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The S = 1/2 hyperkagome-lattice Heisenberg antiferromagnet, which for instance is related to
the experimentally accessible spinel oxide Na4Ir3O8, allows to study the interplay of geometrical
frustration and quantum as well as thermal fluctuations in three dimensions. We use 16 terms of a
high-temperature series expansion complemented by the entropy-method interpolation to examine
the specific heat and the uniform susceptibility of the S = 1/2 hyperkagome-lattice Heisenberg
antiferromagnet. We obtain thermodynamic quantities for the two possible scenarios of either a
gapless or a gapped energy spectrum. We have found that the specific heat c exhibits, besides
the high-temperature peak around T ≈ 0.669, a low-temperature one at T ≈ 0.021 . . . 0.033. The
functional form of the uniform susceptibility χ below about T = 0.5 depends strongly on whether
the energy spectrum is gapless or gapped. The value of the ground-state energy can be estimated
to e0 ≈ −0.440 . . . − 0.435. In addition to the entropy-method interpolation we use the finite-
temperature Lanczos method to calculate c and χ for finite lattices of N = 24 and 36 sites. A
combined view on both methods leads us to favour a gapless scenario since then the maximum of
the susceptibility agrees better between both methods.

I. INTRODUCTION

Frustrated quantum spin systems are a subject of in-
tense ongoing research in the field of magnetism [1–
4]. Geometric frustration and quantum fluctuations may
evade any ground-state ordering even in three dimen-
sions. Among several famous examples, the S = 1/2
pyrochlore-lattice Heisenberg antiferromagnet has at-
tracted much attention, being for decades a candidate for
the realization of a spin-liquid state in three dimensions
[5]. After intense numerical studies, a lattice symmetry
breaking in the ground state has been revealed [6–9].

A closely related example is the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet. Inspired by experi-
ments on the spinel oxide Na4Ir3O8 [10], in which low
spin d5 Ir4+ ions reside on the vertices of a hyper-
kagome lattice, several theoretical studies for the classical
(S → ∞) and quantum (S = 1/2) Heisenberg antiferro-
magnet on such a lattice have been performed [11–19].
The main focus of these studies is at ground-state prop-
erties of the S = 1/2 hyperkagome-lattice Heisenberg
antiferromagnet. For the ground state of this model a
gapped quantum spin liquid with topological order [12]
and a gapless quantum spin liquid with spinon Fermi
surfaces [15] were proposed by Lawler et al.. In contrast,
Bergholtz et al. [16] proposed a valence bond crystal with
a 72 site unit cell as the ground state of this model; this
implies a spin gap with a huge number of singlet exci-
tations below the lowest triplet state and thus a power
law for the specific heat and a vanishing susceptibility for
vanishing temperature.

Less attention has been paid to the finite-temperature
properties of the S = 1/2 hyperkagome-lattice Heisen-

berg antiferromagnet [15–17, 19]. It was argued that
c(T ) ∝ T 2 at low T [15] (similar to what is observed
for Na4Ir3O8 [10]) and that χ(T ) has a non-zero value
at T = 0 and almost no temperature dependence as
T → 0 [19] (again in agreement with experimental data
for Na4Ir3O8 [10]). In addition, high-temperature series
expansions for c and χ were developed and compared
with the experimental data for Na4Ir3O8 [17].

On the experimental side, apart from the mentioned
iridate compound Na4Ir3O8 [10], there are other solid-
state realizations of the hyperkagome-lattice Heisenberg
anitiferromagnet, see, e.g., Refs. [20–22]. Note, how-
ever, that the 5d-based transition-metal oxides, such as
Na4Ir3O8, are known for having a large spin-orbit cou-
pling so that the Heisenberg Hamiltonian apparently
should be accomplished by other terms relevant for such
materials [23].

In the present paper, we consider the thermodynamics
of the S = 1/2 hyperkagome-lattice Heisenberg antiferro-
magnet. The toolbox to tackle thermodynamics of frus-
trated quantum spin systems is rather scarce. Quantum
Monte Carlo suffers from the sign problem [24], exact
diagonalization or finite-temperature Lanczos methods
are restricted to too small lattices [25–27], the density-
matrix renormalization group technique requires a map-
ping via a “snake” path to a one-dimensional system [28].
Moreover, the pseudofermion functional renormalization
group approach focuses on the wave-vector-dependent
susceptibility [19], whereas one more universal method,
the rotation-invariant Green’s function method [29–34],
has not been applied to the S = 1/2 hyperkagome-lattice
Heisenberg antiferromagnet so far.

In our study, we use the high-temperature series expan-
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sions to the order of β16 (β = 1/T ) provided by Singh
and Oitmaa in Ref. [17]. Singh and Oitmaa used the
high-temperature series to compute various thermody-
namic properties down to a temperature [35] of about
T ≈ 0.25 [17]. In this paper, we combine the series ex-
pansion with the entropy method using knowledge about
the low-energy spectrum of the spin model in order to
obtain thermodynamic functions for the whole temper-
ature range. The entropy-method interpolation of high-
temperature series expansions was suggested by Bernu
and Misguish [36] and later used in several studies [37–
44]. Besides the temperature dependence for the specific
heat c(T ) and the uniform susceptibility χ(T ) for the S =
1/2 hyperkagome-lattice Heisenberg antiferromagnet, we
also obtain a prediction for the ground-state energy of the
model e0, which provides self-consistency of the entropy-
method calculations. Our entropy-method calculations
are accompanied by finite-temperature Lanczos calcula-
tions for finite lattices up to 36 sites.

The remainder of this paper is organized as follows. In
Section II we introduce the model whereas in Sections III
and IV we briefly explain the methods to be used for
obtaining the thermodynamic quantities. Then, in Sec-
tion V, we report our results for the ground-state energy
e0, the specific heat c(T ), and the uniform susceptibility
χ(T ). Finally, we summarize our findings in Section VI.

II. MODEL

The hyperkagome lattice has been described in several
papers. It can be viewed as a three-dimensional net-
work of corner-sharing triangles with 12 sites in a cu-
bic unit cell. It also can be viewed as a 1/4 depleted
pyrochlore lattice, meaning that three out of the four
sites in every tetrahedron are occupied by spins. As a
result, each spin of the three-dimensional hyperkagome
lattice has only four nearest neighbors just as for the two-
dimensional kagome lattice. There are several different
conventions regarding the coordinates of lattice sites (see,
e.g., Refs. [23, 45–47]). According to Fig. 1, we define the
sites on the hyperkagome lattice sites byRnα = Rn+rα.
Here, Rn = nxex+nyey +nzez, where nx, ny, nz are in-
tegers and ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1),
generates a simple cubic lattice. Moreover, the origins
of the 12 equivalent sites in the unit cell may be defined
by rα, α = 1, . . . , 12 with r1 = (3/8, 1/8, 5/8), r2 =
(5/8, 7/8, 5/8), r3 = (3/8, 7/8, 3/8), r4 = (5/8, 3/8, 1/8),
r5 = (3/8, 3/8, 7/8), r6 = (5/8, 5/8, 7/8), r7 =
(1/8, 5/8, 3/8), r8 = (7/8, 5/8, 5/8), r9 = (7/8, 3/8, 3/8),
r10 = (1/8, 7/8, 1/8), r11 = (7/8, 1/8, 1/8), r12 =
(1/8, 1/8, 7/8). In Fig. 1, we denote r1, . . . , r12 by
1, . . . , 12. Moreover, we display there 13 sites of the
nearby unit cells by 11− x+ y+ z, 11− x+ z, 8− x and
so on, where, e.g., 11−x+y+z means r11−ex+ey+ez,
and so on.

The isotropic Heisenberg Hamiltonian of the model is
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Figure 1. The hyperkagome lattice. Besides the 12 sites from
the same unit cell (1, . . . , 12 stand for r1, . . . , r12), we show 13
more sites of the nearby unit cells (we use, e.g., 11−x+y+ z
for r11 − ex + ey + ez to lighten notations). Moreover, we
show here 28 bonds (black lines); 15 bonds connect the sites
from the same unit cell and 9 bonds connect the sites of the
neighboring cells. The remaining 4 bonds, which connect the
sites 1 + y and 12 + y, 8 − x and 9 − x, 9 − x and 11 − x,
11 − x + y + z and 12 + y, are shown for better clarity. We
also display the underlying pyrochlore lattice.

given by

H = J
∑

⟨mα;nβ⟩

Smα · Snβ . (1)

Here, we set the antiferromagnetic interaction J = 1,
the sum in the equation runs over the nearest-neighbor
bonds of the hyperkagome lattice, and Smα represents
the S = 1/2 spin-vector operator at the lattice site Rmα.
Expanding the sum in Eq. (1) for fixed m, one gets 24
bonds, that is, 15 bonds connecting the sites within the
unit cell with the same cell index m and 9 bonds con-
necting the sites of the unit cell m with the sites of the
neighboring unit cellsm−ex,m−ey,m−ez,m−ex+ey,
m+ex−ez, and m+ey −ez, see Fig. 1. The remaining
4 bonds in Fig. 1, i.e., the ones which connect the sites
1 + y and 12 + y, 8 − x and 9 − x, 9 − x and 11 − x,
11− x+ y + z and 12 + y (cf. the bonds connecting the
sites 1 and 12, 8 and 9, 9 and 11, 11− x+ z and 12), are
shown here for the sake of clarity.

In what follows, we compare the properties of model
(1) on the hyperkagome lattice to the properties of
the two-dimensional kagome-lattice Heisenberg antifer-
romagnet, which features also four nearest neighbors,
as well as of the three-dimensional pyrochlore-lattice
Heisenberg antiferromagnet, which could be considered
the “mother” crystal structure, featuring six nearest
neighbors for each spin.
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Figure 2. Finite-lattice results for (top) the specific heat and
(bottom) the uniform susceptibility. Exact-diagonalization
(N = 12) and finite-temperature Lanczos method (N = 24,
R = 200 and N = 36, R = 20) data. Details of calculations
are given in Appendix A.

III. NUMERICS FOR FINITE-SIZE LATTICES

Previously, exact-diagonalization and finite-
temperature Lanczos methods were used for the
S = 1/2 pyrochlore-lattice Heisenberg antiferromagnet
[41, 48]. At first glance, the hyperkagome-lattice case
is simpler, since 1/4 of the pyrochlore sites are empty,
however, the unit cell now contains 12 sites (instead of
4 sites for the pyrochlore) and the finite-system sizes
may be N = 12, 24, 36, 48, and so on. The exact
diagonalization for one unit cell with N = 12 was
reported in Ref. [15]. A chain-like arrangement of two
(N = 24) and three (N = 36) unit cells is shown in
Appendix A. Periodic boundary conditions are applied
in all cases, also for N = 12 in order to guarantee the
correct number of nearest neighbors.

We report exact-diagonalization (N = 12) and finite-
temperature Lanczos (N = 24, 36) data in Fig. 2. The
results for the specific heat (top) and the uniform sus-
ceptibility (bottom) for N = 24 and N = 36 differ from
each other below about T ≈ 0.2. Surprisingly, the high-
temperature peak of the specific heat does not show any

finite-size scaling; it is already provided by the calcu-
lations for one unit cell (N = 12). On these grounds,
we thus speculate that the curve of the specific heat at
temperatures of the high-temperature peak and above
represents the thermodynamic limit. The position of the
low-temperature peak, on the other hand, does depend
on the size; it is at T ≈ 0.101 for N = 12, at T ≈ 0.069
for N = 24, and at T ≈ 0.055 for N = 36. Moreover, the
height decreases notably with growing N .
The maximum of χ(T ) has a mild dependence on sys-

tem size; it occurs at T ≈ 0.204 for N = 12, at T ≈ 0.168
for N = 24, and at T ≈ 0.158 for N = 36. Moreover,
the height remains practically unchanged. This behavior
can be traced back to the size of the singlet-triplet gap
for these systems. Its value is ∆s−t ≈ 0.383, 0.216, 0.136
for N = 12, 24, 36, respectively. The whole behavior is
reminiscent of that of the kagome-lattice antiferromagnet
[49].

In contrast, the results for the S = 1/2 pyrochlore-
lattice Heisenberg antiferromagnet of N = 32 sites [41]
reflect the thermodynamic limit only for T > 0.7, well
above the temperature of the high-temperature peak of
c(T ). Therefore, the finite-lattice results for the hyperk-
agome case allow a reliable discussion of thermodynamic
properties for much lower temperatures down to T ≈ 0.2.
We provide more details in Sec. V on results.

IV. ENTROPY METHOD

As have been mentioned above, in our study we use
the high-temperature series expansion up to 16th or-
der, which was reported in Ref. [17], see series ex-
pansion coefficients for lnZ and the uniform struc-
ture factor in Table I of Ref. [17]. On the other
hand, we employ the Magdeburg HTE code developed
mainly by Lohmann [50, 51] (which is freely available
at http://www.uni-magdeburg.de/jschulen/HTE/) in an
extended version up to 13th order to check the series
of the specific heat and the static uniform susceptibility.
Our results coincide with those of Ref. [17].

The high-temperature series expansion may be im-
proved by simple Padé approximants [u, d](T ) =
Pu(β)/Qd(β), where Pu(β) and Qd(β) are polynomi-
als of order u and d, u + d ≤ 16, and the se-
ries expansion of [u, d](T ) coincides with the high-
temperature series of c or χ up to 16th order with re-
spect to β = 1/T . Comparing close to diagonal Padé
approximants [5, 5], [5, 6], [6, 6], [6, 7], [7, 7], [7, 8], [8, 8]
(not shown here), we conclude that they start to de-
viate notably one from another below T ≈ 0.5 and
thus can reproduce the high-temperature peak of c(T )
at T ≈ 0.669, but not any of the specific features of
χ(T ) since χ(T ) increases monotonously to temperatures
well below T = 0.5 and also has got its maximum below
T = 0.5.

In order to study the thermodynamic behavior at
lower temperatures we use the entropy-method interpo-
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lation scheme introduced by Bernu et al. [36–38] and
further used in several studies [39–44]. Within the en-
tropy method one interpolates the entropy (per site) s
as a function of the mean (internal) energy (per site) e,
s(e). As e approaches its maximal value e∞ = E(T →
∞)/N = tr(H)/N = 0, the entropy is known from high-
temperature series expansion, s(e) = ln 2 +

∑
i>1 aie

i

(i.e., the coefficients a2, . . . , a16 are known, see Ref. [36]).
As e approaches its minimal (ground-state) value e0, the
entropy behaves as s(e) ∝ (e− e0)

α/(1+α) if c(T ) = ATα

for T → 0 (gapless low-energy excitations) or as s(e) ∝
−[(e− e0)/∆](ln[∆(e− e0)]− 1) if c(T ) ∝ e−∆/T /T 2 for
T → 0 (gapped low-energy excitations). Next, we inter-
polate, instead of s(e), an auxiliary function G(e), dif-
ferent for the two types of low-energy excitations, which
immediately gives s(e). For the gapless case we have

G(e)=
[s(e)]

1+α
α

e− e0
→ Gapp(e)=

(ln 2)
α

1+α

−e0

Pu(e)

Qd(e)
;

sapp(e) = [(e− e0)Gapp(e)]
α

1+α . (2)

And for the gapped case we have

G(e)= (e− e0)

[
s(e)

e− e0

]′
→ Gapp(e)=

ln 2

e0

Pu(e)

Qd(e)
;

sapp(e)

e− e0
=

ln 2

−e0
−
∫ 0

e

dξ
Gapp(ξ)

ξ − e0
. (3)

Here, Pu(e) and Qd(e) are the polynomials of order u
and d, u + d ≤ 16, and the series expansion of the quo-
tient [u, d](e) = Pu(e)/Qd(e) coincides with the Maclau-
rin series of G(e) known up to 16th order. Moreover, the
prime denotes the derivative with respect to e. Knowing
the dependence s(e), we obtain the desired temperature
dependence of the specific heat c(T ) in the parametric
form: T = 1/s′(e) and c = −[s′(e)]2/s′′(e). Finally,
we can calculate the prefactor A, Aapp = [α1+α/(1 +
α)α][Gapp(e0)]

α, for the gapless case and the energy gap
∆, ∆app = −1/Gapp(e0), for the gapped case. In the
presence of a (small) external magnetic field h one gets
the entropy sapp(e, h) which yields the uniform suscep-
tibility χ via the relations: m = [1/s′(e, h)]∂s(e, h)/∂h,
χ = m/h (h → 0).
Thus, to obtain the thermodynamic quantities within

the framework of the entropy method one needs, besides
the high-temperature series for c and χ, to know i) the
ground-state energy e0, ii) how c(T ) vanishes as T → 0,
and iii) the value of χ0 ≡ χ(T = 0) in the case of gap-
less low-energy excitations. Even if the precise value of
e0 is not available and both gapless and gapped exci-
tations are acceptable, one can proceed as in Ref. [40].
First, one has to assume some reasonable value e0 (be-
ing prepared to explore systematically a certain region of
e0). Second, one has to assume the exponent α in the
case of a gapless spectrum or one has to assume that the
spectrum is gapped. Then, for the assumed e0 and gap-
less/gapped energy spectrum one has to calculate within
the entropy method the specific heat c(T ) using all nP
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−0.4425 −0.44 −0.4375 −0.435 −0.4325

p
=
n

cP
/n

P

e0

O − 16
O − 15

Figure 3. The ratio of the number of “coinciding” entropy-
method Padé approximants ncP to the number of all consid-
ered entropy-method Padé approximants nP, p = ncP/nP,
based on the series of 15th (thin green) and 16th (thick red)
orders as a function of the chosen value of e0. Here Ti = 0.5,
∆T = 0.025, Tf = 0.1, see the main text. We consider both
assumptions, gapless (solid) and gapped (dot-dashed) low-
energy excitations.

available Padé approximants [u, d](e). There are n + 1
Padé approximants based on the series up to nth order;
we discard from the very beginning four Padé approxi-
mants [n, 0], [n−1, 1], [1, n−1], [0, n] so that nP = n−3.
Next, one has to examine the “closeness” of all nP pro-
files c(T ) by examining them thoroughly from some (high
enough, but not too high) temperature Ti down to some
(sufficiently low) temperature Tf with temperature steps
∆T . If the absolute value of the difference of a certain
c from the average value (arithmetic mean) c at a run-
ning temperature T (Tf ≤ T ≤ Ti) is less than some
bound, e.g., 0.001, this c belongs to the set of “coincid-
ing” Padé approximants. In the opposite case, this Padé
approximant is discarded and not considered for lower
temperatures. According to Refs. [40, 43], a large num-
ber of coinciding curves ncP, or more precisely a large
value of p = ncP/nP, provides evidence that the assump-
tions made about e0 and the low-energy excitations are
self-consistent.
In Fig. 3 we illustrate such an analysis based on nP

Padé approximants following from the 15th (thin green)
and 16th order (thick red) in Eqs. (2) or (3) for the
specific heat c(T ) under the assumption of a gapless
spectrum with α = 2 (solid) or a gapped spectrum
(dot-dashed). Here we set Ti = 0.5, ∆T = 0.025,
Tf = 0.1, see Appendix B. If e0 is taken in the range
−0.440 2 . . . − 0.437 9 assuming a gapless spectrum, i.e.,
c(T ) = AT 2 as T → 0, and the analysis is based on 16th
order (nP = 13), we find that ncP = 6 and p ≈ 0.46.
Moreover, for the prefactor A we get A = 493 . . . 727.
If e0 is taken in the range −0.438 1 . . . − 0.435 3 as-
suming a gapped spectrum and the analysis is based
on 16th order, we find p = 4/13 ≈ 0.31. Moreover,
the energy gap is ∆ = 0.025 . . . 0.018. All these find-
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Table I. Ground-state energy e0 obtained by different authors

N=12 [15] −0.454

N=12/24/36 (present paper) −0.453 74/−0.446 33/−0.445 10

QSL [15] −0.424

VBC [16] −0.430 115

EM (present paper) −0.440 . . .−0.435

ings are visualized by the thick red curves in Fig. 3.
Slightly different values of e0 which provide maximal
values of p follow from the analysis based on 15th or-
der, see the thin green curves in Fig. 3. Namely, for
the gapless spectrum with e0 = −0.441 5 . . . − 0.438 5
we have p = 5/12 ≈ 0.42, A = 377 . . . 563; for the
gapped spectrum with e0 = −0.438 5 . . .−0.437 2 we have
p = 6/12 = 0.5, ∆ = 0.027 . . . 0.024.
Following the strategy of Refs. [40, 43], we may con-

clude that the entropy-method prediction for the ground-
state energy e0 is −0.440 2 . . . − 0.437 9 (gapless exci-
tations) or −0.438 1 . . . − 0.435 3 (gapped excitations).
By combination of both cases we arrive at e0 = −0.440
. . .−0.435. In what follows we use this missing input
parameter e0 for the entropy method, considering both
assumptions about c(T ) as T → 0. We note in passing
that the uniform susceptibility χ(T ) is less convenient for
seeking a large value of p = ncP/nP, since it requires the
additional parameter χ0 if the spectrum is gapless.

V. RESULTS

A. Ground-state energy e0

We begin with the discussion of the ground-state en-
ergy of the S = 1/2 hyperkagome-lattice Heisenberg an-
tiferromagnet. Various proposals about the nature of the
ground state, i.e., spin liquids or valence-bond crystals,
yield for e0 the values −0.430 . . .−0.424, see Table I. Ex-
act diagonalizations for N = 12, 24, 36 yield −0.453 74,
−0.446 33, −0.445 10, see Table I, that, apparently, are
overestimated values of the thermodynamically large sys-
tems. As explained above, to provide consistency of the
entropy-method calculations, we have to assume for e0
the values −0.440 . . .− 0.435. Yet another plausible sim-
ple approach to determine e0 from the high-temperature
series expansion [6] is discussed in Appendix C; it yields
e0 about −0.448. The determination of e0 based on the
high-temperature series expansion seems to be rather for-
mal, since it does not use any specific picture for the
ground state. However, the experience from other mod-
els, including exactly solvable ones and precisely exam-
ined numerically ones, gives hints that it may yield quite
reasonable predictions [40, 43].

It is worth noting that the ground-state energy for
the kagome lattice is quite close: −0.438 6(5) [52, 53],
−0.438 7 . . . [54] (i.e., about −0.219 per bond), but for
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Figure 4. Entropy-method results, obtained as explained in
Sec. IV, for (top) the specific heat and (bottom) the uniform
susceptibility of the hyperkagome-lattice S = 1/2 Heisen-
berg antiferromagnet. Blue curves correspond to the gap-
less spectrum c = AT 2 and red ones to the gapped spectrum
c∝e−∆/T /T 2. The shaded area (light blue and light red) rep-
resents the region of e0 where p has a maximum (see Fig. 3).
We also show N = 36 data (yellow) and two simple Padé ap-
proximants [7, 7] and [8, 8] for c(T ) (T ≥ 0.35) and for χ(T )
(T ≥ 0.25) and color in gray the region between them. The
simple Padé approximants almost coincide with the entropy-
method curves especially in the top panel. In the case of
gapless excitations, we set χ0 = 0.13.

the pyrochlore lattice it is rather different: −0.490(6)
[6], −0.483 1(1) [7], −0.489 . . . [9] (i.e., about −0.163 per
bond).

B. Thermodynamic properties

We pass to finite-temperature properties of the S =
1/2 hyperkagome-lattice Heisenberg antiferromagnet. In
Fig. 4 we report the temperature dependence of the spe-
cific heat and the uniform susceptibility obtained by the
entropy-method. The ground-state energy is determined
from the analysis of c(T ) as was explained in Sec. IV.
Both possibilities, the gapless spectrum with α = 2 and
the gapped spectrum, were considered, see blue and red
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curves, respectively. For the gapless excitations we set
χ0 = 0.13 inspired by experimental data [10] and other
theoretical papers [17, 19].

The specific heat c(T ) besides the high-temperature
peak at T ≈ 0.669 has an additional low-temperature one
at about T ≈ 0.033 (gapless excitations) or T ≈ 0.021
(gapped excitations); the height of the low-temperature
peak is about two times smaller than the height of the
main peak. These features, at least at intermediate tem-
peratures and above, are quite similar to what is known
for the kagome-lattice (and also the square-kagome-
lattice) case (a peak at T = 0.67, a shoulder of two times
smaller height at T = 0.1 . . . 0.25 [49, 55]), but differ from
those for the pyrochlore-lattice case, where only one max-
imum in c(T ), but no additional low-temperature feature
(peak/shoulder) was found [41, 56]. Concerning high-
temperature series expansions for c, they coincide for the
hyperkagome and kagome lattices up to β5, but differ for
the pyrochlore lattice already in terms proportional to
β2.

The uniform susceptibility χ(T ) behaves identically
at T above about 0.5 for gapless and gapped excita-
tions. For lower temperatures, χ(T ) has a maximum at
T ≈ 0.118 (gapless excitations) or T ≈ 0.309 (gapped
excitations) and approaches either χ0 (the former case)
or zero (the latter case) as the temperature goes to zero.
This resembles the maximum of χ(T ) for the finite-size
kagome lattices [49] and for the infinite kagome lattice
analysed by the entropy method [38]. In contrast, for
the pyrochlore lattice we have several scenarios none of
which can be excluded to date [41, 56, 57]. Concerning
high-temperature series expansions for χ, they coincide
for the hyperkagome- and kagome-lattice cases up to β6

but differ for the pyrochlore-lattice case already in terms
proportional to β3.

A general message that can be taken from Fig. 4 is
that the entropy-method and finite-system numerics data
(and even simple Padé approximants for χ) favour the
assumption of a gapless spectrum. This conclusion agrees
with experiments for Na4Ir3O8.

As has been mentioned above, the hyperkagome-
lattice Heisenberg antiferromagnet has similar proper-
ties with the kagome-lattice one, but different to the
pyrochlore-lattice one. In Fig. 5 we compare the finite-
temperature Lanczos method data for c(T ) and χ(T )
for the hyperkagome-lattice case with the kagome- and
pyrochlore-lattice cases. We have to remark here that
the energy scale is different for the pyrochlore (each site
has six neighbors) and the kagome or hyperkagome (each
site has four neighbors) and one may rescale T → T/z
and χ → χz so that different lattices, with z = 4 and
z = 6, can be compared, but the conclusions below
remain unchanged. Namely, Fig. 5 illustrates a good
agreement above about T = 0.25 for the specific heat
(top panel) and even for all temperatures for the uni-
form susceptibility (bottom panel) for the hyperkagome-
and kagome-lattice Heisenberg antiferromagnets. In con-
trast, the pyrochlore-lattice Heisenberg antiferromagnet
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kagome N=36
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Figure 5. Comparison with the kagome- and pyrochlore-
lattice cases for (top) the specific heat and (bottom) the uni-
form susceptibility. Finite-temperature Lanczos method data
for N = 36 (hyperkagome lattice, see Fig. 2, and kagome lat-
tice [49]) and N = 32 (pyrochlore lattice [41]). The extra
low-temperature peak of c(T ) at T ≈ 0.117 for the pyrochlore
lattice (top panel, black curve) is a finite-size effect and is not
present for N → ∞ [41].

shows different temperature profiles c(T ) and χ(T ) (also
after rescaling). Thus, we may conclude that the three-
dimensional hyperkagome lattice is closer to highly frus-
trated two-dimensional lattices (kagome, square-kagome)
than to the three-dimensional pyrochlore lattice. How-
ever, it is worth noting the difference: For the kagome
lattice the low-temperature peak of c(T ) moves to higher
temperatures with increasing N [49], opposite to what
is observed for the hyperkagome lattice (recall the top
panel of Fig. 2). Thus, for the kagome lattice one yields
a low-temperature shoulder of the main peak in the ther-
modynamic limit [58].

Before closing this section, let us comment on the
relevance for experiments. Previous theoretical papers
[15, 17, 19] compare c(T ) or c(T )/T and χ(T ) or 1/χ(T )
to available experimental data for the S = 1/2 hyper-
kagome antiferromagnet Na4Ir3O8 [10]. These compar-
isons exhibit noticeable discreapancies roughly below J/2
(J is about 300 K for Na4Ir3O8) and even at higher tem-
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peratures for the specific heat. The authors attributed
this disagreement to an incomplete subtraction of non-
magnetic contribution to the experimentally measured
c(T ) [17] and an insufficiency of the model (1) for de-
scription of the S = 1/2 hyperkagome antiferromagnet
Na4Ir3O8 [16, 23].

VI. SUMMARY

In the present paper, we consider the S = 1/2 hyperka-
gome-lattice Heisenberg antiferromagnet. Using finite-
lattice calculations and high-temperature series expan-
sion up to 16th order [17] complemented by plausible
assumptions about low-temperature properties we have
obtained the temperature dependences for the specific
heat and the uniform susceptibility. Our main findings
are as follows: We observe a two-peak profile for c(T ),
and we do not see any difference on whether the exci-
tations are gapless or gapped for χ(T ) above T ≈ 0.5.
As a byproduct, we obtain the ground state energy e0,
which provides self-consistency of the entropy-method
calculations. We have found that the thermodynamics
of the three-dimensional hyperkagome-lattice Heisenberg
antiferromagnet is quite similar to the two-dimensional
kagome-lattice one, but differs from that of the py-
rochlore lattice.

Future work on thermodynamics may be related to ap-
plication of universal and specific tools to tackle the prob-
lem. Evidently, the S = 1/2 hyperkagome-lattice Heisen-
berg antiferromagnet can be studied by the rotation-
invariant Green’s function method for obtaining approxi-
mate thermodynamic and dynamic quantities on an equal
footing. Similar studies for the quantum kagome-lattice
and pyrochlore-lattice Heisenberg antiferomagnets were
reported in Refs. [33, 34]. On the other hand, the
hyperkagome-lattice Heisenberg antiferromagnet repre-
sents a flat-band system, since the one-magnon energy
spectrum has dispersionless (flat) bands. The flat-band
states may be relevant at high fields and low tempera-
tures and their dominant contribution to thermodynam-
ics can be elaborated by special methods of flat-band
systems, see Refs. [59, 60].
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Appendix A: Finite-lattice calculations

In this appendix we present more details about finite-
lattice calculations. For exact diagonalizations, we use
the 12-site unit cell with periodic boundary conditions.
Note that the open 12-site unit cell has sites with only
two neighbors, as, e.g., site 1, since the bonds between
this site and sites 2 and 3 are absent for open boundary
conditions. Periodic boundary conditions appear after
superposing the sites 1 and 1 + y, 4 and 4 + z, 8 and
8− x, 9 and 9− x, 10 and 10 + z, 11 and 11− x+ y+ z,
12 and 12 + y in Fig. 1. In Fig. 6 we show the lattices
of 24 and 36 sites (two and three unit cells arranged in a
row along the x axis) which are used for studies with the
finite-temperature Lanczos method. In Fig. 6, the sites
1, . . . , 12 of the first unit cell (cf. Fig. 1) are numbered as
13, . . . , 24 and 25, . . . , 36 in the second and third unit cell,
respectively. Periodic boundary conditions are implied in
x, y, and z directions, i.e., the gray disks with identical
numbers in Fig. 6 coincide.
In our finite-lattice numerics we use the conservation of

the z-component of the total spin as well as lattice sym-
metries, i.e., the Hilbert space H splits into orthogonal
subspaces H(γ) with γ labeling the respective symmetry.
Exact and complete diagonalizations are performed for
N = 12 using Schulenburg’s publicly available package
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spinpack [61, 62].
Within the finite-temperature Lanczos method, the

sum over an orthonormal basis in the partition function
Z is replaced in a Monte-Carlo fashion by a much smaller
sum over R random vectors where each random vector is
employed for a trace estimation [25],

Z ≈
Γ∑

γ=1

dim(H(γ))

R

R∑
ν=1

NL∑
n=1

exp

(
−ϵ

(ν)
n

T

)
× |⟨n(ν)|ν⟩|2 , (A1)

where |ν⟩ labels random vectors for each symmetry-
related orthogonal subspace H(γ). The exponential of
the Hamiltonian H in Eq. (A1) is approximated by its
spectral representation in a Krylov space spanned by the
NL Lanczos vectors starting from the respective random
vector |ν⟩, where |n(ν)⟩ is the nth eigenvector ofH in this

Krylov space with the energy ϵ
(ν)
n . In the present study

we take R = 200 for N = 24 and R = 20 for N = 36, cf.
Fig. 2.

Appendix B: More details of the entropy-method
calculations

In this appendix we provide some technical details
about the entropy-method calculations which are out-
lined in Sec. IV. Our approach is similar to the one of
Refs. [40, 43].

First we construct for a reference a bundle of close
to diagonal Padé approximants [u, d](T ) of the high-
temperature series for c(T ) and select those Padé approx-
imants which are “indistinguishable” unless the temper-
ature becomes lower than, say, T = 0.5. Clearly, the
entropy-method profiles c(T ) should coincide with the
bundle of simple Padé approximants above this temper-
ature. Next, we take the initial temperature Ti = 0.5
at which the constructed simple Padé approximants be-
gin to deviate one from another and start to lower the
temperature by ∆T = 0.025 making 16 steps to reach
the final temperature Tf = 0.1. We assume a certain
value of e0 (and will scan the ground-state energies e0
with the step ∆e0 = 0.000 1), and consider both sce-
narios for the low-energy spectrum (gapped or gapless)
separately. This way, we obtain a set of entropy-method
curves c(T ) according to all considered nP Padé approx-
imants [u, d](e) in Eqs. (2) or (3). The entropy-method
curves c(T ) coincide with the bundle of simple Padé ap-
proximants for T ≥ Ti with the absolute accuracy below,
e.g., 0.001. Now, for each temperature Ti, Ti−∆T, . . . , Tf ,
we find those [u, d](e) that yield c(T ) which deviates from

the average value (arithmetic mean) c(T ) by an absolute
value less than 0.001. We count the number of such Padé
approximants ncP and calculate p = ncP/nP.
In Sec. IV we mention that the choice of Ti is impor-

tant: We took Ti = 0.5 which is below the temperature
of the high-temperature peak of c(T ) at T ≈ 0.669. We

also like to remark that achieving large values of the ra-
tio p = ncP/nP should be considered with caution. For
example, if taking Ti = 1 (and ∆T = 0.05, Tf = 0.2),
we obtain values of p quite close to 1 (above 0.69 and up
to 0.92). However, by comparing the related curves of
c(T ) and χ(T ) with simple Padé approximants one no-
tices a larger discrepancies at T = 0.5 than in Fig. 4.
Therefore, since simple Padé approximants converge well
above T ≈ 0.5 we conclude that the choice of Ti = 0.5 is
preferable.

Appendix C: Estimation of e0 from
high-temperature series expansion

The high-temperature series expansion can be used
for the estimation of the ground-state energy of the
S = 1/2 hyperkagome-lattice Heisenberg antiferromag-
net following the lines of the Supplementary Material
of Ref. [6]. Below we repeat these arguments for the
S = 1/2 hyperkagome-lattice Heisenberg antiferromag-
net.
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−0.42

−0.4

−0.38

0 0.1 0.2 0.3 0.4 0.5

e

T

[6, 6]
[6, 7]
[7, 7]
[7, 8]

quadratic fit

QSL
VBC
EM

finite N

Figure 7. Estimate of the ground-state energy e0 from the
high-temperature series expansion up to 16th order (black
curve). We also plot simple Padé approximants for the inter-
nal energy e = (−∂ lnZ/∂β)/N and show the results for e0
of Refs. [15, 16] along with the entropy-method and finite N
data for e0, see Table I.

Since c(T ) = ∂e(T )/∂T , the ground-state energy e0
is given by e0 = −

∫∞
0

dTc(T ). Moreover, its upper

bound is given by e∗0 = −
∫∞
T∗ dTc(T ), where T ∗ > 0

is a temperature above which simple Padé approximants
[u, d](T ) of the high-temperature series expansion of c(T )
show a reliable convergence. Replacing c(T ) by [8, 8](T )
and assuming T ∗ = 0.35 we obtain for the upper bound
e∗0 ≈ −0.401, see Fig. 7.
Furthermore, consider the e(T ) as it is given by the

[7, 8](T ) Padé approximant and fit e(T ) by a quadratic
polynomial e0 + e1T + e2T

2 in the range between T =
0.4 and T = 0.5 or between T = 0.4 and T = 0.55.
This way we get an estimate for the ground-state energy
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e0 ≈ −0.448, see Fig. 7. If the taken range is between
T = 0.35 and T = 0.55, we arrive at only about 0.1%

lower energy e0. Just this latter quadratic fit is shown
by the black curve in Fig. 7. In Fig. 7 we also compare
different predictions for e0.
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