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Materials that are susceptible to pressure and external magnetic fields allow the combined use
of both for caloric processes. Here we report investigations of the ferromagnetic-antiferromagnetic
sawtooth chain that due to its critical behavior not only allows for both barocaloric as well as
magnetocaloric processes but also features very large cooling rates in the vicinity of the quantum
critical point.

I. INTRODUCTION

Several archetypical frustrated spin systems such as
the Heisenberg antiferromagnets on the kagome, square-
kagome, pyrochlore or sawtooth lattice feature a flat
energy band in one-magnon space [1–3], localized one-
magnon energy eigenstates, and corresponding multi-
magnon energy eigenstates [4]. These properties result
in a macroscopic magnetization jump to saturation [5] as
well as an increased magnetocaloric effect at the satura-
tion field [6], non-ergodic dynamics [7], and other frus-
tration effects [8]. For an overview see, e.g., Ref. [9].

The saturation field, however, is often not small and
thus experimentally hard to reach. Fortunately, it turns
out that for mixed ferromagnetic-antiferromagnetic inter-
action patterns models can be set up that feature similar
properties at zero field [10, 11]. For the paradigmatic
sawtooth (or equivalently delta) chain chemical com-
pounds could be synthesized that resemble these prop-
erties rather closely [12, 13]. Meanwhile, the class of
spin models featuring flat bands has been enlarged by
moving to special XXZ [14, 15] or Dzyaloshinskii-Moriya
couplings [16].

The critical properties of the ferromagnetic-
antiferromagnetic sawtooth chain with ferromagnetic
interaction J1 < 0 between nearest neighbor spins as well
as antiferromagnetic interaction J2 > 0 between next
nearest neighbor spins on even sites, compare Fig. 1, can
be tuned via the coupling ratio α = J2/|J1| > 0. For
0 ≤ α < αc = sa/(2sb) the ground state is given by the
multiplet of the ferromagnetic state, i.e., with maximal
total spin, whereas for α = αc the system features a
quantum critical point (QCP) with macroscopic ground
state degeneracy [10, 17, 18]. For α > αc the character
of the ground state depends on whether the length of
the sawtooth chain (with periodic boundary conditions)
is a multiple of four or a multiple of two but not of four,
compare [19, 20].
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Since the density of states varies massively in the vicin-
ity of the QCP the system exhibits a huge caloric ef-
fect. This will be discussed in IIIA. Experimentally, the
ratio α can realistically be modified by means of pres-
sure, that’s why we would like to term caloric effects
due to a variation of α as barocaloric throughout this
article. This dependence was already discussed in con-
nection with the molecular ring molecule Fe10Gd10 [13]
and is also observed for the antiferromagnetic sawtooth
chain, see e.g. [21].
Here we want to extend the caloric phase diagram by

additionally considering variations of the external mag-
netic field. To this end we investigate thermal equi-
librium observables O(t, h, α) as function of reduced
temperature t = T/|J1|, reduced magnetic field h =
gµBB/|J1|, as well as “pressure” α. We will demonstrate
that the combined use of barocaloric as well as magne-
tocaloric processes can lead to very large cooling rates in
the vicinity of the QCP.
The paper is organized as follows. In Section II we

introduce the model and major observables before we
present our results in Sec. III. The article closes with
a discussion in Section IV.

II. METHODS

A. The model

The sawtooth-chain Heisenberg model with periodic
boundary conditions is given by the Hamiltonian

H∼
′ =J1

N−1∑
i=0

s⃗∼i · s⃗∼i+1 + J2

N/2−1∑
i=0

s⃗∼2i · s⃗∼2i+2 (1)

+ gµBB

N−1∑
i=0

s∼
z
i ,

where s⃗∼i denotes the spin vector operator at site i, and

a tilde is used to denote operators in general. We will
consider the case where the exchange coupling J1 < 0
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is ferromagnetic and the exchange coupling J2 > 0 is
antiferromagnetic, compare also Fig. 1.

Figure 1. Structure of the sawtooth chain with apical spins
sa and basal spins sb as well as ferromagnetic interaction J1

and antiferromagnetic interaction J2. The spins are labeled
0, 1, . . . , N − 1. An independent localized one-magnon state,
that is an eigenstate of the Hamiltonian, is depicted.

The coupling ratio α = J2/|J1| > 0 allows to rewrite
the Hamiltonian as

H∼ =−
N∑
i=1

s⃗∼i · s⃗∼i+1 + α

N/2−1∑
i=0

s⃗∼2i · s⃗∼2i+2 (2)

+ h

N−1∑
i=0

s∼
z
i ,

with the dimensionless magnetic field h = gµBB/|J1|.
In the following we consider sa = sb = s = 1/2. De-

pending on the size N the system is treated with various
methods. For N ≤ 24 symmetries allow to obtain all
energy eigenvalues and eigenvectors by means of exact
numerical diagonalization of the Hamiltonian [22]. For
24 < N ≲ 36 the finite-temperature Lanczos method
(FTLM) allows to determine low-lying energy eigenvalues
as well as thermodynamic observables with high accuracy
[23, 24]. For even larger sawtooth chains with N > 36 a
flavor of the density matrix renormalization group theory
(DMRG, [25, 26]) which employs SU(2) symmetry is used
to obtain ground state energies in subspaces of total spin
S [20]. Thermodynamic properties are not investigated
for such large systems.

B. Observables

The observables defined in the following section will be
viewed as functions of the dimensionless model parame-
ters α (related to pressure) and h (external field).
Low-temperature caloric figures of merit such as adi-

abatic temperature change, isothermal entropy change
as well as the cooling rate are massively influenced by
the structure of the low-energy density of states and as
a special case of that by the degeneracy of the ground
state [27, 28]. Since the model (1) is SU(2)-invariant the
total spin of the ground state gives rise to a (2S + 1)-
degenerate multiplet at h = 0 which is Zeeman-split by
the magnetic field h. For instance, this led to a large
ground state degeneracy of (2S + 1) = 121 for Fe10Gd10
since its ground state spin is S = 60 [13]. A ground state

degeneracy immediately leads to a residual entropy at
zero temperature, termed S0 in the following. Isentropes
of smaller entropy run into such points in the α-h-plane
with decreasing temperature.
Besides the more trivial ground state degeneracy due

to the multiplet structure of the energy spectrum a mas-
sive degeneracy of levels can be observed at the QCP.
If such a degeneracy is exponential in N , the resulting
residual entropy is extensive, i.e. scales with the size of
the system N . This is relevant for macroscopic systems
and the thermodynamic limit.
Since entropy S(t, h, α) is a function of temperature,

field and pressure,

S(t, h, α) = −kBTr
[
ρ
∼
log

(
ρ
∼

)]
, (3)

with ρ
∼
= ρ

∼
(t, h, α) being the density operator, two adia-

batic cooling rates can be defined(
∂ t

∂ h

)
S,α

and

(
∂ t

∂ α

)
S,h

, (4)

where the first expression quantifies the change of the
temperature t with field and the second expression quan-
tifies the change of the temperature t with pressure on a
two-dimensional isentrope surface (S isosurface).

III. RESULTS

A. Ground state properties and quantum critical
point

For 0 ≤ α = J2/|J1| < αc = sa/(2sb) the ground state
is given by the multiplet of the fully polarized, i.e. fer-
romagnetic state. For N spins of spin quantum number
s = 1/2 this would yield a ground state spin of S0 = N/2.
For α > αc the character of the ground state depends on
whether the lengths of the sawtooth chain (with periodic
boundary conditions) is a multiple of four or a multiple
of two but not of four, at least for s = 1/2, compare
[19, 20]. Figure 2 displays this behavior for a selection of
smaller systems (always with periodic boundary condi-
tions). The result of the top panel was already discussed
in Ref. [20]: The ground state spin drops to zero for large
α in case of sawtooth chains where the length is a mul-
tiple of four. Cases of even length where the length is
not divisible by four behave differently. Here the ground
state spin assumes a non-zero value for large α; for N
spins s = 1/2 this would be (N + 2)/4. The underlying
reason is that the basal spins form a spin ring of odd
length whose approximate ground state spin is 1/2 for
large α [29]. The apical spins are then polarized accord-
ingly due to the ferromagnetic interaction.

For α = αc the system features a quantum critical
point (QCP) with macroscopic ground state degener-
acy [10, 18] and a very dense low-lying spectrum. Fig-
ure 3 displays this behavior for the case of 24 spins
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Figure 2. Ground-state spin quantum number S0 for vari-
ous α and selected lengths N that are multiples of four (top)
or multiples of two, but not of four (bottom). Depending
on the length exact diagonalization (ED), Lanczos diagonal-
ization (Lanczos), or SU(2) density-matrix renormalization
group theory (DMRG) was employed. The lines are drawn as
a guide for the eye.

s = 1/2. The lowest 50 eigenvalues are shown for se-
lected values of α except for α = 1/2, where the low-
est 10,000 eigenvalues are displayed. The collapse of the
spectrum for α → αc is the reason for the remarkable
caloric properties of the system in the vicinity of this
quantum critical point. The degenerate ground state
contains the multiplets of many spin quantum numbers,
S0 ∈ {0, S0,min, . . . , S0,max}, where e.g. for (all even) N
spins s = 1/2 S0,max = N/2 and for N being a multiple
of four S0,min = N/4 + 1.

B. Magneto- and barocaloric phase diagram

While the quantum phase transition at α = αc, h = 0
yields a macroscopic ground state degeneracy, further
points of ground state degeneracy can be found in the
α-h–plane. For each α, an external magnetic field h
splits all multiplets according to the respective magnetic
quantum number M . If M = −N/2 (for N spins with
s = 1/2) is not already the energetically lowest state
for α > 0.5, compare example in Fig. 3, crossings ap-
pear whenever magnetic levels of higher-lying multiplets

Figure 3. Example of low-lying energy levels for N = 24 as
function of α: Only the lowest 50 eigenvalues are shown for
selected values of α except for α = 1/2, where the lowest
10,000 eigenvalues are displayed. The intention is to picture
the very untypical density of states at the QCP for α = 1/2.
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Figure 4. Map of (near) ground state entropy for N = 16
and s = 1/2 as function of α and h (logarithmic scale). The
entropy was evaluated at t = 0.01 for technical reasons. At
α = 0.5, h = 0 the quantum critical point is visible. The
dotted curves that move towards the upper right corner sep-
arate areas with ground state spins S0 ∈ {S0,max, . . . S0,min}
from left to right; here in particular S0 = 8 in (1), S0 = 6
in (2), and S0 = 5 in (3), compare also Fig. 5. The light
region for larger α > 1 and almost vanishing field h reflects
a growing low-lying density of states consisting of excitations
with S ∈ {0, . . . 4}.

become new ground states. For those multiplets that
are part of the degenerate ground state at the QCP, this
yields curves of level crossings in the α-h-plane that head
towards the QCP, compare Fig. 4 and Fig. 5 as well as
discussion below.

The whole scenario can be pictured by means of an en-
tropy map as displayed in Fig. 4 for the case of N = 16
and s = 1/2. The near ground state entropy is color-
coded on a logarithmic scale; it was evaluated at t = 0.01
for technical reasons. At α = 0.5, h = 0 the quantum
critical point is visible. The reddish curves separate ar-
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Figure 5. Ground state spin S0 for N = 16 and s = 1/2 as
function of α and h.

eas with ground state spins S0 ∈ {S0,max, . . . S0,min} from
left to right. For larger α > 1 and almost vanishing field h
the reddish curves reflect a with α growing low-lying den-
sity of states consisting of excitations with smaller total
spin, here S ∈ {0, . . . 4}. In addition, the spectrum splits
into bunches of levels with further increasing α since the
system progressively turns into an antiferromagnetic ring
and loosely attached, almost free apical spins, compare
also [30]. This is reflected by the upturning branch at
low fields and α > 1.25.

Figure 6. Isentrope surface with S(t, h, α) = 0.69 < log(2) ≈
0.693 in the parameter-space of α, h, and t. The dotted curves
represent processes of steepest descent on which cooling rates
assume maximal values.

The change of ground state spin quantum numbers can
also be assessed by looking at Fig. 5, where S0 is dis-
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Figure 7. Isentrope surfaces in the parameter-space of α, h,
and t in the vicinity of the QCP for N = 8 (top), N = 16
(middle), and N = 24 (bottom) and entropy values close to
the residual entropy at the QCP. N = 8: S = 3.7 < log(41) ≈
3.714, N = 16: S = 6.7 < log(817) ≈ 6.706, N = 24: S =
9.56 < log(14260) ≈ 9.565.

played in terms of colored planes as function of α and h.
The above discussed ground state degeneracies happen
at the steps between planes of constant S0 of which the
rightmost three run towards the QCP at α = 0.5, h = 0
since the respective multiplets are part of the degenerate
ground state.
Moving from zero to non-zero temperatures the sys-
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tems allows many interesting thermodynamic processes
in particular since the iso-entropy (isentropic) surfaces
are strongly curved and feature cusps for low tempera-
tures, compare Fig. 6 for a small system with N = 8 and
s = 1/2. In contrast to purely barocaloric or purely mag-
netocaloric systems, a magnetic quantum critical system
offers processes with very large cooling rates when pres-
sure and field are modified simultaneously in order to
achieve a steepest descent on an isotrope surface. Two
such processes are depicted in Fig. 6 by curves of con-
nected bullet points.

A close-up look at the vicinity of the quantum critical
point in Fig. 7 shows that isentropes close to the value
corresponding to the degeneracy of the QCP assume very
large slopes towards zero temperature. These isentrope
surfaces mark the quantum critical region inside which
one observes universal behavior, i.e. no scale is provided
by system parameters, only temperature controls the be-
havior, and the fluctuations possess classical character,
see also [31, Fig. 1 (r.h.s.)] or [32, Fig. 1 (l.h.s.)]. For
α ̸= 0.5, a system-specific low-energy scale emerges due
to frustration that can be orders of magnitude smaller
than the involved parameters of the system such as J1/2
[33, 34]. Here for α > 0.5, quantum fluctuations domi-
nate whereas for α < 0.5 a ferromagnetic ordering exists
at zero temperature only [31]. As one can see in Fig. 7
and in accordance with [31] the quantum critical region
gets narrower with increasing system size. This is re-
lated to the fact that the residual entropy for α ̸= 0.5
scales roughly like log(N) whereas for α = 0.5 at the
QCP it scales approximately like N . This suggests that
the largest cooling rates are only achievable in very close
proximity to the QCP.

IV. DISCUSSION

Materials that are susceptible to pressure and external
magnetic fields allow the combined use of both for caloric

processes, compare Refs. [35–37] for related recent exam-
ples. This might, e.g., be advantageous when running
single-shot cooling experiments or thermodynamic cycles
with field and pressure sweeps. Spin systems such as
the discussed ferromagnetic-antiferromagnetic sawtooth
chain offer the additional feature of a quantum critical
point, whereby in the vicinity of this point cooling rates
are particularly large. In the space of external parame-
ters α (related to pressure) and h (magnetic field) this
special point can be approached from various directions,
not only via change of pressure which provides more ex-
perimental options.

Quite recently, the idea to employ magneto-electric
couplings was formulated for the sawtooth chain in or-
der to drive the ratio of the two exchange interactions
towards the critical value [16]. This would enable one
to use the material more closely to the QCP and thus
to benefit from much larger cooling rates. Altogether,
the electric field could replace pressure to drive α. One
could then speak of a magneto-electric drive where one
can apply both magnetic as well as electric fields to steer
the thermodynamic processes.
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Läuchli, L. Weber, S. Wessel, A. Honecker, B. Normand,
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