N = 36a sites
and N = 36b sites (see Appendix A). However, for hard
rhombi we can examine larger systems, see the results
for N = 48 in Table I, whereas the corresponding initial
frustrated quantum spin system of N = 96 sites is far be-
yond reachable sizes by numerics. More results on hard
rhombi are collected in Appendix B.

Hard rhombi on the kagome lattice can be treated sim-
ilarly to other lattice gases of hard-core objects [29–32].

Table I. Counting the number of n hard-rhombi spatial con-
figurations on periodic kagome lattices ofN sites. ForN = 18
two clusters are determined by the edge vectors a1 = (6, 0),
a2 = (2, 2

√
3) (N = 18a) and a1 = (6, 0), a2 = (0, 2

√
3)

(N = 18b). For N = 48 two clusters are determined by the
edge vectors a1 = me1, a2 = ne2, m = n = 4 (N = 48a) and
a1 = me1, a2 = −e1 + ne2, m = n = 4 (N = 48b).

N = 18

n g18a(n), N = 18a g18b(n), N = 18b

1 18 18

2 117 117

3 336 336

4 417 420

5 186 192

6 17 20

N = 48

n g48a(n), N = 48a g48b(n), N = 48b

1 48 48

2 1 032 1 032

3 13 136 13 136

4 110 244 110 244

5 643 056 643 056

6 2 677 896 2 677 896

7 8 052 432 8 052 432

8 17 486 550 17 486 558

9 27 158 096 27 158 224

10 29 567 736 29 568 536

11 21 843 888 21 846 384

12 10 417 700 10 421 844

13 2 969 616 2 973 264

14 446 136 447 704

15 27 952 28 208

16 417 417

More specifically, one can introduce the grand canonical
partition function

Ξ(z,N ) =

nmax∑
n=0

zngN (n), (9)

where z = eµ/T is the activity and gN (n) is the canonical
partition function of n hard rhombi on the kagome lat-
tice of N sites or, in other words, the number of allowed
spatial configurations.
Clearly, gN (n) which is related to the ground-state

degeneracy yields the residual ground-state entropy
through the relation

s0(n,N ) =
ln gN (n)

N . (10)

In the upper panel of Fig. 5 we report the dependence
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Figure 5. Hard-rhombi description of the kagome-lattice bi-
layer. N denotes the number of kagome-lattice sites; n de-
notes the number of hard rhombi. Top: ln gN (n)/N ver-
sus n/N for various periodic clusters. Bottom: s0(N/3,N )
(10) versus 1/N ; we get in the thermodynamic limit, linear
fit, 0.106 9 . . . (Na) and 0.110 6 . . . (Nb). Inset in the bottom
panel: lnκ(1) (11) versus 1/N ; we get in the thermodynamic
limit, linear fit, 0.386 7 . . . (Na) and 0.386 9 . . . (Nb).

of the residual ground-state entropy s0 on the density of
hard rhombi on the kagome lattice n/N .
The case of n = nmax (full covering) deserves more dis-

cussion. In Table II we report the results for gN (nmax),
nmax = N/3 for periodic lattices up to N = 60 and in the
lower panel of Fig. 5 we use these data to plot the resid-
ual ground-state entropy s0(nmax,N ) = [ln gN (nmax)]/N
(i.e., for n/N = nmax/N = 1/3) as a function of 1/N to
illustrate what happens in the limit N → ∞. The sim-
plest linear fit results in, depending on the specific bound-
ary conditions, 0.106 9 . . . or 0.110 6 . . .. Both numbers
for the estimate of s0(N/3,N ) in the thermodynamic
limit are close to 0.107 6 . . ., and this issue is discussed in
the next paragraph.

From another perspective, as is evident from Fig. 4,
the kagome-lattice hard-rhombi problem can be mapped
onto the honeycomb-lattice hard-dimer problem with the
relation N = 2N/3 between the numbers of honeycomb-

Table II. Numbers of spatial configurations of nmax = N/3
hard rhombi on the kagome lattice of N sites for two clusters
with edge vectors a1 = me1, a2 = ne2, mn = N/3 (Na) and
a1 = me1, a2 = −e1 + ne2, mn = N/3 (Nb).

nmax gNa(nmax), Na gNb(nmax), Nb

N = 12 9 9

N = 18 17 20

N = 24 33 49

N = 27 42 45

N = 36 113 129

N = 45 309 379

N = 48 417 417

N = 54 860 1 133

N = 60 1 537 1 537

lattice sites N and kagome-lattice sites N and the num-
ber of dimers 0, 1, . . . ,N/2 corresponds to the number
of rhombi 0, 1, . . . ,N/3. Moreover, it is known that the
number of dimer coverings (close-packed dimers) W on
the infinite periodic honeycomb lattice with N → ∞ sites
is lnW/(N/2) = 0.323 0 . . . [33]. Since W = gN (nmax),
the limiting value of s0(nmax,N ) is three times smaller
than 0.323 0 . . . in agreement with the lower panel of
Fig. 5.

Another function κ(z), which has been intensively in-
vestigated for lattice gases of hard-core objects, is defined
as

lnκ(z) =
lnΞ(z,N )

N . (11)

Its values at z = 1, i.e., lnκ(1) = ln[
∑nmax

n=0 gN (n)]/N
were estimated for several models in the past. Namely,
for hard squares on the square lattice lnκ(1) =
0.407 4 . . ., for hard hexagons on the honeycomb lattice
lnκ(1) = 0.435 9 . . ., for hard hexagons on the trian-
gular lattice lnκ(1) = 0.333 2 . . ., see, e.g., Ref. [34].
As can be seen from the inset in the lower panel of
Fig. 5, for hard rhombi on the kagome lattice we ob-
tain lnκ(1) ≈ 0.387. As a result, we conclude that
within the hard-rhombi picture we take into account
κ(1)N ≈ e0.387N states, whereas the soft-rhombi picture
accounts for 2N ≈ e0.693N states. Although these lo-
calized states constitute only a part of the total 22N ≈
e1.386N states for the initial model (1), they dominate the
low-temperature magnetothermodynamics if J2 > 2J .

C. Low-temperature magnetothermodynamics

After counting the hard-rhombi states, we can go one
step further and elaborate their contribution to observ-
able properties. In the presence of an external magnetic
field h > 0, the energy of the n hard-rhombi state is
En(h) = EFM − Nh + n(ϵ0 + h). The number of hard-
rhombi states gN (n) is equal to the number of allowed
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spatial configurations of n hard rhombi on the N -site
kagome lattice, that is, to their canonical partition func-
tion. As a result, the contribution of localized singlets
satisfying the hard-core rule to the partition function of
the frustrated quantum spin system Zlm(T, h,N) is re-
lated to the grand canonical partition function of hard-
core rhombi on kagome lattice Ξ(z,N ) (9)

Zlm(T, h,N) =

nmax∑
n=0

gN (n)e−
En(h)

T

= e−
EFM−Nh

T

nmax∑
n=0

zngN (n) = e−
EFM−Nh

T Ξ(z,N ),

z = e
µ
T , µ = hsat − h, hsat = −ϵ0 = 4J + J2. (12)

This is a dominant contribution at low temperatures and
high fields.

It is convenient to represent the grand canonical par-
tition function of hard-core rhombi on a kagome lattice
Ξ(z,N ), which enters Eq. (12), in terms of the on-site
occupation numbers ni = 0, 1:

Ξ(z,N )=
∑

n1=0,1

. . .
∑

nN=0,1

zn1+...+nN e−
V

∑
⟨ij⟩ ninj

T (13)

(the sum in the exponent runs over all nearest neighbors
on the kagome lattice). Sending here V → +∞ (infi-
nite repulsion), we restrict the allowed configurations to
the hard-rhombi patterns. Finite repulsion V accounts
for overlapping rhombi states and setting V = J we re-
produce correctly the energy of these states. Clearly, in
Eq. (13) we face the grand canonical partition function of
a classical lattice-gas model on the kagome lattice defined
by the Hamiltonian

H({ni}) = −µ
∑
i

ni + V
∑
⟨ij⟩

ninj ,

µ = hsat − h, hsat = 4J + J2 (14)

with infinite nearest-neighbor repulsion V → ∞ (hard-
core rhombi) or V = J (partially overlapping or soft-core
rhombi). The lattice-gas model of rhombi (14) can be
cast into the antiferromagnetic Ising model in a field after
the change ni = 1/2− T z

i :

H({T z
i })=

V−µ

2
N+(µ−2V )

∑
i

T z
i +V

∑
⟨ij⟩

T z
i T

z
j . (15)

Kagome-lattice Ising models were examined already more
than seventy years ago [35, 36].

It is worth stressing that the lattice-gas model (and
the Ising model) possesses a symmetry with respect to
the change of variables ni to ni = 1−ni (equivalently T z

i

to −T z
i ): The thermodynamic quantities for hsat − h are

straightforwardly related to those for h − h1. Another
symmetry occurs at h2 = J2 + 2J1: Again, the thermo-
dynamic quantities for h2 + ∆h are related to those for
h2 −∆h.

Now, we use the classical lattice models to corroborate
the suggested description of low-lying Hamiltonian eigen-
states by comparison with numerics. More precisely, we
perform direct calculations for the lattice models given in
Eq. (14) or Eq. (15) with V → ∞ and V = J , to obtain
various quantities and compare them to the finite-lattice
results for the initial quantum spin model (1). In particu-
lar, we consider the magnetization and the susceptibility
per site of the initial model (1)

m(T, h) =
1

2
+

T

2N
∂ ln Ξ(T, µ,N )

∂h
,

χ(T, h) =
∂m(T, h)

∂h
(16)

along with the entropy and the specific heat per site of
the initial model (1)

s(T, h) =
lnΞ(T, µ,N )

2N +
T

2N
∂ ln Ξ(T, µ,N )

∂T
,

c(T, h) = T
∂s(T, h)

∂T
, (17)

where Ξ(T, µ,N ) is the grand canonical partition func-
tion of a lattice gas.
Let us begin with the temperature dependencies

around saturation, see the left column in Fig. 6. Ac-
cording to numerics for N = 36b (circles), m(T ) for
h > hsat decreases as T grows, while m(T ) for h ⪅ hsat

slightly increases as T deviates from zero and then de-
creases as T grows further. This is in accordance with
the expected smearing out of the ground-state magneti-
zation jump at the saturation field hsat. The hard-rhombi
description (thin curves) works perfectly well in the low-
temperature region but fails above T ≈ 0.2 and cannot
reproduce vanishing magnetization to zero in the high-
temperature limit. Instead, as is obvious from Eq. (16),
the hard-rhombi prediction in the high-temperature limit
tends to a nonzero value, which is related to the aver-
aged density of hard rhombi ⟨n⟩/N at z=1 (according
to Table I, (⟨n⟩/N )|z=1 ≈ 0.202 for N = 18). Soft
rhombi (thick curves) provide a correct description up
to T ≈ 1 but for higher temperatures tends again to
a nonzero value, which is related to the averaged den-
sity of soft rhombi ⟨n⟩/N at T→∞, (⟨n⟩/N )|T→∞=1/2.
The next panel in the left column of Fig. 6 concerns
the temperature dependence of the uniform susceptibil-
ity. In the high-temperature limit it obeys the Curie law:
χ(T→∞)→1/(4T ); in the temperature range T < 10
this regime is not achieved yet (circles). Hard- and soft-
rhombi correctly reproduce the low-temperature behav-
ior as well as the 1/T dependence at high temperatures,
however, with a constant smaller than 1/4. Furthermore,
the temperature profiles of entropy have clear interpre-
tation. For h > hsat, s(T=0)=0, but for h2 < h < hsat,
s(T=0)= lnWGS/N , WGS = gN (N/3), i.e., is ≈ 0.083
for N = 36b. Rhombi pictures perfectly reproduce the
low-temperature region. On the other hand, as T → ∞,
the entropy tends to ln 2 (exact value), but to ln 2/2 (soft
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Figure 6. Hard- and soft-core rhombi predictions (thin and thick curves) against finite-temperature Lanczos method data
(circles) for thermodynamic characteristics, J = 1, J2 = 5, N = 36b. From top to bottom: Magnetization m, susceptibility
χ, entropy s, and specific heat c per site of the initial model (1). Left column: High fields h = 9.9, 9.45, 9.09, 8.91, 8.55, 8.1.
Right column: Moderate fields h = 7.65, 7.2, 7.02 and h = 0. Hard-core rhombi work up to T ≈ 0.15; soft-core rhombi work up
to T ≈ 0.45.
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rhombi) or lnκ(1)/2 (hard rhombi). We finish the discus-
sion with a comparison of the temperature dependence
of the specific heat obtained for the initial and effective
models, N = 36b and N = 18b, see the lowest panel
in the left column in Fig. 6. The lower peak of c(T ),
the position of which is controlled by the energy scale
|hsat−h|, perfectly matches the rhombi predictions. The
main peak of c(T ) at T ≈ 4 is beyond capabilities of the
rhombi description.

The temperature dependencies of m, χ, s, and c for
lower fields are shown in the right column of Fig. 6. The
reported comparisons demonstrate that the soft-rhombi
description works even at h = 0 as long as the temper-
ature does not exceed ≈ 0.45; the hard-rhombi picture
(not shown here) in general fails further away from hsat.

Overall, the comparison between hard/soft-rhombi
predictions and exact numerics reported in Fig. 6 indi-
cates the region of validity of the effective-model descrip-
tion which obviously concerns sufficiently low tempera-
tures only. In this region of validity, such a description
opens new possibilities to examine the frustrated quan-
tum spin model (1) by means of the classical statistical
mechanics. Besides direct calculations for N about 60
(see Appendix B), classical Monte Carlo simulations for
much larger N can be used, too.

D. Do the bulk properties depend on the form?

We conclude this section with an interesting conse-
quence of the established dimer representation for the
low-energy physics of the frustrated quantum spin model
(1). Usually it is implied that the bulk properties are
insensitive to the boundary conditions in the limit of a
large system. Remarkably, in 1961 P. Kasteleyn [37],
while studying dimer arrangements on a square lattice,
expressed doubts on the independence of the bulk free
energy on boundary conditions (for more recent publi-
cations see Refs. [38, 39]). More relevant in the present
context is the paper by V. Elser [40], who considered the
dimer problem on the honeycomb lattice with boundary
and demonstrated explicitly that the bulk entropy per
dimer in the thermodynamic limit depends on the shape
of the boundary.

To be precise, for periodic (toroidal) boundary con-
ditions the bulk entropy per dimer lnW/(N/2) has been
known since the 1950s, and it equals 0.323 0 . . . [33]. Elser
studied the dimer problem on a general hexagon defined
by the sides k, l, and m, see Fig. 7. In particular, us-
ing MacMahon’s results for the combinatorial problem
of ‘plane partitions’, he provides the limiting value of the

Figure 1: Hexagonal domain which corresponds to G4,3,2(x) in V.Elser notation.

Figure 2: Hexagonal domain with tiling.

1

Figure 1: Hexagonal domain which corresponds to G4,3,2(x) in V.Elser notation.

Figure 2: Hexagonal domain with tiling.

1

Figure 7. General hexagon with the sides k = 4, l = 3,
and m = 2 considered for calculating the bulk entropy for
the dimer problem on the honeycomb lattice by Elser [40]
(top) and the corresponding rhombi on the kagome lattice
(bottom).

entropy per dimer lnW/(N/2) = Sklm/(N/2) as N → ∞:

Sklm

N
2

∼ s(x, y, z) , (18)

N

2
= kl + lm+mk ,

s(x, y, z)=
1

2(xy+yz+zx)

[
x2 lnx−(1−x)2 ln (1−x)

+y2 ln y−(1−y)2 ln (1−y)+z2 ln z−(1−z)2 ln (1−z)
]
,

x =
k

n
, y =

l

n
, z =

m

n
, n = k + l +m.

This formula demonstrates how the bulk entropy per
dimer depends on the shape of the boundary. More-
over, the maximum of the entropy per dimer s(x, y, z)
is obtained when the boundary is a regular hexagon,
i.e., s(1/3, 1/3, 1/3) = (3/2) ln 3 − 2 ln 2 ≈ 0.262 which
is smaller than the value for periodic boundary condi-
tions. And the entropy per dimer goes to zero if, e.g.,
x = 1, y = z = 0.
Since the dimer problem on the honeycomb lattice is
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Figure 8. Temperature dependence of the specific heat (µ =
hsat − h = 0.01) for two open hexagonal systems with k : l :
m = 1 : 1 : 1 (red) and k : l : m = 2 : 1 : 1 (blue). c(T ) for
N = 6, 11 (dashed curves) and for N = 30, 52 (solid curves).
The position of the peak is linearly extrapolated for 1/N → 0
(crosses).

equivalent to the hard-rhombi covering of the kagome
lattice and the residual ground-state entropy for the 2/3
plateau state s0(N/3,N ) (10) is three times smaller than
s(x, y, z), see above, we conclude that for h2 < h < hsat

the residual ground-state entropy (17) s(T = 0, h ⪅
hsat) = s(x, y, z)/6 depends on the shape of thermody-
namically large open-boundary (hexagonal) system, see
Eq. (18). On the other hand, s(T ) = ln 2−

∫∞
T

dTc(T)/T
and, as a result, we have the following sum rule:∫ ∞

0

dT
c(T)

T
= ln 2− s(T = 0). (19)

Since s(T=0) on the r.h.s. of Eq. (19) depends on the
shape of the thermodynamically large open-boundary
(hexagonal) system, c(T ) in the l.h.s. of Eq. (19) should
also depend on the shape.

It is not easy to check a dependence of c(T ) on the form
of the thermodynamically large system having access
only to rather small systems. In particular, the finite-
temperature Lanczos method deals with N = 36, 42
(i.e., N = 18, 21) only, while direct calculations for hard
rhombi are restricted to N about 60. In Fig. 8 we re-
port preliminary results for two hexagon shapes: 1 : 1 : 1
(red curves) and 2 : 1 : 1 (blue curves) as they follow
from direct calculations for hard-rhombi systems with
µ = hsat − h = 0.01 of sizes N = 6, 30 (red dashed
and solid curves) and N = 11, 52 (blue dashed and solid
curves). Moreover, we extrapolate the peak of c(T ) as
1/N → 0 (linear extrapolation), which yields the red
and blue crosses in Fig. 8. Our findings agree with the
expectation about a shape-dependent c(T ). However, ex-
tensive numerical studies for larger systems are required
to better understand this issue.
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Figure 9. Top: Magnetization curve m(h) for the S = 1/2
frustrated kagome-lattice bilayer with J1 = 1.1, Jx = 0.9,
J2 = 5, N = 36a; T = 0, 0.01, 0.1, 0.5. Inset is a zoom-in of
the region around h = 9. Bottom: Specific heat c(T ) for the
same system at h = 8.6, 8.8, 9, 9.2, 9.4. In both panels along
with numerics for the 36-site initial model (1) (circles) we also
show the results of the effective theory (20) with N = 18a
(solid curves).

IV. BEYOND THE FULLY FRUSTRATED
LIMIT: NUMERICS VERSUS EFFECTIVE

THEORY

In this section, we examine what happens around the
fully frustrated case, when the ideal flat-band condition
J1 = Jx is slightly violated. Numerics for the magne-
tization curve and the temperature dependence of the
specific heat for J1 = 1.1, Jx = 0.9 are reported in Fig. 9
(circles). Next, we discuss an effective theory explaining
these data, see Refs. [14, 41].
In the regime when J2 is the dominating coupling,

one may elaborate a strong-coupling approach and ob-
tain an effective theory which is valid for J1 ̸= Jx,
too. Within this approach, one starts from noninteract-
ing singlets at the magnetic field h0 = J2, which are
governed by the Hamiltonian Hmain =

∑
mα[J2(t

2
mα −

3/2)/2 − h0t
z
mα], cf. Eq. (8). The remaining Hamilto-
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nian, i.e., V = H −Hmain, is treated as a perturbation.
Clearly, the ground state of Hmain is 2N -fold degener-
ate and forms the model space defined by the projector
P = ⊗mα(|u⟩⟨u| + |d⟩⟨d|)mα, where |u⟩ = | ↑a↑b⟩ and

|d⟩ = (| ↑a↓b⟩−| ↓a↑b⟩)/
√
2. Switching on V ̸= 0 lifts the

degeneracy in the model space, and an effective Hamil-
tonian Heff , which acts in this space and describes the
low-energy properties of H around the limit V = 0, can
be constructed perturbatively [42]. Calculating the first
term in the expansion Heff = P (Hmain + V )P + O(V 2)
and introducing the pseudo-spin one-half operators T z =
(|u⟩⟨u| − |d⟩⟨d|)/2, T+ = |u⟩⟨d|, T− = |d⟩⟨u|, one
gets P (tx, ty, tz)P = (0, 0, 1/2 + T z), P (dx, dy, dz)P =

(−
√
2T x,−

√
2T y, 0) and finally arrives at the S = 1/2

XXZ model in a field on the kagome lattice. That is,
the effective Hamiltonian reads:

Heff = CN − h
∑
m

T z
m (20)

+
∑
⟨mn⟩

[JzT z
mT z

m+J (T x
mT x

n+T y
mT y

n )] ,

C = −h

2
−J2

4
+
J1+Jx

4
, h = h−J2−J1−Jx,

Jz =
J1+Jx

2
, J = J1−Jx .

Here the first sum (m = mα) runs over the vertices of
the kagome lattice and the second sum (⟨mn⟩ = ⟨mαnβ⟩)
runs over the edges of the kagome lattice. The ideal flat-
band geometry J1 − Jx = 0 corresponds to the kagome-
lattice Ising model (J = 0) and is simply another rep-
resentation of the lattice-gas model discussed above, cf.
Eq. (15). In general, we arrive at the S = 1/2 XXZ
model with easy axis anisotropy, |J| ≪ Jz, Jz > 0, in a
field on the kagome lattice, for which many results are
known to date, see, e.g., Ref. [43] and references therein.

The presented field and temperature dependencies in
Fig. 9 show good agreement between exact numerics
(N = 36) and effective-theory predictions (N = 18)
for the chosen set of parameters. Interestingly, effec-
tive model (20) is constructed perturbatively around the
main part Hmain defined above, i.e., near the limit of
noninteracting dimers at the degenerate singlet-triplet
point (J2 > 0, J1 = Jx = J = 0, h = h0 = J2), and
therefore h − h0 and J1, Jx are implied to be small in
Eq. (20). Besides, T also cannot be too large, because of
the number of states taking into account in Eq. (20): 2N

instead of 2N , this becomes visible at T ≈ 0.5 in Fig. 9,
bottom. Nevertheless, the magnetization curve, Fig. 9,
top, is reproduced by Eq. (20) quite well for all h and
T = 0 . . . 0.5. Again, the effective description has an ad-
vantage for examining the frustrated quantum spin model
(1): Although the spin model (20) remains a frustrated
quantum spin system, it contains a two times smaller
number of sites, N = N/2.

V. SUMMARY

The present study continues the examination of the
S = 1/2 Heisenberg model on frustrated bilayer lattices
in the regime of strong antiferromagnetic interlayer cou-
pling. In this paper, we studied the case of the kagome-
lattice bilayer. Such a bilayer shows a prominent dif-
ference to other ones such as square-, honeycomb-, or
triangular-lattice bilayers. While the latter bilayers for
h ≲ hsat exhibit a ground-state ordering of singlets which
persists up to a finite temperature Tc(h), the former
one does not show a symmetry breaking, but rather a
huge degeneracy of the ground state, which grows ex-
ponentially with lattice size. This degeneracy has been
known in combinatorics for many years. Two features of
the kagome-lattice bilayer at low temperatures and just
below the saturation field are peculiar and interesting:
There is no phase transition related to the singlets order-
ing, and the bulk specific heat may depend on the sample
form.
Concerning the experimental side, one may men-

tion several quantum Heisenberg antiferromagnets on
frustrated bilayer lattices: Ba2CoSi2O6Cl2 [11, 17] is
a square-lattice bilayer, Bi3Mn4O12(NO3) [44, 45] is
a honeycomb-lattice bilayer, and K2Co2(SeO3)3 [46]
is a triangular-lattice bilayer. Unfortunately, we are
not aware of a solid-state realization of the frustrated
kagome-lattice bilayer quantum Heisenberg antiferro-
magnet yet.
Finally, let us mention several problems which in our

opinion deserve further studies. As follows from the cal-
culation of the entropy as a function of temperature and
magnetic field (Sec. III C), the system at hand should ex-
hibit an interesting magnetocaloric effect since the resid-
ual entropy remains a nonzero constant for the 2/3- and
1/3-magnetization plateaus [47–49]. In view of Elser’s
formula (18), see Sec. IIID, it is worth to examine the
thermodynamics of the hexagonal-shaped systems in de-
tail. To this end, one has to consider larger systems and
adapt Monte-Carlo simulations accordingly. One may
also consider other Archimedean lattice bilayers [50, 51],
which, however, might not provide new physics in com-
parison to the cases studied already in Refs. [7, 13, 16]
and in the present paper.
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K. Kařlová for their hospitality at the Advanced quantum
materials for magnetic cooling and quantum information
science conference (Cergy-Pontoise, France, 19-21 Febru-
ary 2025). J. S. thanks the Max Planck Institute for the
Physics of Complex Systems for the hospitality during
a visit in April 2025. This work was supported by the
Deutsche Forschungsgemeinschaft (DFG SCHN 615/28-1
and RI 615/25-1).

Appendix A: Numerics for small kagome bilayers

In this appendix, we present more results obtained
numerically for small lattices. In Fig. 10 we illustrate
two types of the 36-site frustrated kagome-lattice bilayer
which are used for numerical calculations in our study,
cf. Table III and Table IV.

In Tables III and IV we report some characteristics of
the ground state and low-lying states (energy and degen-
eracy) in the subspaces with total Sz = N/2, . . . , N/3
(N = 36, two periodic clusters are examined) depending
on J2 to illustrate the emergence of the large-J2 regime.
If J2 exceeds 2J the low-energy states characteristics are

Table III. Numerics for the kagome-lattice bilayer of N =
36a sites [periodic boundary conditions, the edge vectors are
a1 = (6, 0) and a2 = (2, 2

√
3)], J = 1, and (from top to

bottom) J2 = 5, 3, 2, and 1. We present the energy EGS and
degeneracyWGS of the ground state in various subspaces 12 ≤
Sz ≤ 17. We also present the energy E1min and degeneracy
W1min of the first excited state as well as the energy gap
E1min−EGS in various subspaces 12 ≤ Sz ≤ 17.

Sz EGS WGS E1min W1min E1min−EGS

17 49.5 18 52.5 7 3

16 40.5 117 41.5 36 1

15 31.5 336 32.5 396 1

14 22.5 417 23.5 1356 1

13 13.5 186 14.5 1572 1

12 4.5 17 5.5 456 1

17 42.5 18 43.5 7 1

16 35.5 117 36.5 108 1

15 28.5 336 29.5 585 1

14 21.5 417 22.5 1456 1

13 14.5 186 15.5 1584 1

17 39 25 40.267 9. . . 2 1.267 9. . .

16 33 199 33.279 0. . . 3 0.279 0. . .

15 27 544 27.063 6. . . 12 0.063 6. . .

14 21 523 21.106 9. . . 24 0.106 9. . .

13 15 198 15.224 4. . . 48 0.224 4. . .

12 9 17 9.620 8. . . 24 0.620 8. . .

17 34.5 7 35.5 18 1

16 28.5 10 28.779 0. . . 3 0.279 0. . .

15 22.5 1 22.650 9. . . 1 0.150 9. . .

14 17.028 5. . . 1 17.260 8. . . 3 0.232 3. . .

13 11.950 5. . . 1 12.185 4. . . 3 0.234 9. . .

well structured (easy understandable energy and degen-
eracy) and they do not depend on J2. Namely, EGS fits to
EFM+nϵ0 with EFM = (2J+J2/4)N and ϵ0 = −(4J+J2)
whereas WGS for J2 = 5 and J2 = 3 fits to the number
of spatial configurations of n = 1, . . . , 6 hard rhombi on
the kagome lattice of N = 18 sites, see Table I. Besides,
the ground-state degeneracy WGS for Sz = 12 illustrates
the degeneracy of the 2/3 plateau state shown in Fig. 2.
As can be seen in Tables III and IV, its value for N = 36
depends on the cluster shape and is rather large being
17 (Table III) or 20 (Table IV). For N = 42 the ground-
state degeneracy for Sz = 14 is 31, i.e., it grows as N
increases. J2 = 2J is a marginal case, exhibiting higher
degeneracy of the ground state: The flat-band states (6)
and (7) have the same energy. Smaller J2 indicate com-
pletely different nature of the ground state: No regularly
structured energy and no large degeneracy are observed
in that case.

The picture of overlapping rhombi is also confirmed
by numerical data reported in Tables III and IV. For
example, for J2 = 5 the energy gap in the subspaces with
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Table IV. Numerics for the kagome-lattice bilayer of N = 36b
sites [periodic boundary conditions, the edge vectors a1 =
(6, 0) and a2 = (0, 2

√
3)], J = 1, and (from top to bottom)

J2 = 5, 3, 2, and 1. We present the same quantities as in
Table III.

Sz EGS WGS E1min W1min E1min−EGS

17 49.5 18 52.5 7 3

16 40.5 117 41.5 36 1

15 31.5 336 32.5 396 1

14 22.5 420 23.5 1344 1

13 13.5 192 14.5 1560 1

12 4.5 20 5.5 456 1

17 42.5 18 43.5 7 1

16 35.5 117 36.5 108 1

15 28.5 336 29.5 594 1

14 21.5 420 22.5 1504 1

13 14.5 192 15.5 1590 1

12 7.5 20 8.5 456 1

17 39 25 40 2 1

16 33 199 33.198 0. . . 7 0.198 0. . .

15 27 566 27.092 6. . . 24 0.092 6. . .

14 21 595 21.117 0. . . 24 0.117 0. . .

13 15 222 15.215 9. . . 12 0.215 9. . .

12 9 20 9.585 7. . . 6 0.585 7. . .

17 34.5 7 35.5 20 1

16 28.5 10 28.698 0. . . 1 0.198 0. . .

15 22.5 2 22.678 4. . . 1 0.178 4. . .

14 16.939 9. . . 1 17.160 9. . . 2 0.220 9. . .

13 11.995 8. . . 1 12.064 9. . . 1 0.069 0. . .

2 ≤ n ≤ 6 is J = 1 and W1min, according to the soft-
rhombi calculations in Appendix B, corresponds to the
number of ways to put one pair of neighboring singlets
while the rest singlets are not neighbors (patterns with
one pair of overlapping rhombi, see the lower panel in
Fig. 4).

Appendix B: Rhombi on the kagome lattice

In this appendix, we provide more results about
rhombi on the kagome lattice which complement those
that have been reported in Sec. III.

First, in Figs. 11 and 12 we illustrate all spatial config-
urations of nmax = 6 hard rhombi on the N = 18 kagome
lattice with two types of periodic boundary conditions,

N = 18a and N = 18b, see Fig. 10. These configurations
may be found by direct search. Furthermore, they may
be encoded by indicating the sites which are occupied by
rhombi. Thus, in Fig. 11 we have (from left to right be-
ginning from the top): 2, 5, 8, 11, 14, 17; 0, 3, 6, 9, 12, 15;
1, 4, 7, 10, 13, 16; 0, 3, 6, 10, 13, 16; 0, 5, 8, 9, 14, 17;
2, 3, 8, 11, 12, 17; 2, 5, 6, 11, 14, 15; 1, 4, 7, 9, 12, 15;

Table V. Counting the number of n hard-rhombi spatial con-
figurations on the kagome lattice of N = 21 sites.

n g21(n)

1 21

2 168

3 644

4 1 225

5 1 085

6 371

7 31

2, 3, 6, 11, 12, 15; 0, 5, 6, 9, 14, 15; 0, 3, 8, 9, 12, 17;
2, 3, 7, 10, 13, 17; 1, 5, 6, 11, 13, 16; 0, 4, 8, 10, 14, 16;
1, 4, 8, 11, 12, 16; 2, 4, 7, 10, 14, 15; and 1, 5, 7, 9, 13, 17.
Similarly, in Fig. 12 we have (from left to right begin-
ning from the top): 2, 5, 8, 11, 14, 17; 0, 3, 6, 9, 12, 15;
1, 4, 7, 10, 13, 16; 0, 5, 8, 11, 14, 16; 0, 3, 8, 10, 14, 16;
1, 4, 7, 9, 12, 15; 0, 3, 6, 10, 13, 16; 1, 5, 8, 9, 14, 17;
0, 4, 8, 11, 12, 16; 1, 4, 8, 9, 12, 17; 2, 3, 6, 10, 13, 17;
2, 3, 8, 10, 14, 17; 0, 5, 6, 11, 13, 16; 1, 5, 7, 9, 14, 15;
2, 3, 7, 10, 14, 15; 2, 4, 8, 11, 12, 17; 2, 4, 7, 11, 12, 15;
1, 5, 6, 9, 13, 17; 2, 5, 6, 11, 13, 17; and 2, 5, 7, 11, 14, 15.

Next, we explain how we systematically count the spa-
tial configurations of hard rhombi. A necessary condition
to get an allowed spatial configuration is to put only one
rhombus per unit cell. There are N/3 unit cells, there-
fore, in the case of 1 < n ≤ N/3 rhombi, we consider as
the first step Cn

N/3 spatial configurations for which each

rhombus is assigned to a specific unit cell. Since there are
3 sites in the unit cell, we consider as the second step 3n

ways to rearrange rhombus inside the unit cells. For each
obtained in such a way spatial configuration of n rhombi
on the N -site kagome lattice we verify the hard-core rule:
If it holds, the spatial configuration is accepted. Along
these lines we obtain gN (n) reported in Tables I and II.
In Tables V and VI we report the results similar to what
is given in Table I, but for other lattice sizes N = 21 and
N = 12, 24, 27, 36.

Finally, we explain how we work with the soft rhombi configurations. It is convenient to cast Eq. (13) into

Ξ(z,N ) =

N∑
Σ1=0

2N∑
Σ2=0

G(Σ1,Σ2)z
Σ1e−

V Σ2
T . (B.1)
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Figure 11. 17 hard-rhombi coverings of the periodic kagome lattice of N = 18a sites. Numerics for the periodic spin system
N = 36a gives for the localized-magnon crystal state the same degeneracy W18 = 17, see Table III.

To arrive at Eq. (B.1), we denote n1+ . . .+nN = Σ1 and
note that Σ1 may acquire the values 0, 1, . . . ,N , denote∑

⟨ij⟩ ninj = Σ2 and note that Σ2 may acquire, in prin-

ciple, the values 0, 1, . . . , 2N , and introduce G(Σ1,Σ2)
which stands for the number of spatial configurations of
n = 0, 1, . . . ,N soft rhombi which yields Σ1 = n and
Σ2 [G(Σ1,Σ2) may be zero for some values of Σ1,Σ2].

Clearly,
∑N

Σ1=0

∑2N
Σ2=0 G(Σ1,Σ2) = 2N . In the hard-

rhombi limit only the terms with Σ2 = 0 in Eq. (B.1)
survive, Σ1 = n and G(Σ1, 0) = gN (n). Furthermore, the
number of patterns with one pair of overlapping rhombi
is given by G(Σ1, 1), Σ1 ≥ 2 (cf. the corresponding
row in Table VII and W1min = 36, 396, 1 356, 1 572, 456
in Table III). Finding G(Σ1,Σ2) is the most difficult
task. For that we have to find the values of Σ1 and
Σ2 for all 2N spatial configurations of n = 0, . . .N soft
rhombi on the N -site kagome lattice. In Table VII

we report the output of such calculations for the case
N = 18a for illustration. The reported numbers sat-
isfy

∑18
Σ1=0

∑36
Σ2=0 G(Σ1,Σ2) = 218. They also illustrate

a “particle-hole” symmetry: Compare the columns for
Σ1 = 0, . . . , 8 and for Σ1 = 18, . . . , 10 in Table VII.
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Figure 12. 20 hard-rhombi coverings of the periodic kagome lattice of N = 18b sites. Numerics for the periodic spin system
N = 36b gives for the localized-magnon crystal state the same degeneracy W18 = 20, see Table IV.
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Table VI. Counting the number of n hard-rhombi spatial con-
figurations on the kagome lattise of N sites with two types of
periodic boundary conditions imposed. These data are com-
plementary to the ones in Table I.

N = 12

n g12a(n), Na g12b(n), Nb

1 12 12

2 42 42

3 44 44

4 9 9

N = 24

n g24a(n), Na g24b(n), Nb

1 24 24

2 228 228

3 1 096 1 096

4 2 830 2 834

5 3 848 3 880

6 2 516 2 588

7 632 696

8 33 49

N = 27

n g27a(n), Na g27b(n), Nb

1 27 27

2 297 297

3 1 719 1 719

4 5 643 5 643
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Ising Net, Progress of Theoretical Physics 10, 158 (1953).
[37] P. Kasteleyn, The statistics of dimers on a lattice: I. The

number of dimer arrangements on a quadratic lattice,
Physica 27, 1209 (1961).

[38] V. Korepin and P. Zinn-Justin, Thermodynamic limit of
the six-vertex model with domain wall boundary condi-
tions, Journal of Physics A: Mathematical and General
33, 7053 (2000).

[39] H. Cohn, R. Kenyon, and J. Propp, A Variational Prin-
ciple for Domino Tilings, Journal of the American Math-
ematical Society 14, 297 (2001).

[40] V. Elser, Solution of the dimer problem on a hexagonal
lattice with boundary, Journal of Physics A: Mathemat-
ical and General 17, 1509 (1984).

[41] O. Derzhko, J. Richter, O. Krupnitska, and T. Krokhmal-
skii, Frustrated quantum Heisenberg antiferromagnets
at high magnetic fields: Beyond the flat-band scenario,
Phys. Rev. B 88, 094426 (2013).

[42] P. Fulde, Electron Correlations in Molecules and Solids
(Springer-Verlag Berlin, Heidelberg, New York, 1995).

[43] M. Ulaga, J. Kokalj, A. Wietek, A. Zorko, and
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