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Abstract

The determination of mechanical properties such as the Young’s modulus
provides an important means to compare classical molecular dynamics sim-
ulations with materials. In this respect, ultra-thin materials hold several
challenges: their volume is ambiguous, and different methods to determine
a stress-strain relation deliver different result in particular for disordered
systems. Using the example of carbon nanomembranes we show that stress-
strain simulations following experimental setups deliver correct results if ad-
justed carefully.
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1. Introduction

Mechanical properties such as the Young’s modulus (tensile modulus)
constitute important observables for membranes and other quasi two-dimen-
sional (2d) materials. The Young’s modulus describes how a material reacts
to certain strain. Although this seems to be a rather global property it may
depend strongly on details of the interaction matrix between atoms of the
material. This is in particular true if the interactions are very different as
for instance in disordered materials.

On the theoretical side such materials are often modelled by means of
classical molecular dynamics schemes since the number of atoms needed for
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a trustworthy simulation is way too big for a quantum calculation for instance
by means of density functional theory (DFT). Again this holds in particular
for disordered, i.e., non-crystalline systems such as bio-molecular membranes
or carbon nanomembranes (CNMs). The latter will be treated in the present
paper. As a side remark, mechanical properties are valuable observables
for such systems since due to the lack of a quantum mechanical treatment
observables such a conductivity or band structure are not available.

In the present article, we follow investigations as e.g. outlined in [1, 2]
and discuss the evaluation of the Young’s modulus of carbon nanomembranes
with general lessons for other 2d materials. Carbon nanomembranes are
stable quasi two-dimensional disordered carbon membranes that are synthe-
sized from aromatic or aliphatic precursor molecules grafted on gold surfaces
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Their mechanical properties are determined
by means of bulge experiments or via nano-indentation [14]. Amorphous car-
bon is investigated along similar lines [15].

CNMs are rather soft compared to graphene; CNMs have got a modulus
of about 10 GPa [14], whereas graphene features 1000 GPa [16, 17, 2]. The
structure of CNMs is irregular and contains many holes through which for
instance water permeates [18, 19]. Since CNMs constitute metastable excited
states (graphite would constitute the ground state) a trustworthy simulation
of mechanical properties is challenging compared to crystalline structures
such as graphene or diamond.

In this paper, we discuss the determination of the Young’s modulus using
three different procedures. For crystalline samples these methods yield very
close results [2]. However, for disordered materials featuring both strong
and weak bonds between atoms, where smallest deformations can push a
system into new configurations [20], the three methods deliver rather different
outcomes. Our conclusion is that both stress-strain based methods discussed
in this paper are suited to calculate the elastic properties of crystalline and
amorphous structures.

The article is structured as follows. Section 2 introduces methods and
challenges, section 3 provides instructions on how to perform the methods
and discusses the results obtained with the test structures. Section 4 finishes
off the article with a summary.
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2. Methods and Challenges

2.1. Molecular Dynamics Simulations

For our calculations we use the LAMMPS package [21]. In order to model
carbon systems the Environment-Dependent Interataomic Potential (EDIP)
of Marks is employed [22]. This potential outperforms many of the historic
carbon potentials, compare e.g. [2, 23].

In general, the application of classical molecular dynamics works for prob-
lems discussed in this paper. However, one should keep in mind that there
are limitations in the application of classical molecular dynamics for very
low temperatures for several reasons. Firstly, it it possible that the system
equilibrates into metastable states, as there is not enough kinetic energy to
overcome potential barriers. Thus, the system ends up in a state of non-
minimal energy [24]. Secondly, quantum effects could also play a role at
temperatures close to absolute zero [25]. These phenomena could affect cal-
culated properties at very low temperatures.

In the following, LAMMPS syntax is presented in italic.
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Figure 1: An example of a thickness calculation by determining the density profile of the
structure along z-direction perpendicular to the membrane.

2.2. Volume ambiguity of quasi 2d materials

To calculate elastic properties, such as the Young’s modulus, using a
molecular dynamics simulation approach, the stress or pressure of the sys-
tem is usually required, which in turn depends on the volume. Quasi two-
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dimensional (2d) structures, as discussed here, may have thickness fluctua-
tions of the same order of magnitude as the thickness itself, which complicates
the volume prediction [12, 26]. Since the LAMMPS modifier compute stress
always uses the box volume, results will be inaccurate and a correction is
necessary.

There are two option to address this issue: (a) The visualization program
OVITO offers a modifier named ‘construct surface mesh’; it depends on two
input parameters (radius, smoothness) and delives the volume as output [27].
The correction factor then is the quotient of box volume and surface mesh
volume. (b) A second way to estimate the actual volume of the membrane is
to calculate the density profile of the structure in z-direction and then to use
the width of the distribution as thickness. Based on the chosen threshold,
a fitting σ-rule (FWHM or 2σ e.g.) has to be specified, compare Fig. 1.
Again, the correction factor is obtained by calculating the quotient with the
thickness of the simulation box.

Regardless of which method is used to determine the volume or thickness,
both values suffer from a high degree of uncertainty. Therefore, a compar-
ison with experimental values should always be approached with caution.
Nevertheless, a viable trend in the data will be visible.

2.3. Scaling approach

The Young’s modulus E at zero temperature can be evaluated from the
curvature of the potential energy U at the respective configuration. Kinetic
effects do not play a role here [28, 29]. The modulus is obtained as

Eα =
1

V0

(
∂2U

∂α2

)
α=1

, (1)

where α is the factor by which all positions are scaled along the direction of
the dimensionless unit vector e⃗α, i.e.

x⃗i → x⃗i + (α− 1) e⃗α · x⃗i e⃗α . (2)

V0 denotes the volume of the sample in equilibrium.

2.4. Stress-strain method

The stress-strain variant of determining the Young’s modulus (tensile
modulus) is inspired by the similar macroscopic tensile experiments in mate-
rial science, in which the material to be tested is clamped on opposite sides

4



and stretched by a factor ε at a certain strain rate. The stress behavior σ
depends on the properties of the material. For the linear regime, the relation-
ship is given by the Young’s modulus. Here stresses are given by a law similar
to Hooke’s law σ = E · ε where ε = (L − L0)/L0 is the strain with L being
the current length and L0 the initial length. Plotting this data, the Young’s
modulus can be determined by fitting a linear function and calculating the
slope.

In order to imitate this experiment in an MD simulation, the clamping and
the stretching of the material must be modeled. A static approach was chosen
for this method, meaning no time integration is involved. The procedure can
be used with periodic or non-periodic lateral boundary conditions, depending
on the structure. In this case, p p f boundary conditions are used, i.e. the
simulation box is only non-periodic in the z-direction. The method presented
in Ref. [30] has been adapted for this procedure by making use of selection
box regions of the size of the clamp (region command in LAMMPS). To strain
the structure these regions have to move apart. Atoms in the clamp regions
are excluded from the calculation of stresses by setting the forces to zero in
their corresponding groups (fix setforce 0 0 0 ) as they are considered as rigid.
To minimize the error, the clamp size is chosen to be minimal, otherwise a
systematic error will occur [26]. The clamps are particularly important for
non-periodic structures as a box deformation does not automatically induce
an elongation of the structure. The initial length of the simulation box along
strain direction is saved for the calculation of the strain at each time step.
Finally, the clamps are moved outwards in discrete deformation steps using
the change box command with a predefined strain-rate. To ensure that the
atoms in the clamped regions also follow the movement, the ”remap” keyword
has to be specified in the change box command.

After each deformation step, the potential energy of the structure is min-
imized via the minimize command. If laterally periodic boundary conditions
are used and the Poisson effect is taken care of, the structure is given the pos-
sibility to relax in the non-stretched directions by the command fix box/relax
in order to keep the stress in this direction close to zero, see Fig. 4. This
command allows to rescale the simulation box in specified directions. For this
method, the fix box/relax is only necessary if the periodicity of the unit cell
is directly intended by the structure, which is clearly not the case for the z-
dimension. After the minimization is completed, stress and strain are logged
for later processing and the next deformation steps are executed analogously.
The strain rate has to be chosen such that the dynamics stays physical, i.e.
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atoms should not move further apart from each other than what is covered
by the effective potential.

Since no time integration is involved in this calculation, and the structure
is always minimized with respect to the potential energy, it is not a real
dynamics simulation but rather a ground state (zero temperature) calculation
of the Young’s modulus. The advantage is that numerical errors due to time
integration cannot occur.

2.5. Barostated dynamics

Another and more versatile approach to determine the Young’s modulus
by means of molecular dynamics is the simultaneous application of simulation
box deformation and barostating as suggested in Refs. [1, 31]. Unlike in the
clamp method real dynamics is involved here. The Young’s modulus can then
be derived analogously to the stress-strain method discussed in Sec. 2.4. The
difference to the latter method lies in how and according to which ensemble
the membrane is deformed.

Instead of clamping opposing sides to strain along the, e.g., x-axis of the
membrane, the length of the simulation box in the respective direction is
enlarged at a specified strain rate ε without remapping of the atoms, i.e.
the simulation box is enlarged in the chosen direction with no influence on
the atom positions, see fix deform command [32], but since it is a coherent
structure due to the PBCs, each box deformation also induces movements
of atoms and therefore stress in the material. Simultaneously the system is
initialized in an isothermal-isobaric ensemble which is of Nosé-Hoover type
using the fix npt command [32], which ensures that the deformation along
a specific direction results in stresses in only this direction, and the system
does not attempt to relax via stresses in other spatial directions or via tem-
perature. As pressure and temperature are adjustable, the method is able to
produce results under different conditions. Examples of stress-strain curves
at different temperatures will be presented in Fig. 6 in Sec. 3.3. Here again
the Poisson effect is taken care of.

In order for a barostat to control the pressure in a certain direction, the
simulation must have periodic boundary conditions in this direction, which
can lead to problems for the z-direction in quasi 2D structures. All data of
the simulated graphene or CNMs have been constructed or simulated with
PBC in x- and y-directions as standard setup. Several approaches for the
z-direction have been tested.
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2.6. Investigated structures: graphene and carbon nanomembranes

The data set used for graphene generates a xy-periodic box with a size of
68.2105 Å × 36.9306 Å with 960 carbon atoms and an inter-atomic distance
of 1.421 Å. In graphene oriented research the x-direction is often referred to as
the armchair- and the y-direction as the zigzag-axis [33]. A visualisation with
OVITO [34] is shown in Fig. 2. Before the data set is used, a simple MD
simulation is performed to minimize the potential energy of the structure
and get rid of possible stresses (minimize command). Since graphene is
a two-dimensional structure, an artificial thickness must be chosen for the
calculation of the Young’s modulus; this is taken as 3.35 Å as in [2].

Figure 2: Visualisation of graphene data with OVITO [34]. The x-axis is also called
armchair-axis, the y-axis zigzag-axis.

Data for carbon nanomembranes (CNM) are generated using the method
discussed in [35, 36, 26, 12, 37, 38]. Again, periodic boundary conditions are
used in x- and y-directions. The simulation box has a size of 135.147 Å ×
133.801 Å and contains 12500 atoms.

Because of their amorphous, i.e., irregular structure, it is necessary to
consider larger model realisations of CNMs than would be needed for pe-
riodic lattices or crystals. The size should be large enough to capture all
relevant features of the sample. The thickness of these structures is calcu-
lated with the z-density profile and a 2σ fitting rule, as described in Sec. 2.2.
For the structure labeled as CNM1 the thickness is approx. 16.54 Å, for the
structure referred as CNM2 it is 16.07 Å. It’s important to note that the
determined thickness is merely an approximation and is associated with sig-
nificant uncertainty. However, it is suitable for comparing MD simulations
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Figure 3: Visualisation of TPT-CNM data with OVITO [34]. Here the simulation box has
a height of 33 Å which does not correspond to the actual thickness of the membranes. On
the left side the membrane is shown which will be referenced later with the name CNM1,
the membrane on the right with the name CNM2.

with each other.

3. Comparison of applied methods

Here we discuss how to setup simulations and show the results for our
investigated structures.

3.1. Scaling approach

The scaling approach is the easiest to implement and involves the least
computational effort. Unfortunately, it provides incorrect values for non-
crystalline systems. For the graphene test structure this method yields
ESLG = 1088 ± 11GPa, which is in agreement with [2]. For the CNMs,
however, one obtains ECNM1 = (240± 5) GPa and ECNM2 = (253± 3) GPa,
much larger than experimentally determined. The scaling approach does
not distinguish between strong and weak bonds, nor does it recognize other
elastic deformation mechanisms, resulting in an overestimated Young’s mod-
ulus in most cases. We therefore consider this method to be unsuitable for
amorphous media; similar findings were also made by Pashartis et al. [20].

3.2. Stress-strain method

This method can also be applied to non-periodic structures. For non-
periodic structures, the clamp size should be selected with care. It should
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be sufficiently large and as small as possible. Too big clamp sizes result in a
predicted mechanical stability that is higher than the correct value [26]. It is
advisable to perform several calculations with different clamp sizes in order
to eliminate finite size errors by means of an extrapolation to zero clamp
size [26]. For structures periodic in the direction of straining the clamp size
can in fact be chosen to zero, because the box deformation alone generates
stresses here.
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Figure 4: Stress-strain diagrams produced with the stress-strain method from section
2.4 for single-layer graphene (SLG) in x-direction, the simulation on the left allowed for
relaxation in y-direction, while the simulation on the right does not, which is refered to
as uniaxial. This results in Young’s moduli of Ex = 861GPa for the calculation with
relaxation and Ex = 919GPa for the uniaxial calculation. For visualisation purposes the
data shown here corresponds to a total strain of ε = 0.8 and 800 deformation steps. The
dotted lines correspond to fits of the linear region, ranging up to a strain of ε = 0.02

In most cases, and also here, periodic boundary conditions are used in
molecular dynamics. Here it is important to allow the non-stretched space
dimension to relax its stresses if a realistic behavior respecting the Poisson
effect is desired. The Poisson effect refers to the phenomenon where a mate-
rial’s crosswise strain, perpendicular to the direction of applied stress, occurs
when it is subjected to longitudinal stress, resulting in a reduction of cross-
sectional area [39]. This procedure should be repeated in every deformation
step via the fix box/relax -command, described in Sec. 2.4. This command
allows the box to change in size in order to relax. If this relaxation is not
allowed, greater tension is generated in the stretched direction, which results
in a uniaxial Young’s modulus, see Fig. 4. The graph shows the different be-
havior of the graphene structure in response to strain, depending on whether
relaxation in the non-strained direction is allowed or not. For an allowed
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relaxation, it can be seen that all stress components vanish except for the
one in the stretched direction, the opposite behavior can be seen if all box
dimensions remain constant except for the stretched one. In addition to the
stress component in the x-direction, a stress in the y-direction arises, which
in turn leads to a higher stress in x-direction, resulting in a higher Young’s
modulus.

Additionally, the method that allows relaxation exhibits more physi-
cally accurate inelastic behavior, characterized by numerous lattice rear-
rangements, etc., while the rigid simulation shows an abrupt failure of the
structure, see Fig. 4. The same behavior is also observed for the quasi-two-
dimensional CNMs. Thus, it becomes clear that for structures periodic in
the xy-direction, only the case where the unstretched spatial dimension is
allowed to relax, yields results compatible with a realistic tensile test.
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Figure 5: Stress-strain diagrams in the elastic regime from structures specified in section
2.6. The data points and a linear fit functions are shown for each structure and direction
of strain. The slope of the linear function corresponds to the Young’s modulus in GPa
and is also noted in the data legend. Visualisation date is created with OVITO [34].

In the following, the results for the structures discussed in Sec. 2.6 are
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presented. Here we use a total strain of ε = 0.02 with 20 deformation steps,
which lies in the linear range. In Fig. 5 the stress-strain diagrams with
fitted linear functions for the elastic regime for both x- and y-directions
are provided for single-layer graphene as well as CNM1 and CNM2. The
calculated stresses shown are already corrected with the proper thicknesses.
All calculations were carried out in a much larger simulation box in order to
avoid possible errors.

An isotropic stress behavior is clearly visible for graphene, the mean value
and its error can be combined to E = (854 ± 5.2) GPa, which is in gen-
eral agreement with other literature values [40]. For the carbon nanomem-
branes the analysis yields E = (35.835 ± 0.835) GPa for CNM1 and E =
(35.705 ± 5.135) GPa for CNM2. As CNMs are amorphous carbon system
one would expect an isotropic behavior as a stress response. This behavior
is clearly visible for the CNM1-structure where the two fit functions have
almost identical slopes. The offset between the two data series indicates a
structure that is not fully relaxed in one spatial dimension. Care should
therefore always be taken to ensure that the material is fully relaxed before
the start of straining. For the CNM2-structure, two different slopes are evi-
dent indicating anisotropy in the stress behavior. The unit cell may be too
small to ensure complete isotropy. Therefore, a sufficiently large structure
that captures all the features of the mother material should always be used.

3.3. Barostated dynamics

Dynamics at constant pressure and temperature is already widely used
in molecular dynamics applications in order to evaluate the Young modulus
[1]. However, for 2d materials such as graphene and quasi 2d materials
like amorphous carbon as well as CNMs the application is not trivial. In
order to gain deeper insight various simulations of CNMs and graphene were
conducted. Here, the focus is on pressure control in the z-direction – if
applicable – and on the impact this has for very thin materials.

To ensure that the method implemented with LAMMPS delivers correct
results the Young’s modulus of graphene is calculated using the EDIP poten-
tial. A general practical advise (for every structure) is to have the structure
equilibrated in the npt ensemble at desired pressure and temperature before
the actual tensile experiment starts. This guarantees that there are no initial
stresses or temperature differences across the sample. It is also important to
monitor temperature and pressure in unstrained directions during the test
to ensure that it remains constant within the elastic range, see Fig. 6.
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Figure 6: Typical stress-strain plots for CNMs at different temperatures with the barostat
method with a pressure of 1 bar in unstrained directions. Significant fluctuations can be
detected at higher temperatures, yet unstretched stress components remain around zero.

The thickness of graphene, which is input for the calculation of the modu-
lus, is chosen to be 3.35 Å, compare Sec. 2.6. To avoid problems with periodic
boundary effects in z-direction, the thickness of the unit cell is chosen to be
much larger during the simulation. The result is then corrected with respect
to the true thickness. It is important to note here that the correction factor
is the ratio of the thickness of the simulation box relaxed in z-direction at
the time of the start of strain and the actual thickness of the structure. The
final result and its error are the averages of values in x- and y-direction and
their corresponding errors. An engineering strain rate of ε = 0.1 ps−1 and
metal units with a time step of dt = 0.0001 ps are utilized for this simu-
lations. Simulations were carried out again at different temperatures with
and without pressure control in z-direction (Fig. 7). Here a total strain of
0.02, corresponding to 2000 simulated time steps, is considered as an elastic
deformation and is therefore used to fit the linear function, see Fig. 6.

First of all, it can be seen that the overall mechanical stability decreases
slightly with temperature, since thermal fluctuations tend to soften a ma-
terial. Overall, the values are compatible with literature values and results
from the non-dynamic stress-strain method, compare Sec. 3.2.

Apart from the first data point at the very low temperature of 1 K almost
all data points are well aligned and can be regarded as equal within the error.
The data point at 1 K probably captures a situation where classical molecular
dynamics likely is no longer applicable. When looking at the zoomed-in
graph (Fig. 7 r.h.s.), slight deviations become visible, but these seem not
to be systematic and therefore cannot be clearly attributed to the lack of
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Figure 7: Left: Young’s modulus depending on temperature, red hexagons correspond
to a simulation with PBC and pressure control set to 1 bar in z-direction. The blue
hexagons represent data from simulation with fixed boundary and no pressure control in
z-direction. Error bars are shown in the corresponding color. Right: Zoomed in to see
smaller deviations.

pressure control. Upon examining the function of the Nosé-Hoover-barostat
as implemented in LAMMPS, it becomes evident why no significant difference
is observed. In the npt ensemble, pressure in a given direction is regulated
by adjusting the corresponding box dimensions [32]. However, since the
structure is not directly coupled to the box size, this results in no appreciable
effect.

Since carbon nanomembranes are quasi 2d structures with a non-vanishing
thickness of about a nanometer [41], the next step is to investigate the influ-
ence of pressure control in z-direction. For this purpose, the Young’s modulus
of various CNMs was calculated; the CNMs were generated using the method
described in 2.5, see Fig. 8.

When CNMs are initialized with PBCs in z-direction, the same problem
as with graphene occurs. Again the actual structure is not periodic in z-
direction, while the box is. Pressure can therefore only be generated by a
closer stacking of mirrored structures. However, this can turn problematic
as thermal fluctuation can lead to the formation of an artificial bulk phase
whose mechanical properties no longer correspond to those of the addressed
CNM.

In Fig. 8 it can be seen that in most cases the value determined without
barostat in z-direction, is lower. This would generally indicate that the stress
is relieved via a different spatial direction and therefore does not only occur in
the actively stretched direction. These disparities are, however, admittedly,
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Figure 8: Young’s modulus depending on temperature, red circles correspond to a sim-
ulation with PBC and pressure control set to 1 bar in z-direction. The blue triangles
represent data from simulation with fixed boundary and no pressure control in z direction.
The error bars depict the error of the mean value of the x- and y-direction.

relatively small compared to the large volume uncertainty. It is therefore not
decisive whether a barostat is activated in z or not.

Taking into account the errors, the applied temperature in a range of 50K
to 350K does not seem to have any significant influence for the structures
tested here. In general, this may of course be different. The obtained mean
values of the Young’s modulus in this temperature regime are summarized
in table 1 together with the values obtained by the other methods.

Table 1: Comparison of Young’s moduli calculated with three distinct methods for single-
layer graphene (SLG) as well as carbon nanomembranes 1 & 2, compare Figs. 2 and 3, for
temperatures in the range of 50 K to 350 K. All values are in GPa.

Method SLG CNM1 CNM2
Scaling 1088± 11 240± 5 253± 3
Stress-Strain 854± 5.2 35.835± 0.835 35.71± 5.13
Barostated dyn., PC in z 854± 23 33± 5 31± 3
Barostated dyn., without PC in z 854± 19 32± 7 28± 3

4. Summary

If more than a rough estimate of the Young’s modulus of crystalline 2d or
quasi 2d structures, or even the tensile strength of an amorphous structure
is intended, the scaling method with its calculation via the curvature of the
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potential energy should not be favoured. While the value for single-layer
graphene is in agreement with calculations from reference [2], the moduli for
CNM structures are an order of magnitude too big compared to experimental
values of about 10GPa [14] as already reported by Ehrens et al. [12]. Both
stress-strain based algorithms perform much better and more reliable as they
also account for other elastic deformation mechanism instead of only bond
elongation.

The obtained results are much closer to the predicted 10GPa for CNMs.
Remaining discrepancies are probably due to the uncertainties of the struc-
ture itself.

Which method works best depends on the application. The clamped
region stress-strain method is easier and saver to use, but only calculations
at T = 0 are possible. If it is assumed that the mechanical stability varies
noticeably with temperature, this method should not be used.

The barostated dynamics method on the other hand, allows for calcula-
tion under several temperature and pressure conditions, but is more difficult
to adjust due to the larger number of parameters, and it requires closer mon-
itoring [1].

Finally, considering the barostat method, if no change in pressure in z-
direction is observable for (quasi) 2d materials during straining, even without
activated pressure control, we would recommend not to use pressure control
for (quasi) 2d materials, as this could be a possible source of errors.
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[39] W. Demtröder, Mechanics and Thermodynamics, Springer, 2017.
URL: https://doi.org/10.1007/978-3-319-27877-3. doi:10.1007/
978-3-319-27877-3.

[40] F. Memarian, A. Fereidoon, M. Darvish Ganji, Graphene young’s
modulus: Molecular mechanics and dft treatments, Superlat-
tices and Microstructures 85 (2015) 348–356. URL: https://www.

sciencedirect.com/science/article/pii/S0749603615300239.
doi:https://doi.org/10.1016/j.spmi.2015.06.001.

[41] Y. Yang, P. Dementyev, N. Biere, D. Emmrich, P. Stohmann, R. Ko-
rzetz, X. Zhang, A. Beyer, S. Koch, D. Anselmetti, A. Gölzhäuser, Rapid
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