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Persistent oscillations are a hallmark of non-ergodic time evolution. While time-crystalline be-
havior results from, e.g., many-body localization, here we show that ever-revolving solitary waves
emerge in flatband Heisenberg quantum spin systems.

Introduction.—Ever-lasting oscillations are a fascinat-
ing phenomenon that got a new twist with the advent of
time-crystals [1–4], where a quantum system exhibits os-
cillatory behaviour of some of its observables. The topic
is still so new that every now and then hot debates try to
settle the subject, compare [5–7], but often do not make
it into publications since contrary to the time crystal the
field moves on. Some systematic of time-crystalline be-
havior is provided in Figure 8 of [8].

The example we want to discuss in the following be-
longs to the class of non-driven closed Hamiltonian sys-
tems, and thus has got some relationship with quantum
scars [9–13] as well as Hilbert space fragmentation [14–
16]. The appearance of quantum scars, Hilbert space
fragmentation or time crystals signals non-ergodic/non-
thermalizing behavior that contradicts our expectation
of thermalization that nowadays is the natural expecta-
tion for generic quantum systems even when closed and
under unitary time evolution [17–27]. And in order not
to interfere with the still evolving notion of time crystals
we prefer to qualify the persistant oscillatory dynamics
discussed in this article as sufficiently non-trivial (com-
pared to trivial Bloch oscillations or single-spin Larmor
precessions). Moreover, it is related to the observation of
solitary waves in quantum spin systems [28].

Magnetic solitons have been detected experimentally in
several magnetic systems [31–35] for instance as domain-
wall like or envelope solitons. From a theoretical point
of view magnetic solitons are solutions of non-linear dif-
ferential equations as for instance the cubic Schrödinger
equation [36, 37] usually as the result of an approxima-
tion of the time-dependent Schrödinger equation, which
is linear. For instance, the cubic Schrödinger equation
arises when quantum spins are replaced by a classical
spin density [38].

As discussed already in Ref. [28], the linear time-
dependent Schrödinger equation allows for solutions that
move along or across some translationally symmetric
quantum spin system with frozen shape. Such states
shall be called solitary waves. More precisely, we want to
call |Ψs ⟩ a solitary wave if there exists a minimal time
τ > 0 for which the time evolution equals (up to a global
phase) the shift by one unit cell of the spin system [28]. A
state |Ψs ⟩ that is a superposition of energy eigenstates
| k,E = αk + E0 ⟩, k = 0, 1, 2, . . . with a linear dispersion
relation would behave as a solitary wave and move on for-

Figure 1. Top: Structure of the delta chain with apical spins
sa and basal spins sb as well as exchange interactions J1 and
J2. The spins are numbered 0, 1, . . . , N − 1. Periodic bound-
ary conditions are applied, i.e. N ≡ 0. An independent local-
ized one-magnon state is highlighted that extends over three
neighboring sites as indicated [29]. Bottom: Energy eigenval-
ues forN = 20 and sa = sb =

1
2
for one-magnon (M = Ns−1)

and two-magnon space (M = Ns− 2. The momentum quan-
tum number k (wave number) runs from 0 toN/2−1, compare
[30].

ever. With periodic boundary conditions as for instance
naturally given in spin rings this would lead to everlast-
ing revolutions around the closed structure.

While Ref. [28] speculated that in a (dense) spectrum
sufficiently many eigenstates with linear dispersion rela-
tion should exist, which typically is not the case, flatband
systems give rise to perfectly linear dispersion relations
even in non-dense spectra when combining appropriate
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multimagnon states [29, 39–45]. In order to demonstrate
the approach as well as the resulting dynamics we choose
the one-dimensional delta chain in the Heisenberg model
with spins s = 1/2 which exhibits flat bands in serveral
multimagnon subspaces for a ratio of the two defining ex-
change interactions of J2/J1 = 1/2, compare Fig. 1. We
find it remarkable that flatband spin systems such as the
delta chain thus give rise to two rather different phenom-
ena: disorder-free localization with zero group velocity
[11, 30] as well as solitary dynamics demonstrated in this
paper.

Essential properties of flatband systems.—The antifer-
romagnetic delta chain, also termed sawtooth chain, is
shown in Fig. 1 (top). It is modelled by the Heisenberg
model with periodic boundary conditions

H∼ = −2J1

N−1∑
i=0

s⃗∼i · s⃗∼i+1 − 2J2

N
2 −1∑
i=0

s⃗∼2i · s⃗∼2i+2 . (1)

s⃗∼i denotes the spin vector operator at site i, and J1 < 0

as well as J2 < 0 are antiferromagnetic exchange inter-
actions. The unit cell contains two spins which gives rise
to momentum quantum numbers k = 0, 1, . . . , N/2 − 1.
Overall, the eigenstates can be organized according to the
present symmetries and labeled with total spin S, total
magnetic quantum number M , and momentum quantum
number (wave number) k.

In one-magnon space two energy bands appear of
which one is flat for J2/J1 = 1/2, see Fig. 1 (center).
This property is equivalent to the existence of localized
independent one-magnon states (sometimes also termed
“compact localized states” [45–47]) of which one is shown
in Fig. 1 (top). These states are not only eigenstates of
the Hamiltonian in one-magnon space, but also ground
states since they are given by Fourier transforms of the
ground-state flat band [29]. Out of localized independent
one-magnon states one can construct n-magnon states
that are also eigen- and groundstates of the Hamilto-
nian in their respective n-magnon spaces up to the maxi-
mum possible number of localized independent magnons
[29, 48], compare 2-magnon space in Fig. 1 (bottom).
This leads to a strict linear dispersion between mag-
netic quantum number M and ground state energy of
the (Ns−M)-magnon space.
The desired linear dispersion relation between E and

k is then obtained by picking appropriate eigenstates
|M,k, α ⟩ from the respective degenerate ground state
manifold. α serves as a label to enumerate the levels
with a certain M and k. To be specific,

|Ψs ⟩ =c0 |M = Ns, k = 0 ⟩ (2)

+c1 |M = Ns− 1, k = 1, α1 ⟩
+c2 |M = Ns− 2, k = 2, α2 ⟩ . . . ,

where the first state is the magnon vacuum, the second
state a (k = 1)-eigenstate from the flat ground state band

in one-magnon space, the third a (k = 2)-eigenstate from
the flat ground state band in two-magnon space, and
so on. We consider a superposition of more than two
eigenstates as non-trivial because it is unlikely for generic
systems that more than two eigenstates fulfill a linear
dispersion relation exactly.
In general, with U∼ being the time-evolution operator

and T∼ the operator that translates (shifts) by one unit

cell, solitary waves |Ψs ⟩ fulfill

U∼(τ) |Ψs ⟩ = e−iϕ0T∼
± |Ψs ⟩ (3)

for a certain discrete time τ (up to a global phase). In-
serting decomposition (2) yields

Eµτ/ℏ = ±4πkµ
N

+ 2πmµ + ϕ0 , mµ ∈ Z (4)

mentioned above with some arbitrary constants due to
properties of the complex unit circle. This results in a
minimal τ of

τ =
∆k4πℏ
∆EN

, (5)

showing ℏ explicitly for convenience [28].
To some extend the solitary waves can be shaped

depending on the number, kind, and amplitude of its
Fourier components, compare (2), since the flat band
states are often degenerate.
Numerical example.—We looked at a delta chain with

N = 20 and s = 1/2 at the flatband point J2/J1 =
1/2. Figure 2 shows the time evolution of the expectation
value of individual operators s∼

x
ℓ

⟨ s∼
x
ℓ ⟩ = ⟨Ψs | s∼

x
ℓ |Ψs ⟩ (6)

as a function of time for a superposition of four energy
eigenstates with k = 0, 1, 2, 3. One recognises two fea-
tures: (1) every individual spin expectation value oscil-
lates permanently, and (2) this oscillation has got an off-
set (of size τ) with respect to the neighboring unit cell.
In total, the picture shows a wave that travels around
the delta-chain ring.
A measure for the stability of the solitary wave is the

overlap of the shifted state with the time evolved one (re-
lated to the Jozsa fidelity [49] after one revolution around
the ring)

η(t) = ⟨Ψs |T∼
−1U∼(t) |Ψs ⟩ , τ/2 ≤ t < 3τ/2 . (7)

We define η(t) piece-wise and restart the procedure for
the next interval accordingly. For a perfect solitary wave
the absolute value of η(nτ), n ∈ Z, is equal to 1. This is
seen in Fig. 3 when looking at the blue curve that shows
the case of a perfect solitary wave |Ψ0 ⟩ = |Ψs ⟩. If
some random component is added to a perfect solitary
wave, resulting in |Ψ1 ⟩, |η(t)| in general will not return
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Figure 2. Time evolution of the expectation values ⟨ s∼
x
ℓ ⟩ in a

delta chain with N = 20 spins. The initial state is a superpo-
sition of four eigenstates according to (2). The characteristic
time τ can be deduced from the shift by one unit cell (of two
neighboring spins).

to its initial value. However, |η(t)| periodically returns
to some smaller value since the contribution of the soli-
tary wave develops independently of the remainder for
the linear Schrödinger equation. The random compo-
nent might even equilibrate, i.e., smear out around the
ring while the solitary-wave contribution still runs un-
perturbed (green curve), see discussion in [30]. If the
Hamiltonian is slightly off the flatband scenario, i.e.,
possesses only dispersive bands, an approximate solitary
wave |Ψ2 ⟩ slowly looses recurrence, and |η(t)| decays
while still oscillating (red curve in Fig. 3).

Figure 3. Overlap η(t) of the shifted state with the time
evolved state for a perfect solitary wave |Ψ0 ⟩ (blue), a soli-
tary wave perturbed with a random admixture |Ψ1 ⟩ (green)
and an approximate solitary wave in a system with a slightly
dispersive band |Ψ2 ⟩ (red). For the latter case an approxi-
mate, effective τ was used as unit of time.

Discussion and conclusions.—In this paper, we demon-
strated that certain carefully prepared initial states of
flatband systems give rise to permanent oscillations and
solitary wave behavior. We would like to remind the
reader that a magnetic field is not involved. Quantum
spin systems with flat bands such as the discussed delta

chain, the kagome lattice, the square-kagome lattice,
the pyrochlore lattice and several other frustrated flat-
band systems thus do not only show very exciting mag-
netic properties like spin-liquid behavior, magnetization
plateaus and jumps, they also provide examples of non-
generic, non-ergodic behavior expressed for instance in
disorder-free localization with zero group velocity [11, 30]
as well as persistent motion of solitary waves.
Of course, the peculiar dynamics is related to fine-

tuned Hamiltonians and sometimes also fine-tuned initial
states. Away from the flatband scenario, strictly perma-
nent oscillations will not occur, however, depending on
the strength of the dispersion they might be very long-
lived.

ACKNOWLEDGMENT

This work was supported by the Deutsche Forschungs-
gemeinschaft DFG (355031190 (FOR 2692); 397300368
(SCHN 615/25-2)).

∗ jeckseler@physik.uni-bielefeld.de
† jschnack@uni-bielefeld.de

[1] F. Wilczek, Quantum time crystals, Phys. Rev. Lett.
109, 160401 (2012).
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J. Schnack, Nonergodic one-magnon magnetization dy-
namics of the antiferromagnetic delta chain, Phys. Rev.
B 108, 064304 (2023).
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