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Isotropic, but otherwise largely arbitrary Heisenberg models in the presence of a homogeneous
magnetic field are considered, including various integrable, non-integrable, as well as disordered
examples, and not necessarily restricted to one dimension or short-range interactions. Taking for
granted that the non-equilibrium initial condition and the spectrum of the field-free model satisfy
some very weak requirements, expectation values of generic observables are analytically shown to
exhibit permanent long-time oscillations, thus ruling out equilibration. If the model (but not nec-
essarily the initial condition) is translationally invariant, the long-time oscillations are moreover
shown to exhibit synchronization in the long run, meaning that they are invariant under arbitrary
translations of the observable. Analogous long-time oscillations are also recovered for temporal cor-
relation functions when the system is already at thermal equilibrium from the outset, thus realizing
a so-called time crystal.

I. INTRODUCTION

A macroscopic system without external perturbations
approaches a steady equilibrium state after sufficiently
long times, no matter how far from equilibrium it started
out. On the phenomenological level, this is an extremely
well-established fact both in everyday life and under con-
trolled laboratory conditions. More precisely speaking,
in every single run of an experiment, one may still en-
counter certain statistical or quantum mechanical fluc-
tuations, especially for microscopic observables, but on
the average over many repetitions of the experiment, the
expectation value will closely approach some constant
equilibrium value in the long run. On the other hand,
a satisfactory theoretical understanding of these empiri-
cal observations in terms of the underlying fundamental
laws of quantum mechanics still remains a challenging
open question, both qualitatively and quantitatively, to
which a considerable amount of experimental, numerical,
and analytical efforts have been devoted in recent years
[1–6].

Obviously, a particularly fascinating endeavor in this
context is to identify cases which give rise to certain
deviations from the above-mentioned standard scenario.
For instance, it has been discovered that models exhibit-
ing integrability or many-body localization may fail to
thermalize [1–6], in contradiction to what equilibrium
(textbook) statistical mechanics predicts. Nevertheless,
generically they still exhibit equilibration in the sense [7–
12] that the time-dependent expectation values stay ex-
tremely close to a constant value for the vast majority of
all sufficiently late times, i.e., apart from the transient re-
laxation processes during some initial time-interval, and
apart from the well-known, exceedingly rare but unavoid-
able quantum revival effects.

At the focus of our present work are many-body sys-
tems whose expectation values do not even equilibrate
in the above sense, but rather exhibit permanent long-
time oscillations. Leaving aside trivial cases like non-
interacting (separable) models or perfect harmonic oscil-
lators, related previously proposed examples that may

come to one’s mind are the “quantum Newton’s cra-
dle” experiment by Kinoshita, Wenger, and Weiss [13],
the exploration of Rydberg-atom quantum simulators by
Bernien et al. [14], or the numerical study by Banuls,
Cirac, and Hastings in Ref. [15]. However, it was later
discovered that in fact all those examples ultimately still
must exhibit equilibration when monitoring the dynami-
cal evolution over sufficiently long times [16–20]. On the
other hand, analytically provable absence of equilibration
in the context of many-body quantum scars has been re-
cently established for various abstract models in combi-
nation with special initial conditions [17], yet their sig-
nificance with regard to real-world systems still remains
to be explored.

In our present work, we focus on one of the sim-
plest and best-established many-body quantum systems,
namely the isotropic Heisenberg model with a homo-
geneous magnetic field. Besides the original and most
common version of the model, also various generaliza-
tions and modifications will be covered, including non-
intergable systems (e.g., in more than one dimension) and
disorder in the form of randomized interactions. The only
indispensable prerequisites are that the field-free model
must be SU(2) symmetric (isotropic), the external field
must be spatially homogeneous, and the energy levels
must satisfy some rather weak and generic assumptions.

Our first main objective is to analytically demonstrate
and numerically illustrate the typical occurrence of non-
equilibration in the form of everlasting oscillations in such
systems. In particular, this behavior is neither restricted
to special initial conditions nor to integrable models.

Furthermore, we analytically show that those oscilla-
tions entail synchronization under the additional condi-
tion that the model – but not necessarily the initial con-
dition – is translationally invariant.

Turning to systems at thermal equilibrium, we fi-
nally establish the generic occurrence of analogous long-
time oscillations for dynamic (time-dependent) correla-
tion functions, and we discuss their implications with re-
spect to the topic of time crystals [21–26].

In terms of these main findings, but also methodolog-
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ically, our present paper is closely related in a variety of
different respects to a considerable number of previous
works, including Refs. [7–12, 23–28]. Since an adequate
comparison is only possible on the basis of a minimal
amount of formal definitions, such a more detailed dis-
cussion of pertinent previous works will be provided at
various places throughout the paper.

II. GENERAL FRAMEWORK

We consider a Heisenberg model on an arbitrary (not
necessarily one-dimensional) lattice, whose sites are la-
beled by i. We denote by Λ the set of all possible lat-
tice sites, and by κ their total number. (Alternatively, κ
may thus be viewed as the system size or as the number
of degrees of freedom.) The single-site spin operators
are indicated by vectors ~si with three components sai ,
a ∈ {x, y, z}, while the single-site spin quantum number
is given by the same integer or half-integer s on every
site.

Denoting the components of the total spin by

Sa :=
∑
i∈Λ

sai , (1)

the considered Hamiltonians must be of the general form

H := H0 + hSz , (2)

H0 :=
∑
i,j∈Λ

Jij ~si · ~sj , (3)

where the magnetic field h and the coupling constants
Jij are, for the time being, still largely arbitrary model
parameters.

By means of well-established standard arguments one
finds that H0 commutes with Sa for all a ∈ {x, y, z}
(SU(2) symmetry). As a consequence, the eigenvectors of
H0 can be chosen so that they are simultaneously eigen-

vectors of Sz as well as of ~S2 := (Sx)2 + (Sy)2 + (Sz)2,
and thus can be written as |n, l〉 with the properties

H0|n, l〉 = E0
n |n, l〉 , (4)

Sz|n, l〉 = l |n, l〉 , (5)

~S2|n, l〉 = Ln(Ln + 1) |n, l〉 . (6)

Here, the indices n ∈ {1, ..., N} label the energy eigen-
values, the l ∈ {−Ln, ..., Ln} are the total magnetic
quantum numbers, while the Ln are positive integers
or half-integers, often denoted as total spin quantum
numbers. In other words, for any given n, the ener-
gies E0

n are (2Ln+1)-fold degenerate with spin multiplets

{|n, l〉}Lnl=−Ln . Traditionally, those simultaneous eigen-

vectors of H0, ~S2, and Sz are often denoted as |n,Ln, l〉,
but since the Ln’s are unique functions of the n’s, we em-
ploy the shorter notation |n, l〉. One readily verifies that
0 ≤ Ln ≤ κs, and one can evaluate how many eigenvec-
tors belong to a certain l or Ln [29], but for the rest, the
actual quantitative value of Ln belonging to any given n

(or E0
n) is in general quite difficult to tell (see also Ap-

pendix A). We finally remark that the energies E0
n are

generically expected to be pairwise different, but that
this property is not actually required in most of our sub-
sequent explorations.

Exploiting (2), (4), (5) it follows that

H |n, l〉 = Enl |n, l〉 , (7)

Enl := E0
n + l h . (8)

The eigenvectors |n, l〉 are thus independent of h, while
the above-mentioned degeneracies of the eigenvalues for
h = 0 are expected to be generically lifted for h 6= 0
(Zeeman splitting).

Given any pure or mixed initial state ρ(0), its time
evolution is governed by the von Neumann equation,
resulting at time t in the state ρ(t) = e−iHtρ(0)eiHt

(~ = 1). Accordingly, the expectation value of any ob-
servable (Hermitian operator) A at time t is given by

〈A〉t := Tr{ρ(t)A} . (9)

By employing the eigenvalues and eigenvectors of H from
(7) and (8) it follows that

〈A〉t =
∑
mnkl

ρk,lmnA
l,k
nm e

i(E0
n−E

0
m+[l−k]h)t , (10)

where the sum is tacitly restricted to indices m,n, k, l
within their admitted range as specified below (6), and
where the matrix elements ρk,lmn and Al,knm are defined as

ρk,lmn := 〈m, k|ρ(0)|n, l〉 , (11)

Al,knm := 〈n, l|A|m, k〉 . (12)

Going over from the summation index l in (10) to ν :=
l − k then yields

〈A〉t =
∑
ν

fν(t) eiνht , (13)

fν(t) :=
∑
mn

ei(E
0
n−E

0
m)t
∑
k

ρk,k+ν
mn Ak+ν,k

nm . (14)

One readily verifies that f−ν(t) = f∗ν (t), hence (13)
could also be rewritten as a purely real Fourier series.
Since the eigenvectors |n, l〉 in (4) and thus in (7) are in-
dependent of h, the same property is inherited by the ma-
trix elements in (11) and (12), and finally by the functions
fν(t) in (14). In other words, the only h-dependence in
(13) arises via the exponential factors on the right-hand
side.

A. Model classification

The general structure in (1)-(3) still covers a wide va-
riety of models in one or more dimensions, whose inter-
actions may be of short- or long-range character, and
may even exhibit various kinds of disorder (quenched
randomness) with concomitant many-body localization
effects [6]. Moreover, also our assumption that all lattice
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sites exhibit the same spin quantum number s (see above
Eq. (1)) can be readily relaxed.

We emphasize that these models (1)-(3) include many
examples which are commonly considered as being ei-
ther integrable or non-integrable, even though the pre-
cise meaning of “integrability” is still not entirely clear
[3, 4]. Independently of such still unsettled subtleties,
for our present purposes it seems reasonable to require
that whether a given model in (1)-(3) is considered as
(non-)integrable should not depend on the value of the
external field h. The reason is that since the eigenvectors
in (7) are independent of h, and the dependence of the
eigenvalues in (8) on h is rather trivial, it would not be
satisfying if a transition from integrable to non-integrable
would be achievable by simply changing the value of h.

III. MAIN RESULTS

Our first main result consists in the prediction that,
for sufficiently large systems, the expectation values in
(13) can be approximated very well by

At :=
∑
ν

f̄ν e
iνht (15)

for the vast majority of all sufficiently late times t, where
f̄ν essentially amounts to the long-time average of fν(t)
from (14). More precisely speaking,

f̄ν :=
∑
mnk

′
ρk,k+ν
mn Ak+ν,k

nm , (16)

where the prime symbol indicates that the summation is
restricted to indices m and n with the property E0

m =
E0
n. In the generic case that all energies E0

n are pairwise
different (see below Eq. (6)), this boils down to

f̄ν =
∑
nk

ρk,k+ν
nn Ak+ν,k

nn . (17)

More generally, the same simplification (17) of (16) also
applies to cases where either ρk,lmn or Al,knm vanishes when-
ever m 6= n and E0

m = E0
n (degeneracies). We also recall

that similar restrictions as below (10) are understood to
apply to the sums in (16) and (17).

Before providing the quantitative analytical details of
the above prediction, let us briefly motivate it by means
of a somewhat oversimplified heuristic argument.

Indicating the average over all times t ≥ 0 by 〈 · 〉∞, we

can conclude that 〈ei(E0
n−E

0
m)t〉∞ equals unity if E0

m = E0
n

and zero otherwise. Together with (14) and (16) it
follows that 〈fν(t)〉∞ = f̄ν . Moreover, for sufficiently
large systems, the number of summands on the right-
hand side of (14) may be expected to become very large.
(In view of the restrictions mentioned below Eq. (10),
this is in fact not really obvious, and sometimes actu-
ally wrong). The key point now consists in the heuris-
tic conjecture that this large number of summands in
(14) entails some kind of “dephasing effect”, at least for

generic time points t (after initial transients have died
out, and apart from the well-known, very rare but un-
avoidable quantum revivals), with the result that all the
summands with E0

m 6= E0
n effectively cancel each other in

sufficiently good approximation. As a consequence, every
fν(t) in (14) is conjectured to stay near its time average
(16), and hence the expectation values (13) to stay near
At from (15).

Next we turn to a more rigorous foundation of this
oversimplified argument. In doing so, we proceed in three
steps. First, the two most important quantities appear-
ing in our main analytical result are introduced. Next,
the analytical result itself is presented and discussed. Fi-
nally, the actual derivation of the result is provided in
Appendix A.

For an instructive numerical illustration of those gen-
eral predictions, we refer to Sec. III E.

A. Level populations and energy gaps

According to the first remark below Eq. (8), the quan-
tity 〈n, l|ρ(0)|n, l〉 is independent of the magnetic field h.
Moreover, it can be identified with the population of the
energy eigenstate |n, l〉 by the initial state ρ(0). Likewise,

pmax := max
n,l
〈n, l|ρ(0)|n, l〉 (18)

thus amounts to the maximal level population and is h-
independent.

Next we focus on an arbitrary but fixed pair of indices
(m,n) with the property E0

m 6= E0
n, and we count all pos-

sible index pairs (m′, n′) whose energy gaps E0
m′ − E0

n′

are equal to the given reference gap E0
m−E0

n. The num-
ber of those pairs (m′, n′) is denoted as γmn. For obvi-
ous reasons, this number γmn is called the degeneracy of
the energy gap E0

m − E0
n, and it has the properties that

γmn ≥ 1 and γnm = γmn. Specifically, if γmn = 1 then
E0
m −E0

n is called a non-degenerate energy gap. Finally,
the maximal energy gap degeneracy is defined as

γ := max
m,n

γmn , (19)

where the maximum is taken over all pairs (m,n) with
non-vanishing energy gaps E0

m − E0
n [11].

We close with two side remarks: (i) Since the unper-
turbed energies E0

n are obviously independent of the mag-
netic field h, the same applies to γ in (19). (ii) As already
mentioned below (6), we do not require that all E0

n are
pairwise different, with the following implication with re-
gard to γ: Denoting for any given n the number of indices
k with the property E0

k = E0
n by µ(n) (“multiplicity of

E0
n”) it readily follows that γmn ≥ µ(m)µ(n), and hence

that γ ≥ µ2
max, where µmax := maxn µ(n) is the max-

imal number of pairwise identical energies E0
n. On the

other hand, even if all E0
n are pairwise different and thus

µmax = 1, it is still possible that γ > 1.
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B. Main analytical prediction

Employing the definitions (18) and (19), and indicating
the temporal average over an interval [0, T ] by the symbol
〈 · 〉T , it is shown in Appendix A that the mean square
deviation of the “true” expectation values (13) from the
auxiliary function (15) obeys for all sufficiently large T
the inequality〈

[〈A〉t −At]2
〉
T
≤ γ (2sκ+1)2 ∆2

A pmax , (20)

where s is the single-spin quantum number and κ the
system size (see above Eq. (1)). Furthermore, ∆A is the
measurement range of the observable A, i.e., the differ-
ence between the largest and smallest possible measure-
ment outcomes (eigenvalues of A).

Our first remark is that the right-hand side of (20) is
independent of the magnetic field h in (2).

Our second remark is that for systems with many de-
grees of freedom κ, the number N of energies E0

n grows
exponentially with κ (see also Eq. (A3)), while their
range (difference between the largest and smallest en-
ergies) is generically expected to grow subexponentially
(usually linearly) with κ. Hence, the level density will be-
come unimaginably large for truly macroscopic systems,
and it will be virtually impossible to notably populate
only a small number of eigenstates |n, l〉 in a real ex-
periment. Rather, one expects that the number of non-
negligibly populated levels will still be exponentially large
in κ. Recalling Eq. (18), and that the sum of all level pop-
ulations must be unity, one thus expects [7, 10, 12] that
a very rough order of magnitude estimate of the form

pmax ≈ exp{−O(κ)} (21)

will be generically fulfilled under all experimentally re-
alistic circumstances. A more detailed, explicit example
will be worked out in Sec. III C.

Our third remark is that, obviously, no significant con-
clusion about the expectation values in (10) can be drawn
without any knowledge whatsoever regarding the ener-
gies E0

n appearing on the right-hand side. On the other
hand, these energies are in general not explicitly known
in sufficient quantitative detail. [An exception is given
by models that are analytically solvable by means of the
Bethe ansatz, but in practice this is of little use for our
present purposes.] For instance, already one of the sim-
plest and most important features of the energies E0

n,
namely the so-called level statistics (probability distri-
bution of the distances between neighboring energy lev-
els), is not analytically available for practically any quan-
tum many-body system of physical interest, including our
present Heisenberg models of the general form (2). How-
ever, it is commonly taken for granted (on the basis of
heuristic arguments and ample numerical evidence) that
the level statistics tends to some well-defined and rea-
sonably smooth asymptotics in the thermodynamic limit.
[Moreover, this asymptotics is often expected to be close
to, for instance, a Wigner-Dyson or a Poisson distribu-
tion, but such “details” do not matter here.]

Our present assumption regarding the energies E0
n is in

essence quite similar in spirit to these common assump-
tions regarding the level statistics. Namely, we assume
that the maximal energy gap degeneracy in (19) grows at
most subexponentially with the system size κ. Indeed,
this is closely related to requiring that the level statis-
tics does not develop delta-peaks in the thermodynamic
limit. In particular, this also means that the maximal
number of pairwise identical energies E0

n must grow at
most subexponentially with κ, see remark (ii) at the end
of Sec. III A.

Though not rigorously provable, it is intuitively evi-
dent that this assumption will be generically fulfilled in
the sense that the set of model parameters Jij in (3)
which violates the assumption is of negligible measure
compared to the set of all the a priori possible (and phys-
ically sensible) values of those parameters. Since there is
usually no a priori reason why some specific model of ac-
tual interest must belong to this exceptional subset, it is
physically reasonable to take for granted that the model
indeed is a member of the overwhelming majority.

Finally, it is also noteworthy that our above as-
sumptions regarding pmax and γ are by now very well-
established in the context of equilibration and thermal-
ization in many-body quantum systems, and that there
exists essentially no rigorous analytical result in this con-
text which is valid without taking for granted the same
or some very similar assumptions [2, 3, 7–12, 20, 30–35].

Altogether, we thus can and will take our above as-
sumptions regarding pmax and γ for granted. For large
κ, the small factor pmax in (21) then overrules by far
the factors γ and κ2 on the right-hand side of (20), im-
plying that the time-averaged variance on the left-hand
side of (20) will be exponentially small compared to the
(squared) measurement range ∆A of the observable. In
turn, this is only possible if the difference 〈A〉t − At is
unmeasurably small (below the resolution limit of the
measurement device A) for the overwhelming majority
of all time points t ∈ [0, T ]. As already said in the Intro-
duction, time points t belonging to the complementary,
exceedingly small minority are generically expected to oc-
cur during the initial transient relaxations processes, and
on the occasion of the well-known, exceedingly rare, but
unavoidable quantum-revivals events. (The initial relax-
ation may in fact be viewed as one of them. Moreover,
the origin of those revivals is closely related to the fact
that the sum in (10) is a quasi-periodic function of t.) All
these complications are effectively taken into account by
our requirement above (20) that T must be sufficiently
large.

In summary, our main finding is that the deviations
between 〈A〉t and At will be negligibly small for the over-
whelming majority of all sufficiently late times t, sym-
bolically indicated as

〈A〉t  At . (22)

Incidentally, similar methods as in the derivation of
our present result in Appendix A have been previously
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adopted, e.g., in Ref. [7–12] in the context of equilibra-
tion, i.e., for the purpose to show that the expectation
values 〈A〉t remain – under suitable conditions on the
Hamiltonian H, the initial state ρ(0), and the observable
A – very close to some constant value for the vast ma-
jority of all sufficiently late times t. Obviously, such a
prediction of equilibration cannot apply to our present
models (2) with h 6= 0 since they generically give rise to
everlasting oscillations of 〈A〉t. The main reason is that
the energies Enl in (8) violate (for h 6= 0) the correspond-
ing requirements in Refs. [7–12] regarding the maximally
admissible degeneracy of the pertinent energy gaps. In-
deed, one finds that our present models entail some ex-
ponentially large sets of degenerate energy gaps: For in-
stance, considering two arbitrary but fixed indices l and
l′ we can conclude from Eq. (8) that the energy gaps
Enl−Enl′ are equal for all possible values of n, while the
total number of all those n values is often expected to be
exponential in the system size. Likewise, for any given set
of indices n, l, n′, l′ the energy gaps En(l+l′′) − En′(l′+l′′)

are equal for all possible values of l′′. As a consequence,
for h 6= 0 our models violate one of the central precondi-
tions for equilibration established in Refs. [7–12].

In contrast, the maximal degeneracy of energy gaps
employed in (19) is a property of the unperturbed (h = 0)
energies E0

n, not of the energies Enl pertaining to the ac-
tually considered model Hamiltonian H in (2). In pass-
ing, we also remark that, according to Refs. [7–12], it is
the degeneracy of these gaps which prohibits equilibra-
tion, not their commensurability, as speculated, e.g., in
[36].

C. Canonical quenches

In view of (18) we can conclude that (pmax)2

is upper bound by
∑
nl〈n, l|ρ(0)|n, l〉2 and hence by∑

nlmk |〈n, l|ρ(0)|m, k〉|2 = Tr{[ρ(0)]2}, implying

pmax ≤
√

Tr{[ρ(0)]2} . (23)

As a particularly simple and interesting example, let us
assume that the initial state is given by a thermal Gibbs
state (canonical ensemble) of the form

ρ(0) = Z̃−1e−βH̃ , Z̃ := Tr{e−βH̃} , (24)

where H̃ is in general different from the Hamiltonian H
in (2) which governs the subsequent temporal evolution
of ρ(0).

For instance, one may choose H̃ to be of the general
form

H̃ := H0 +
∑
i∈Λ

~hi · ~si , (25)

thus differing from H in (2) with respect to the direction
and possibly also the magnitude of the externally applied
magnetic field at any of the lattice sites i. Further ex-
amples of how to choose physically reasonable H̃’s are
rather obvious, see also Sec. III E below.

From a different viewpoint, the system may thus be
considered as being at thermal equilibrium for t < 0
and experiencing an instantaneous “quantum quench” at
t = 0, with pre-quench Hamiltonian H̃ and post-quench
Hamiltonian H.

Recalling that the textbook free energy Fβ associ-
ated with the canonical ensemble (24) obeys the relation

e−βFβ = Tr{e−βH̃}, one can conclude that Tr{[ρ(0)]2} =
e−2βGβ with Gβ := F2β − Fβ . Taking for granted that
the pre-quench system exhibits generic thermodynamic
properties, it follows that Gβ is an extensive quantity. [In
particular, temperatures β−1 extremely close to zero are
always tacitly excluded.] Hence, Tr{[ρ(0)]2} decreases
exponentially with the system size κ, and likewise for
pmax in (23).

Altogether, we thus have rigorously verified (21) for
initial conditions of the canonical form (25). The same
conclusion can also be readily recovered for microcanon-
ical instead of a canonical initial states ρ(0).

D. Permanent oscillations

To begin with, we note that f̄ν in (16) must be zero
if |ν| > 2κs as a consequence of the restrictions on the
summation indices below (10) (the detailed reasoning is
worked out below Eq. (A14)). Furthermore, one can infer
from (11), (12), and (16) that f̄−ν = f̄∗ν . Representing
the complex numbers f̄ν in the polar form |f̄ν |eiϕν , we
thus can rewrite (15) as

At = f̄0 + 2

2κs∑
ν=1

|f̄ν | cos(νht+ ϕν) . (26)

Generically, the quantities f̄ν in (16) are not expected
to identically vanish for all ν 6= 0, hence (26) together
with (22) implies the occurrence of permanent oscilla-
tions for all sufficiently late times t.

As an aside, we remark that the quantity f̄0 in (26)
obviously represents the long-time average of At. In the
generic case that all energies E0

n are pairwise different
(see also below Eq. (6)), f̄0 can be further rewritten by
means of (17) and the so-called diagonal ensemble

ρdia :=
∑
nl

ρl,lnn |n, l〉〈n, l| (27)

in the form

f̄0 = Tr{ρdiaA} . (28)

We also remark that our present oscillatory long-time
effects are similar to those recently discovered in the
ground-breaking work [23]. A first important difference
is that Ref. [23] is mainly focused on the one-dimensional
spin-1/2 XXZ-model (which is integrable), while our
present model class also covers, for instance, various non-
integrable and disordered systems (cf. Sec. II A). The
second important difference is that the findings reported
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in Ref. [23] are mainly based on non-rigorous arguments
and numerical evidence, adopting some rather special
initial states and observables. Finally, the prediction
of permanent oscillations in Ref. [23] only applies to a
quite restricted (discrete) subset of the XXZ spin chain’s
anisotropy parameter values.

E. Numerical examples

The subsequent numerical examples are chosen to illus-
trate our two main analytical findings for Hamiltonians
of the general form (1)-(3): (I) permanent oscillations,
and (II) synchronization of these oscillations in case of
translationally invariant Hamiltonians (see also Sec. IV
below). To this end, we numerically explore the behav-
ior of the following four specific models: (i) A spin ring
(periodic boundary conditions) with unperturbed Hamil-
tonian

H0 :=

κ∑
i=1

Ji~si · ~si+1 , (29)

exhibiting quenched disorder by choosing the interactions
Ji as independent, identically distributed random num-
bers. (ii) The same spin ring model as in (29), but now
with identical couplings Ji for all i (no disorder). (iii) A
two-dimensional (2D) 5 × 5 square lattice model with
identical nearest-neighbor interactions, open boundary
conditions in both directions, and unperturbed Hamil-
tonian

H0 := J
∑
<i,j>

~si · ~sj . (30)

(iv) The same square lattice model as in (30), but now
with periodic boundary conditions in both directions.
Similar to (1)-(3), an additional homogeneous magnetic
field in z-direction is applied during time evolution in
all four cases (i)-(iv). Accordingly, the spin ring with-
out disorder represents an integrable model, whereas all
the other examples (i), (iii), and (iv) are commonly con-
sidered as non-integrable, see also Sec. II A. Moreover,
(ii) and (iv) are so-called translationally invariant mod-
els (see also Sec. IV below), while (i) and (iii) are not.

As our initial condition ρ(0) (see above Eq. (9)) we
choose a pure state of the form ρ(0) = |ψ〉〈ψ| with

|ψ〉 ∝ e−
β
2 H̃ |φ〉 , (31)

where |φ〉 is a normalized random vector, which may be
viewed as point on the unit sphere in C(2s+1)κ , randomly
sampled according to a uniform distribution. It is well-
known that such an initial condition exhibits a so-called
dynamical typicality property, meaning that it imitates
very accurately the behavior of the canonical ensemble
from (24), see, e.g. Ref. [37] and further references
therein. More precisely speaking, for the vast majority
of all those randomly sample initial states ρ(0) = |ψ〉〈ψ|,
the time-dependent expectation values in (9) become, for

FIG. 1. Red arrows: Visualization of the projections to the
(x, y)-plane of the expectation values of the local spin vector
operators ~si with respect to the initial state (31). (a): Spin
ring models (i) and (ii) as specified around Eq. (29) and below
(32). (b): Square lattice models (iii) and (iv) as specified
around Eq. (30) and below (32). The grey and white regions
indicate our choice of the sublattices Λ1 and Λ2 in (32). All
the remaining model parameter values in (31) and (32) have
been chosen in (a) as detailed in Fig. 2, and in (b) as detailed
in Fig. 3.

sufficiently large system sizes κ, practically indistinguish-
able from those which one would obtain by choosing ρ(0)
according to (24). A more precise analytical quantifica-
tion of the remaining deviations is in general quite dif-
ficult, but we numerically verified that our results for
different random initial states were indeed nearly indis-
tinguishable on the scale of the subsequent plots. Apart
from this connection to the canonical ensemble in (24),
our initial state (31) represents, of course, already in it-
self a perfectly legitimate, generally far from equilibrium
initial condition.

Once the initial state has been chosen, we numerically
evolved it in time by means of Suzuki-Trotter product
expansion techniques, as detailed, for instance, in Ref.
[38].

While this temporal evolution is governed by the above
specified, so-called post-quench Hamiltonian H (see also

Sec. III C), the so-called pre-quench Hamiltonian H̃, gov-
erning the initial condition via (24) and (31), is chosen
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FIG. 2. (a) and (b): Expectation values (9) of the local
observables A = sxi for early times (a) as well as for late
times (b) by numerically solving the spin ring model from
(29) with κ = 24 spins, periodic boundary conditions, ran-
dom couplings Ji ∈ [−3, 1], and magnetic field h = 1, see also
Eqs. (1)-(3). The different colors correspond to the 24 differ-
ent observables A = sxi . The initial condition ρ(0) is given
by a canonical ensemble of the form (24), (25) with β = 1,

choosing the Hamiltonian H̃ according to (32) with H̃0 = H0,
hx = hy = 1, and sublattices Λ1,2 as indicated in Fig. 1(a), see
also main text for more details. In the actual numerics, the
behavior of the corresponding time evolved ρ(t) was imitated
by numerically evolving a random initial state as explained
around Eq. (31). (c) and (d): Same, but for the observables
A = sxi s

x
i+1 with i = 1, ..., 23.

as

H̃ := H̃0 + hx
∑
i∈Λ1

sxi + hy
∑
i∈Λ2

syi , (32)

where H̃0 is of the same general structure as in (29) in
our one-dimensional examples (i) and (ii), and as in (30)
in our two-dimensional examples (iii) and (iv). More

precisely speaking, H̃0 was chosen identical to H0 from
(29) and (30) in (i) and (iii), respectively, while the same

H̃0’s as in (i) and (iii) were then also employed in (ii) and
(iv), respectively. Furthermore, Λ1 and Λ2 := Λ \ Λ1 in
(32) denote two complementary subsets of the respective
total lattices Λ (see above Eq. (1)). Their specific choice
for the examples (i) and (ii) is visualized by the grey and
white regions in Fig. 1(a), and for the examples (iii) and
(iv) in Fig. 1(b). According to (32), the spins in those
two sublattices (grey and white) are thus polarized by
the external magnetic fields hx and hy along orthogonal
directions, resulting via (31) in initial conditions for the
individual spins as cartooned by the red arrows in Fig. 1.

Such inhomogeneous initial states with two extended
domains of macroscopic magnetization appeared to us as

FIG. 3. Same as in Fig. 2, but now for a 5× 5 square lattice
model of the form (30) with κ = 25 spins, open boundary
conditions, and couplings J = −2. In particular, the initial
condition is again of the form (24), (25), (32) with β = 1,

H̃0 = H0, hx = hy = 1, and sublattices Λ1,2 as indicated in
Fig. 1(b).

particularly interesting and non-trivial examples. For in-
stance, they clearly are not translationally invariant (see
also Sec. IV below). Moreover, they are far from thermal
equilibrium with respect to the post-quench Hamiltonian
H.

As a first example, Fig. 2 displays the dynamics of vari-
ous local observables for a spin ring model of type (i) with
parameters given in the caption. With these parameters,
the energy is not close to the edges of the spectrum. At
early times, panels (a) and (c), the different observables
behave rather irregularly, starting from their various ini-
tial values, whereas at later times, panels (b) and (d),
all observables exhibit quite regular oscillations with an-
gular frequency h in (b) and 2h in (d), thus confirming
and illustrating our main analytical prediction from the
previous subsections. The phases between these long-
time oscillations seem to be astonishingly small, but the
amplitudes differ quite notably (and in (d) also the time-
averaged values). We will briefly return to this observa-
tion at the end of Sec. IV.

For the two-dimensional square lattice model of type
(iii), qualitatively quite similar results are observed in
Fig. 3. The main difference is that some of the long-
time oscillations, especially in (d), still exhibit notable
deviations from a strictly periodic behavior, which can
be naturally understood as finite-size corrections to our
analytical predictions.

Turning to the two remaining, translationally invari-
ant models (ii) and (iv), we encounter almost perfect
synchronization of the individual local observables after
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FIG. 4. Same as in Fig. 2, but now for non-random couplings
Ji = −1 in the spin ring model (29). In particular, exactly
the same the initial condition as in Fig. 2 was utilized.

initial transients have died out. Figure 4 displays this
behavior for the spin ring model (ii), where local spin
operators are related to each other by a translation along
the ring, a symmetry operation under which the Hamilto-
nian is invariant (see also Sec. IV below). For late times,
panels (b) and (d), the various oscillations superimpose
perfectly, although the initial state is exactly the same as
the one in Fig. 2, i.e. adapted to the Hamiltonian with
disorder. We have verified that this synchronization be-
havior is practically independent of the initial conditions.

A qualitative similar behavior is also observed for our
5 × 5 square lattice model (iv) in Fig. 5. As will be
explained in more detail in Sec. IV, the observed syn-
chronization at large times has its origin in the model’s
translational invariance. Similarly as in Fig. 3, the rem-
nant deviations from prefect synchronization, especially
in Fig. 5(d), can be explained in terms of finite-size ef-
fects. Apparently, the fact that our square lattice mod-
els (iii) and (iv) only exhibit a relatively short period
of 5 along each spatial direction is responsible for the
stronger finite-size corrections in comparison to the spin
ring models (i) and (ii). We also confirmed this expec-
tation by directly comparing the numerical results for
different system sizes with each other (not shown).

Further numerical examples for a variety of other
model Hamiltonians and, more importantly, other initial
conditions can also be found in Ref. [27].

FIG. 5. Same as in Fig. 3, but now for periodic boundary
conditions in the 5×5 square lattice model (30). In particular,
exactly the same the initial condition as in Fig. 3 was utilized.

IV. SYNCHRONIZATION

A particularly remarkable feature of the numerical re-
sults in Figs. 4 and 5 is the close agreement of all the dif-
ferently colored graphs for sufficiently late times (right
panels), while Figs. 2 and 3 do not exhibit such a be-
havior. In the following, our main objective is a better
understanding of this numerical observation.

For the sake of simplicity, we mainly focus on one-
dimensional spin models (2). Moreover, we require that
the model is translationally invariant in the sense that
site i = κ + 1 is identified with i = 1 (periodic bound-
ary conditions) and the couplings Jij only depend on the
difference i − j modulo κ. Finally, we restrict ourselves
to the generic case that all energies E0

n are pairwise dif-
ferent, hence the quantities f̄ν are given by (17), see also
the remarks below Eqs. (6) and (17).

For the rest, short- as well as long-range interactions
are still admitted. Moreover, various generalizations,
e.g., to higher-dimensional hypercubic lattices (with pe-
riodic boundary conditions) are straightforward (see also
Sec. II A), but will not be explicitly worked out.

Denoting by T the so-called translation operator, it is
shown in Appendix B that

〈n, l|T †BT |n, l′〉 = 〈n, l|B|n, l′〉 (33)

for arbitrary Hermitian operators B and indices n, l, l′.
Physically, T †BT represents the same observable as B,
except that “everything is shifted” by one unit along the
periodic spin chain. For instance, for a single-site spin
operator sai (with a ∈ {x, y, z}) one finds that T †sai T =
sai+1, and analogously for arbitrary sums and products of
such operators. In particular, the total spin components
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from (1) and the Hamiltonian from (2) are found to be
translationally invariant in the sense that they commute
with T .

Taking into account (12) and (33), one can conclude
that the quantities f̄ν in (17) and thus the function At
in (15) and (26) remain unchanged if we replace the ob-
servable A by its shifted counterpart T †AT . For instance,
the expectation values of the single-site spin operators sai
are thus predicted to synchronize (look the same for all
i) in the long run, and likewise for arbitrary sums and
products of such operators. These findings are illustrated
by Figs. 4 and 5, see also Sec. III E. The small remnant
deviations from strict synchronizations in these numer-
ical examples can be naturally understood as finite-size
effects.

It readily follows that so-called local operators Ai with
the property T †AiT = Ai+1 will synchronize in the above
sense not only with each other but also with their “in-
tensive” counterpart A :=

∑
i∈ΛAi/f , as exemplified by

Eq. (34) below. We also remark that all these conclu-
sions apply to arbitrary initial states ρ(0) (as long as
they satisfy (21)). In particular, ρ(0) is not required to
be translationally invariant.

An analogous line of reasoning implies that the initial
condition ρ(0) and its shifted counterpart T †ρ(0)T ex-
hibit in the long run (nearly) identical expectation val-
ues for arbitrary observables A and any initial state ρ(0)
which satisfies (21).

Altogether, the generically occurring, permanent long-
time oscillations from Sec. III D are thus found to syn-
chronize in the sense of being invariant under arbitrary
translations of the considered observable, provided the
system Hamiltonian (but not necessarily the initial con-
dition) is translationally invariant.

Closely related numerical findings have been recently
reported in Ref. [27]. Our present work amounts to a rig-
orous analytical validation and generalization of this nu-
merical discovery of synchronization in closed (isolated)
systems of the form (1)-(3). Similarities and differences
with respect to related (transient and permanent) syn-
chronization phenomena in open (dissipative) systems
have also been addressed already in Ref. [27] (see also
[39]), and are therefore not repeated here. The salient
point is that while the observable phenomena are sim-
ilar, the basic physical mechanisms as well as the ana-
lytical methods are entirely different for closed and open
systems.

Various slightly different notions of synchronization are
reviewed, for instance, in Ref. [39]. Our present notion
appears to us particularly simple and natural.

Intuitively, and also on the basis of our above calcu-
lations, it seems reasonable to suspect that translational
invariance (equivalence of all spin sites) is not only suf-
ficient but that it generically is even necessary for the
occurrence of synchronization in our present sense. This
expectation is further corroborated by the numerical ex-
amples in Figs. 2 and 3.

V. SIMPLE ANALYTICAL EXAMPLES

Of foremost interest are cases where f̄ν in (16) is non-
zero at least for one ν 6= 0, giving rise to non-equilibration
in the form of permanent oscillations in (26). In general,
the explicit evaluation of f̄ν in (16) is a quite demanding
task. In the following, we focus on some particularly
simple examples.

A. Single spins

To begin with, we illustrate the general idea by means
of the observables

Ma :=
1

κ
Sa =

1

κ

∑
i∈Λ

sai , (34)

see also Eq. (1), i.e., the Ma are essentially the magneti-
zations along the spatial direction a ∈ {x, y, z}. Employ-
ing the usual raising and lowering operators

S± := Sx ± iSy (35)

one readily recovers the textbook relations (see also
around Eqs. (4)-(6))

S±|n, l〉 = c±n,l|n, l ± 1〉 (36)

c±n,l :=
√
Ln(Ln + 1)− l(l ± 1) . (37)

Observing that Eqs. (13) and (14) are linear in A, the
same equations must also apply to the non-Hermitian
operator A := S+ from (35). Exploiting (12) and (36),
it follows that

Ak+ν,k
nm = δn,m δν,1 c

+
n,k , (38)

where δn,m and δν,1 are Kronecker deltas. Hence, we can
conclude with Eqs. (14) and (16) that

fν(t) = f̄ν = δν,1 f1(0) (39)

and with Eq. (13) and (15) that 〈A〉t = At = 〈A〉0eiht.
By means of a similar line of reasoning for A := S− one
thus arrives at

〈S±〉t = S±t = 〈S±〉0e±iht . (40)

Since Sx = (S+ + S−)/2 and Sy = (S+ − S−)/2i ac-
cording to (35), we finally obtain for the magnetizations
Mx,y from (34) the result

〈Mx〉t = a1 cos(ht)− b1 sin(ht) , (41)

〈My〉t = b1 cos(ht) + a1 sin(ht) (42)

a1 := 〈Mx〉0 , (43)

b1 := 〈My〉0 . (44)

i.e., these particular observables exhibit perfect harmonic
oscillations right from the beginning (i.e., for all t) for any
initial state ρ(0) with a non-vanishing expectation value
of Mx or of My. In the same way one finds that

〈Mz〉t = 〈Mz〉0 , (45)
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i.e., this particular observable is, as expected, always a
conserved quantity.

Similarly as in the first equality in (40), one readily
sees that for the three specific observables A := Ma from
above, the auxiliary functions At happen to be exactly
identical to the true expectation values 〈A〉t for all t. In
other words, none of further preconditions on the energies
E0
n, the system size κ, and the initial condition ρ(0) from

Sec. III B are actually needed in these specific examples.
In a next step, let us focus on systems which satisfy the

preconditions for our main result in Sec. III B as well as
the preconditions for synchronization as detailed at the
beginning of Sec. IV. According to the discussion at the
end of Sec. IV, we thus can conclude that the single-spin
expectation values 〈sai 〉t behave for most sufficiently large
times t very similarly to each other and thus to 〈Ma〉t (see
(34)), symbolically indicated as

〈sai 〉t  〈Ma〉t , (46)

where a ∈ {x, y, z}. In particular, for any given observ-
able A := sxi , the corresponding auxiliary function At
takes the i-independent explicit form (41), and similarly
for syi and szy. On the other hand, for short times t the
expectation values 〈sai 〉t are in general no longer close to
〈Ma〉t. Rather, and as can be seen in Figs. 4 and 5,
any given 〈sai 〉t generically exhibits a non-trivial initial
relaxation process of its own, whose details depend in a
complicated manner on the initial state ρ(0) and on the
Hamiltonian H. Moreover, even for large times t there
will generically remain fluctuations of 〈sai 〉t about 〈Ma〉t,
which are negligibly small for most t but may become
large for some very rare t’s (quantum revivals).

B. Higher harmonics

Our next examples are observables of the form A :=
M2
a . By means of similar calculations as before one finds

that

〈M2
x〉t = a2 cos(2ht)− b2 sin(2ht) + c2 , (47)

〈M2
y 〉t = −a2 cos(2ht) + b2 sin(2ht) + c2 , (48)

〈M2
z 〉t = 〈M2

z 〉0 , (49)

where we introduced the abbreviations

a2 := 〈M2
x −M2

y 〉0/2 , (50)

b2 := 〈MxMy +MyMx〉0/2 . (51)

c2 := 〈M2
x +M2

y 〉0/2 , (52)

As expected, M2
x +M2

y and M2
z are thus conserved quan-

tities. Moreover, the observables M2
x,y exhibit perfect

harmonic oscillations for all t and for all initial condi-
tions ρ(0) with a non-vanishing expectation value in (49)
or in (51). Last but not least, the oscillation frequency is
now twice as large as in (41) and (42) (higher harmonics).

Combining (41) and (47) one can conclude that

〈M2
x〉t − 〈Mx〉2t =a′2 cos(2ht)− b′2 sin(2ht) + c′2 , (53)

a′2 := (σ2
xx − σ2

yy)/2 , (54)

b′2 := (σ2
xy + σ2

yx)/2 , (55)

c′2 := (σ2
xx + σ2

yy)/2 , (56)

where

σ2
ab := 〈MaMb〉0 − 〈Ma〉0〈Mb〉0 (57)

for arbitrary a, b ∈ {x, y, z}. Analogous results as for Mx

in (53) apply to My and Mz.
Incidentally, for observables of the form sxi s

x
j one still

can deduce from (5) and (16) that the long-time asymp-
totics must be of the general structure

〈sxi sxj 〉t  aij cos(2ht) + bij sin(2ht) + cij . (58)

Most importantly, the oscillation frequency is again twice
as large as in (41), (46), in accordance with the numerical
examples in Figs. 2-5. Similarly as in Eqs. (41)-(46), the
coefficients aij , bij , cij in (58) are once more independent
of h, but now their quantitative dependence on the initial
state ρ(0) and on the Hamiltonian H0 is very difficult to
specify in more detail. Analogous statements apply to
observables of the form sai s

b
j with a, b ∈ {x, y} and to

products of more than two such factors.

C. Thermodynamic limit

Next we turn to the issue of how the above findings de-
pend on the system size κ, and, in particular, how they
behave for asymptotically large κ (thermodynamic limit).
As usual in this context, we focus on systems whose size
can be “upscaled” in a physically natural way. Particu-
larly simple examples are translationally invariant Hamil-
tonians (see Sec. IV) with short-range interactions, i.e.,
the couplings Jij in (3) decay sufficiently fast (and inde-
pendent of κ) with increasing distance between the two
sites i and j. Similarly, the initial states ρ(0) must be
chosen so that they amount to “physically similar situa-
tions” for different system sizes κ. For example, the sys-
tem energy Tr{ρ(0)H} is often expected to grow linearly
with the system size κ, i.e., the energy density (energy
per degree of freedom) is kept constant. Simple examples
are canonical ensembles of the form (24), (25) with fixed

parameters β and ~hi (independent of κ and i).
Rather than trying to formally define this class of “ex-

tensive” Hamiltonians H and initial states ρ(0) more
precisely, we assume as a “minimal requirement” that
the concomitant expectation values of “intensive observ-
ables”, such as the magnetization Ma in (34), can be con-
sidered as asymptotically independent of the system size
κ, and that their statistical fluctuations and/or quantum
uncertainties, as exemplified by (57), decay to zero with
increasing system size κ (usually as 1/κ). Moreover, we
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assume that correlations between local observables in the
initial state ρ(0), such as

cabij := 〈sai sbj〉0 − 〈sai 〉0〈sbj〉0 , (59)

decay to zero with the distance between the sites i and
j sufficiently fast and asymptotically independently of
the system size κ. Essentially, this is tantamount to the
so-called cluster decomposition property [40–44], and as
such is commonly expected to be obeyed by any “phys-
ically realistic” ρ(0) (at least outside the realm where
phase transitions may occur), though this property has
until now only be rigorously established for a quite re-
stricted set of examples [45–49] .

In particular, for systems that possibly may exhibit
large thermal fluctuations (as a precursor of spontaneous
symmetry breaking in the thermodynamic limit), the en-
ergy density must be chosen outside the range where such
effects occur. [The opposite situation will be further ex-
plored in Sec. VI.]

Given the initial magnetizations 〈Ma〉0 are asymptoti-
cally independent of the system size κ, the same follows
for any later time t according to (41)-(45), and thus for
the late-time behavior of any single spin according to
(46).

In the same vein, the initial expectation values in (50)-
(52) are expected to be asymptotically independent of
the system size κ for physically realistic initial states
ρ(0), hence the same applies to the time-dependent ex-
pectation values in (47)-(49). On the other hand, the
initial variances σ2

aa (see (57)) generically decay to zero
for large κ. The same follows for the correlations σ2

ab
in (57) upon observing that [σ2

ab]
2 ≤ σ2

aaσ
2
bb (Cauchy-

Schwarz inequality), and hence for the variance of Mx in
(53) (and similarly for My and Mz). Essentially, this re-
flects the common fact that quantum and statistical fluc-
tuations become negligible for macroscopic observables.
The main conclusion is that 〈M2

x〉t can often be very well
approximated by 〈Mx〉2t .

Finally it is reasonable to expect that a large-κ asymp-
totics qualitatively similar to (46) will also apply to local
observables of the form sai s

b
j . However, more rigorous

and/or quantitative statements along these lines are dif-
ficult to obtain, see also discussion below Eq. (58).

On the other hand, quantum and statistical fluctua-
tions of microscopic (local) observables are well-known
to generically remain non-negligible. Accordingly, initial
correlations (at t = 0), as exemplified by (59) (with not
too large distances between the sites i and j), are not ex-
pected to approach zero for large κ, and likewise for the
analogous correlations at any later time point t. Numer-
ical examples in support of this expectation are provided
by Figs. 2-5.

D. Final remarks

Our first remark is that in case of the macroscopic
observables (34), the exact time-dependencies (41)-(45)

can also be obtained “directly”, i.e., without exploiting
our main results from Sec. III, and likewise for (47)-
(52). Namely, by exploiting the specific symmetries of
the Hamiltonian H in (2), the Heisenberg equations of
motion which govern the expectation values of those ob-
servables can be readily solved, as detailed, e.g., in Ref
[27]. From this viewpoint, the absence of equilibration
and thermalization in such models may thus be consid-
ered as a relatively obvious consequence of their special
symmetry properties.

For most other observables, the generic occurrence of
permanent long-time oscillations is a far from obvious key
finding of our present work. The fact that this finding
is indeed non-trivial is already quite evident by recalling
that usually an (approximately) time-periodic behavior
only appears after sufficiently long times (see Figs. 2-5),
and even then the actual expectation values still exhibit
certain deviations from strict periodicity (for systems of
finite size). Moreover, the oscillations are asynchronous
unless the system happens to translationally invariant
(Sec. IV).

Our second remark is that “single spin observables” sai
with a ∈ {x, y} and their intensive counterparts Ma from
(34) were found in Sec. V A to exhibit harmonic long-time
oscillations with angular frequency h. In the same vein,
“two-spin observables” sa1i1 s

a2
i2

with a1,2 ∈ {x, y} were
found to harmonically oscillate with angular frequency
2h in Sec. V B, while 〈M2

a 〉t turned out to be often close
to 〈Ma〉2t in Sec. V C. Analogously, it is quite evident
that harmonic oscillations with angular frequency νh will
arise for ν-spin observables sa1i1 · · · s

aν
iν

, while 〈Mν
a 〉t will

be close to 〈Ma〉νt in many cases. The latter example
implies that the long-time oscillations are in general not
of a purely harmonic character.

VI. EQUILIBRIUM CORRELATIONS AND
TIME CRYSTALS

Throughout this section we restrict ourselves to system
states of the specific form

ρ =
∑
nl

pnl |n, l〉〈n, l| (60)

with pnl ≥ 0 and
∑
nl pnl = 1. It follows from (7) that

[H, ρ] = 0, i.e. the state ρ remains unchanged in the
course of time (steady or equilibrium state). Particularly
important examples are thermal equilibrium ensembles of
the canonical form

ρ = e−βH/Tr{e−βH} . (61)

Other examples are microcanonical ensembles, or, more
generally, largely arbitrary diagonal ensembles of low pu-
rity (see also Eqs. (23), (27), and below Eq. (66)).
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At the focus of the present section are temporal corre-
lations (also called, among others, dynamic or two-point
correlation functions)

CAB(t) := Tr{ρAB(t)} (62)

for any given pair of observables A and B, where B(t) :=
eiHtBe−iHt (Heisenberg picture, ~ = 1).

Similarly as in (10)-(14) one finds that

CAB(t)=
∑
ν

gν(t) eiνht , (63)

gν(t):=
∑
mn

ei(E
0
n−E

0
m)t
∑
k

pmk A
k,k+ν
mn Bk+ν,k

nm , (64)

and similarly as in (15), (16), (22) that

CAB(t)  
∑
ν

ḡν e
iνht , (65)

ḡν :=
∑
mnk

′
pmk A

k,k+ν
mn Bk+ν,k

nm (66)

under the very same preconditions as those discussed in
Secs. III B and III C. The detailed derivation is quite sim-
ilar to Appendix A (see also Supplemental Material of
Ref. [28]) and therefore omitted here.

As a consequence, the generic appearance of perma-
nent oscillations is predicted similarly as in Sec. III D,
and of synchronization effects similarly as in Sec. IV in
case of translationally invariant systems. In particular,
correlations of local observables Ai and Bi with the prop-
erty T †AiT = Ai+1 and T †BiT = Bi+1 are predicted to
synchronize with each other, and also with the correla-
tions of their intensive counterparts A :=

∑
i∈ΛAi/κ and

B :=
∑
i∈ΛBi/κ, respectively.

Note that the correlation in (62) is, in general, a com-
plex valued function of t, and as such not an immedi-
ately observable quantity. However, analogous predic-
tions readily carry over to its real (symmetrized) part

CsAB(t) := [Tr{ρAB(t)}+ Tr{ρB(t)A}]/2 , (67)

and analogously for its imaginary part.
Focusing on the specific observables A = B = Mx from

(34), one finally finds, similarly as in Sec. V, for arbitrary
t and without any further approximation that

CsMxMx
(t) = ã2 cos(ht) , (68)

ã2 := Tr{ρM2
x} , (69)

and likewise for A = B = My. In case of a translation-
ally invariant system, we furthermore can conclude under
similar conditions as above (46) that

Cssxisxi (t) CsMxMx
(t) . (70)

These findings imply interesting conclusions with re-
spect to the topic of time crystals. At the focus of
the latter issue are, generally speaking, various conceiv-
able forms and disguises of a spontaneously broken time-
translation symmetry (see, e.g., Refs. [21, 22] for recent

reviews). Here, we specifically address the possible oc-
currence of such fascinating phenomena in isolated many-
body quantum systems at thermal equilibrium (no peri-
odic driving, no external bath(s) or other sources of dis-
sipation, not considering ground states (zero tempera-
ture limit), not taking the thermodynamic limit before
the long-time limit etc. [21, 22]). Under theses cir-
cumstances, a particularly well-established definition of
a time crystal explicitly refers to the behavior of tem-
poral correlations at thermal equilibrium, requiring that
they must exhibit permanent oscillations in time as well
as long-range order in space [24]. In our present con-
text, this is largely equivalent [24–26] to the require-
ment that there must exist intensive observables A,B
(exemplified by (34) and more generally defined below
Eq. (66)), whose correlation function in (62) exhibits per-
manent oscillations that do not tend to zero for asymp-
totically large system size κ (see below (59)).

Combining this definition and Eq. (68), a time crys-
tal will thus be realized by focusing on the example
A = B = Mx and showing that ã2 in (69) approaches
a positive limiting value for asymptotically large κ in the
canonical ensemble from (61). Observing (69) and that
Tr{ρMx} = 0 such a behavior of ã2 is tantamount to
the appearance of macroscopic thermal fluctuations of
Mx and is thus expected to arise if the Heisenberg model
in (1)-(3) exhibits in the thermodynamic limit a sponta-
neous symmetry breaking (phase transition) with respect
to Mx. In this context it may be worth to recall that,
as always, we tacitly focus on cases with a non-vanishing
external field h in (2).

Remarkably, we thus established a direct connection
between a spontaneously broken time-translation invari-
ance in the context of time crystals, and a spontaneously
broken spatial symmetry in the context of phase transi-
tions at thermal equilibrium.

As demonstrated analytically in Refs. [24–26], this kind
of time crystals is in fact impossible, at least for all many-
body systems with short-range interactions. Accordingly,
also the above-mentioned phase transition can be ruled
out.

An alternative, weaker definition of a time crystal has
recently been proposed and explored in Ref. [23], requir-
ing that the ratio between the temporal correlation in
(62) an its initial value CAB(0) must exhibit permanent
long-time oscillations. According to (68), this condition
is always fulfilled for the specific choice A = B = Mx. In
other words, according to this definition, a time crystal
is expected to generically arise for any model of the gen-
eral form (1)-(3) with non-vanishing field h. Similarly
to the discussion at the end of Sec. III D, our present
findings thus complement and substantially extend those
obtained in the seminal previous Ref. [23].
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VII. SUMMARY AND CONCLUSIONS

Our first main prediction (see Sec. III) is that any
Heisenberg model of the general form (1)-(3) gives rise
to time-dependent expectation values (9), which become
practically indistinguishable from the auxiliary function
(26) for practically all sufficiently large times t. The very
weak preconditions for this prediction are that the sys-
tem size κ must be large, the maximal gap degeneracy γ
must not be exceedingly large (see below Eq. (21)), and
the maximal level population pmax must be small (see
Eq. (21)). For instance, the latter condition is known
to be fulfilled if the initial state arises as the result of a
canonical quench (see Sec. III C).

In turn, this auxiliary function (26) generically ex-
hibits time-periodic (but not necessarily harmonic) os-
cillations, hence the same must be (approximately) the
case for the long-time behavior of the corresponding ex-
pectation values in (9), as exemplified by Figs. 2-5. The
main requirements for such permanent long-time oscilla-
tions are a non-vanishing magnetic field h in (2), and a
non-equilibrium initial condition. More precisely speak-
ing, the initial state must not be a diagonal ensemble of
the form (27) or (64). In all these cases, the system thus
exhibits neither equilibration nor thermalization.

We remark that the considered models (1)-(3) them-
selves are not subject to any time-dependent external
driving. Moreover, all the above findings are indepen-
dent of whether the system is integrable or not, features
disorder (and possibly many-body localization) or not, is
extensive (short-range interactions) or not, nor does the
dimensionality of the system play any significant role.

Put differently, approximately periodic long-time oscil-
lations are predicted to occur for (almost) any observable.
Moreover, during some initial time interval, the expecta-
tion values are generically far for from being periodic,
and exhibit some small deviations from strict periodic-
ity even for large times. Finally, those oscillations are
in general not of a purely harmonic character, including
as special cases oscillations with arbitrary multiples of
the reference frequency h (cf. Eq. (26)). Accordingly
(see also Sec. V D), for such observables we are unable to
complement our analytical theory by some simple “phys-
ical explanation” of what is essentially going on.

Another challenging open problem is to explain all ob-
servable properties for a finite magnetic field h in (2) in
terms of the field-free properties. More precisely speak-
ing, the eigenvalues and eigenvectors are of course triv-
ially related via (7), (8), but does the behavior of all
(physically relevant) observables for h = 0 already deter-
mine their behavior for h 6= 0 ?

Our second main result (see Sec. IV) is the prediction
of synchronization under the additional requirement that
the system is translationally invariant (and thus obeys
periodic boundary conditions) in all spatial directions.
Here, the term synchronization means that the above dis-
cussed long-time oscillations become approximately in-
variant under arbitrary translations of any given observ-

able, as exemplified by Figs. 4 and 5. Once again, this
approximate invariance is furthermore predicted to be-
come asymptotically exact for large times and large sys-
tem sizes. Even more generally speaking (without any
reference to some underlying lattice geometry), it seems
in fact sufficient to require that all spins of the considered
model are equivalent (in some suitably defined sense),
and likewise for the synchronizing observables.

We emphasize that our present synchronization phe-
nomenon does not depend on whether the interactions Jij
in (3) are negative (i.e. of ferromagnetic character) or not
[27], contrary to what one might have naively expected to
be necessary for the “alignment” of all the spins in such
a system. In the same vein, the system’s dimensionality
once again plays no role, nor is it necessary that the ini-
tial condition is translationally invariant. More generally
speaking, ordering and phase transition phenomena at
thermal equilibrium are apparently of little help to bet-
ter understand our present synchronization effects, nor
are we able to provide any other kind of simple intuitive
explanation of the basic underlying physics.

Obviously, the above predicted long-time oscillations of
any given observable A in general still depend in a very
complicated way (via the phases and amplitudes in (26))
on the choice of the initial condition ρ(0). However, for
translationally invariant Hamiltonians those long-time
oscillations were shown in Sec. IV to be invariant under
arbitrary translations of the initial condition ρ(0) (even if
ρ(0) itself is not translationally invariant). This quite re-
markable finding is in fact equivalent to the prediction of
synchronization, and therefore seems again not to admit
a simple physical explanation.

Our third main result concerns the issue of time crys-
tals. Unfortunately, even the precise definition of a time
crystal still appears to be somewhat ambiguous. For in-
stance, already our permanent oscillations from Sec. III
can be considered as the characteristic signature of a time
crystal according to one of the definitions provided in
Ref. [22] (see Figure 8, second column, last row therein):
Indeed, since the time-translation invariance of the model
Hamiltonian is spontaneously broken (reduced to a time-
discrete invariance) for arbitrarily long times, which in
turn may be viewed as a thermodynamic limit in the time
domain, we may speak of a “crystal” in the time domain.
In our present explorations in Sec. VI, we mainly focused
on the somewhat more generally established definition of
a time crystal from Ref. [24]. We also may recall that the
no-go theorem for this type of time crystals from Ref. [24]
has been shown in Ref. [22] to still contain a loophole,
which in turn has been subsequently closed in [25] (see
also [26]). Our present explorations are (or course) com-
patible with this latter no-go theorem, i.e., we do not find
a time crystal in the sense of Ref. [24]. Finally, yet an-
other, somewhat weaker definition of a time crystal has
been proposed in Ref. [23], according to which our find-
ings in Sec. VI lead to the conclusion that models of the
general form (1)-(3) generically do exhibit the character-
istic signature of a time crystal. The question of what we



14

actually gained by knowing whether or not some given
model system qualifies as a time crystal in one or the
other sense remains unclear to the present authors.

Finally, it seems reasonable to expect that our main
findings will also be recovered in a broad class of alterna-
tive models such as the Hubbard model, as long as their
general symmetry properties are similar as in our present
model.
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Appendix A: Derivation of Eq. (20)

As usual, the unperturbed energies are denoted by E0
n

with n ∈ {1, ..., N} (see below (6)), and the operator
norm (largest eigenvalue in modulus) of any Hermitian
operator A is denoted by ‖A‖.

Choosing l = Ln in (5), and exploiting that ‖Sz‖ ≤∑
i∈Λ ‖szi ‖ = κs, where s is the single-site spin quantum

number and κ the system size (see above (1)), we can
conclude that

Ln ≤ κs (A1)

for any n ∈ {1, ..., N}.
Given that a single spin at any given site i spans a

Hilbert space of dimension 2s+1, the dimensionality of
the full Hilbert space will be (2s+1)κ. Hence, the to-
tal number N of all energy eigenvalues E0

n can be upper
bounded by (2s+1)κ,

N ≤ (2s+ 1)κ . (A2)

Conversely, for any given n, the total number 2Ln+ 1
of all possible labels l (see below (6)) is upper bounded
by 2κs+1 according to (A1). We thus obtain the lower
bound

N ≥ (2s+ 1)κ

2κs+ 1
. (A3)

Altogether, (A2) and (A3) imply that the number N of
energy eigenvalues E0

n must grow exponentially with the
system size κ

The set of all possible (ordered) pairs of indices m and
n is defined as

Gtot :=
{

(m,n) |m,n ∈ {1, . . . , N}
}
. (A4)

For any given pair α = (m,n) ∈ Gtot we furthermore
define

Gα := E0
n − E0

m , (A5)

ηνα :=
∑
k

ρk,k+ν
mn Ak+ν,k

nm . (A6)

Hence, (14) can be rewritten as

fν(t) :=
∑
α∈Gtot

eiGαt ηνα . (A7)

Next, we introduce the subset G ⊂ Gtot of all pairs
(m,n) with the property that E0

m 6= E0
n, i.e.,

G :=
{
α ∈ Gtot |Gα 6= 0

}
. (A8)

Accordingly, its complement satisfies

Ḡ := Gtot\ G =
{
α ∈ Gtot |Gα = 0

}
. (A9)

It readily follows that the maximal gap degeneracy
from (19) can be rewritten in the form

γ = max
β∈G
|{α ∈ G|Gα = Gβ}| , (A10)

where |S| denotes the number of elements contained in
the set S. Similarly, the long-time average of fν(t) from
(14) or (A7) can be rewritten in the form (16) or

f̄ν =
∑
α∈Ḡ

ηνα , (A11)

respectively.
As announced in the main text, our objective is to

show that the difference

∆(t) := 〈A〉t −At (A12)

between the time-dependent expectation values from (13)
and the auxiliary function from (15) is small for most suf-
ficiently late times t. Employing (13), (15), (A7), (A9),
and (A11), we therefore rewrite (A12) as

∆(t) =
∑
ν

δν(t) eiνht , (A13)

δν(t) := fν(t)− f̄ν =
∑
α∈G

eiGαt ηνα . (A14)

Next we recall that the sum over the indices m,n, k, l
in (10) is tacitly restricted to pairs n, l for which |n, l〉
are well-defined eigenvectors in (7), i.e. n ∈ {1, ..., N}
and l ∈ {−Ln, ..., Ln}, and likewise for the pairs m, k.
Alternatively, for indices n, l so that |n, l〉 is not a well-
defined eigenvector, we may define those (so far unde-
fined) vectors |n, l〉 as being equal to the null vector
(hence ρk,lmn = 0, Al,knm = 0). As a consequence, we
may now consider all four indices m,n, k, l in the sum
in (10) to run over all integer values, and likewise for
the summation indices in (14), (16), and (A6). Further-
more, it follows that the matrix elements ρk,k+ν

mn are zero
if k 6∈ {−Lm, ..., Lm} or k+ ν 6∈ {−Ln, ..., Ln}. Hence, it
is sufficient to keep on the right-hand side in (A6) only
those summands which satisfy |k| ≤ Lm and |ν+k| ≤ Ln.
Observing (A1) and |ν + k| ≥ |ν| − |k| (triangle inequal-
ity) it follows that |ν| − κs ≤ |ν| − |k| ≤ |ν + k| ≤ κs
must be fulfilled. As a consequence, it is necessary that
|ν| ≤ 2κs in order that ηνα in (A6) is non-zero. There-
fore, it is sufficient to keep in (A13) only those ν which
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are contained in Iν := {−2κs, ..., 2κs}, and by employing
the Cauchy-Schwarz inequality we obtain

|∆(t)|2 ≤
∑
ν∈Iν

|δν(t)|2
∑
ν∈Iν

|eiνht|2 . (A15)

The last sum can be identified with 4κs+1, yielding

|∆(t)|2 ≤ (4κs+1)
∑
ν

|δν(t)|2 , (A16)

where, without loss of generality, the sum has again been
extended to all integer indices ν.

Denoting, as in the main text, the temporal average of
an arbitrary function f(t) over the time interval [0, T ] by

〈f(t)〉T :=
1

T

∫ T

0

dt f(t) , (A17)

we can conclude from (A14) that〈
|δν(t)|2

〉
T

=
∑
α,β∈G

(ηνα)∗Mαβ
T ηνβ , (A18)

Mαβ
T :=

〈
e−i(Gα−Gβ)t

〉
T
. (A19)

Viewing Mαβ
T as the matrix elements of some operator

MT , one can infer from (A19) that MT is Hermitian and
non-negative, and therefore∑

α,β∈G

(ηνα)∗Mαβ
T ηνβ ≤ ‖MT ‖

∑
α∈G
|ηνα|2 . (A20)

As detailed, e.g., in Refs. [11, 12], one can furthermore
show that

‖MT ‖ ≤ 2γ (A21)

for all sufficiently large T , where γ is given in (A10).
Altogether, (A16), (A18), (A20), and (A21) thus imply〈

|∆(t)|2
〉
T
≤ 2g (4κs+1)σ2 , (A22)

σ2 :=
∑
ν

∑
α∈G
|ηνα|2 , (A23)

for all sufficiently large T . Extending the sum in (A23)
over all index pairs α ∈ Gtot and exploiting (A6), we find

σ2 ≤
∑
ν

∑
mn

∑
kl

ρk,k+ν
mn Ak+ν,k

nm (ρl,l+νmn Al+ν,lnm )∗ ,

=
∑
νmn

Qνmn , (A24)

Qνmn :=
∑
kl

V k,lνmn(V l,kνmn)∗ , (A25)

V k,lνmn := ρk,k+ν
mn (Al+ν,lnm )∗ . (A26)

Utilizing the Cauchy-Schwarz inequality in (A25) implies

|Qνmn|2 ≤
∑
kl

|V k,lνmn|2
∑
kl

|V l,kνmn|2 . (A27)

Observing that the two sums on the right-hand side are
in fact identical, we can infer with (A24) that

σ2 ≤
∑
νmn

|Qνmn| ≤
∑
νmnkl

|V k,lνmn|2 (A28)

and with (A26) that

σ2 ≤
∑
νmnkl

|ρk,k+ν
mn |2 |Al+ν,lnm |2 . (A29)

Exploiting (11) and the Cauchy-Schwarz inequality,
one can conclude that |ρk,lmn|2 ≤ ρk,kmmρl,lnn. Since the den-
sity operator ρ(0) must be semi-positive, it follows with
(11) that ρk,kmm and ρl,lnn are non-negative, real numbers.
Altogether, |ρk,k+ν

mn |2 in (A29) can thus be upper bounded
by ρk,kmmpmax, where pmax is defined in (18), yielding

σ2 ≤ pmax

∑
mk

ρk,kmmWm , (A30)

Wm :=
∑
l

wml , (A31)

wml :=
∑
nν

|Al+ν,lnm |2 . (A32)

Replacing in (A32) the summation index ν by j := l+ ν
and exploiting (12) thus yields

wml =
∑
nj

|Aj,lnm|2 =
∑
nj

〈m, l|A|n, j〉〈n, j|A|m, l〉 .(A33)

Since
∑
nj |n, j〉〈n, j| is the unit operator, we see that

wml equals 〈m, l|A2|m, l〉 and thus

Wm =
∑
l

〈m, l|A2|m, l〉 . (A34)

As discussed below (A14), the summands on the right-
hand side of (A34) are zero for l 6∈ {−Lm, ..., Lm}. In
other words, there are at most 2Lm + 1 non-vanishing
summands. Furthermore, each of those summands can
be upper bounded by ‖A2‖ = ‖A‖2. Due to (A1) we
thus arrive at

Wm ≤ (2κs+1) ‖A‖2 . (A35)

Observing (11), the remaining sum in (A30) can be iden-
tified with Tr{ρ(0)} = 1, yielding

σ2 ≤ (2κs+1) ‖A‖2 pmax . (A36)

Together with (A22), we finally can conclude that〈
|∆(t)|2

〉
T
≤ 4γ (2κs+1)2 ‖A‖2 pmax (A37)

for all sufficiently large T .
Note that if we replace A by A + c then both terms

on the right-hand side in (A12) are shifted by the same
constant c, thus the left-hand side is independent of c.
Accordingly, the left-hand side in (A37) is independent
of c, while the right-hand side yields in general a differ-
ent upper bound for different choices of c. Denoting by
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amax and amin the largest and smallest eigenvalues of A,
respectively, one finds that the tightest upper bound is
achieved for the choice c = −(amax+amin)/2. Altogether,
(A37) and (A12) thus yield〈

[〈A〉t −At]2
〉
T
≤ γ (2κs+1)2 ∆2

A pmax (A38)

for all sufficiently large T , where ∆A := amax − amin is
the measurement range of A (difference between largest
and smallest possible measurement outcomes). In other
words, we recover Eq. (20).

Appendix B: Derivation of Eq. (33)

We focus on spin models (2) on a one-dimensional lat-
tice Λ = {1, ..., κ} with periodic boundary conditions.
[Generalizations to hypercubic lattices in arbitrary di-
mensions are straightforward.] In other words, we are
dealing with κ identical “units” (spins) on a ring (chain
with periodic boundary conditions) which are labeled by
i ∈ {1, ..., κ}.

In the absence of interactions, each unit “lives” on a
Hilbert space Hi with orthonormal basis |k〉i, where k =
1, ..., 2s+1. Apart from “belonging” to different units i,
all those Hilbert spaces are identical copies of each other.

The pertinent Hilbert space H of the total system is
the tensor product of all the Hi. Abbreviating κ-tuples

(k1, ..., kκ) as ~k, the vectors |~k〉 := |k1〉1 · · · |kκ〉κ then
amount to an orthonormal basis of H.

Next, a “shift” or “translation” operator T : H → H
is defined via its action on any basis vector: T |~k〉 :=
|k2〉1|k3〉2 · · · |kκ〉κ−1|k1〉κ. One readily concludes that T
is norm-preserving. It follows that T must be a unitary
operator, i.e., T † = T −1.

Our main assumption is that the unperturbed Hamil-
tonian H0 from (3) is translationally invariant in the
sense that the couplings Jij do not depend separately
on i and j, but only on the difference i − j (modulo κ).

It follows that H0 is also translationally invariant in the
alternative sense that

T †H0T = H0 , (B1)

or, equivalently, [H0, T ] = 0 (commutator). Likewise,
one sees that each component of the total spin Sa from
(1) is translationally invariant. It follows that all four

operators H0, Sz , ~S2, and T commute with each other.
Without loss of generality, we thus can assume that the
eigenvectors |n, l〉 of H0 are at the same time not only

eigenvectors of Sz, and ~S2, see (4)-(6), but also eigenvec-
tors of T . Since T is unitary, the corresponding eigen-
values must be of unit modulus, i.e.,

T |n, l〉 = eiθn,l |n, l〉 (B2)

with certain “phases” θn,l ∈ [0, 2π).
Since Sx and Sy commute with T (see above), the same

applies to the raising operator S+ from (35). Together
with (36) It follows that

S+T |n, l〉 = eiθn,lS+|n, l〉 = eiθn,lc+n,l|n, l + 1〉 =

T S+|n, l〉 = c+n,lT |n, l + 1〉 = c+n,le
iθn,l+1 |n, l + 1〉 . (B3)

We thus can conclude that θn,l+1 = θn,l, and finally that
θn,l only depends on n, but not on l.

Combining (B2) with the l-independence of θn,l one
recovers (33) for arbitrary Hermitian operators B. As
in the main text, it is a priori understood in (33) that
n ∈ {1, ..., N} and l, l′ ∈ {−Ln, ..., Ln}, but with the
convention adopted below (A14), one readily can extend
the same relation to arbitrary n, l, l′.

We finally mention that the choice of the basis as spec-
ified below (B1) may in principle not be unique, but that
such ambiguities can be excluded if all energies E0

n are
pairwise different, as it is assumed at the beginning of
Sec. IV.
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