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We investigate the one-magnon dynamics of the antiferromagnetic delta chain as a paradigmatic
example of tunable equilibration. Depending on the ratio of nearest and next-nearest exchange
interactions the spin system exhibits a flat band in one-magnon space – in this case equilibration
happens only partially, whereas it appears to be complete with dispersive bands as generally expected
for generic Hamiltonians. We provide analytical as well as numerical insight into the phenomenon.

I. INTRODUCTION

Recent theoretical investigations on foundations of
thermodynamics focus on equilibration as well as ther-
malization in closed quantum systems under unitary time
evolution. The road to a deeper understanding was paved
by seminal papers of Deutsch, Srednicki and many others
[1–12]. In simple words, the accepted expectation is that
generic Hamiltonians, i.e. Hamiltonians that are not spe-
cial but rather represent a class of similar Hamiltonians,
lead to equilibration for the vast majority of initial states.
In this context it appears interesting to understand the
untypical behavior seen for special Hamiltonians or spe-
cial states such as quantum scar states [13–18].

For numerical studies, spin systems are the models of
choice both since they are numerically feasible due to the
finite size of their Hilbert spaces as well as they are ex-
perimentally accessible for instance in standard investiga-
tions by means of electron parametric resonance (EPR),
free induction decay (FID), or in atomic traps, see e.g.
[19–24]. In such systems, observables assume expectation
values that are practically indistinguishable from the pre-
diction of the diagonal ensemble for the vast majority of
all late times of their time evolution under very general
and rather not restrictive conditions, see e.g. [7, 25–31].

In the present paper we investigate the paradigmatic
spin delta chain in the Heisenberg model which becomes
special for a certain ratio of the two defining exchange
interactions J1 and J2, see Fig. 1. For J2/J1 = 1/2 the
system exhibits a flat band in one-magnon space or equiv-
alently independent localized one-magnon eigenstates of
the Hamiltonian, a phenomenon that has been attracting
great attention for more than 20 years now, see e.g. [32–
44]. In the context of equilibration, flat bands are inter-
esting since they give rise to zero group velocity and thus
result in a special form of (partial) localization, some-
times also termed disorder-free localization [16].

Since the one-magnon space of the delta chain hosts
only two energy bands (two spins per unit cell) the quan-
tum problem can be solved analytically. We will present
both analytical as well as numerical solutions of the time-
dependent Schrödinger equation and in particular inves-
tigate the magnetization dynamics with and without flat
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band. We will provide analytical insight into which parts
of an initial state will not participate in the process of
equilibration. Our results can be qualitatively trans-
ferred to other flat-band systems such as kagome, square
kagome, or pyrochlore spin systems.
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Figure 1. Top: Structure of the delta chain with apical spins
sa and basal spins sb as well as exchange interactions J1 and
J2. The spins are numbered 0, 1, . . . , N − 1. An independent
localized one-magnon state is highlighted. Bottom: Energy
eigenvalues in one-magnon space for N = 40, J1 = −2, J2 =
−1 and sa = sb = 1

2
. The momentum quantum number k

(wave number) runs from 0 to N/2− 1.

The paper is organized as follows. In Section II we
introduce the model, the concept of independent local-
ized magnons as well as the major results. Section III
provides the technical details. The article closes with a
discussion in Section IV.

II. ONE-MAGNON DYNAMICS OF THE DELTA
CHAIN

The antiferromagnetic delta chain is displayed in
Fig. 1 (top). Assuming periodic boundary conditions,
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N ≡ 0, it is modelled in the Heisenberg model as

H∼ = −2J1

N−1∑
i=0

~s∼i · ~s∼i+1 − 2J2

N
2 −1∑
j=0

~s∼2j · ~s∼2j+2 , (1)

where ~s∼i denote spin vector operators and J1 < 0 as well

as J2 < 0 are antiferromagnetic exchange interactions.
The model can be treated analytically in one-magnon
space, i.e., when the total magnetic quantum number is
given by M = N(sa + sb)/2 − 1. Since the chain hosts
two spins per unit cell the eigenenergies are split into two
bands of which one is flat for α = J2/J1 = 1/2, compare
Fig. 1 (bottom). In the later case, one can transform the
states of the flat band into independent localized one-
magnon states, see Fig. 1 (top) and e.g. [33, 41]

|φ0µ 〉 =
1√
6

(
1√
2sa

s∼
−
µ−1 −

2√
2sb

s∼
−
µ +

1√
2sa

s∼
−
µ+1

)
× |Ω 〉 , (2)

|Ω 〉 = |m0 = sb,m1 = sa, . . .mN−1 = sa 〉 ,

where µ is the position of the basal spin about which
the localized magnon is centered, and |Ω 〉 denotes the
magnon vacuum, i.e., the fully polarized state. Localized
independent one-magnon states have also been termed
“compact localized states” recently [45], we will refer to
them simply as localized states throughout this article.

One may expect that the dynamics is different in the
case of a flat band compared to the generic case of disper-
sive bands. Qualitatively, the argument can be expressed
in two ways: (1) Since one band is flat, the group veloc-
ity of these states is strictly zero, and therefore parts of
a wave function belonging to the flat band will not move
and therefore never equilibrate or thermalize. (2) Like-
wise one can argue, that the independent localized one-
magnon states are stationary and contributions of them
to a wave function stay localized where they started ini-
tially. Technically, the details are a bit more intricate
since the localized one-magnon states are not mutually
orthogonal; we will elaborate on this in Sec. III.

The following figures demonstrate the discussed dy-
namics by showing the local magnetization for all sites
i = 0, . . . , N − 1, i.e.,

〈 s∼
z
i 〉t = 〈Ψ(t) | s∼

z
i |Ψ(t) 〉 (3)

|Ψ(0) 〉 =
1√
2sj

s∼
−
j |Ω 〉 , (4)

starting with a single spin flip at site j at t = 0. We
evaluated the dynamics both numerically as well as ana-
lytically, the latter is shown [46, 47].

We start our discussion by looking at single spin flips
at a basal site j. One expects that these spin flips dif-
fer somewhat from flips at apical sites since they overlap
only with one localized magnon whereas the latter over-
lap with two localized magnons, compare Fig. 1.

Figure 2 shows the magnetization dynamics for N = 16
and sa = sb = s = 1

2 for the flat-band case α =

Figure 2. N = 16, sa = sb = s = 1/2, |Ψ(0) 〉 = 1√
2s
s∼
−
8 |Ω 〉:

Magnetization dynamics for α = 0.5 (l.h.s.) as well as α =
0.48 (r.h.s.). The legend shows 0.5− 〈 s∼

z
i 〉t.

J2/J1 = 1/2 (left) as well as for a nearby Hamiltonian
with α = 0.48 (right), i.e. a dispersive band. As initial
state we choose |Ψ(0) 〉 = 1√

2s
s∼
−
8 |Ω 〉. One can see that

in the case of a flat band a large fraction of the magne-
tization remains localized at the position of the respec-
tive independent localized one-magnon state to which the
site of the excitation belongs (sites 7,8,9 in the example)
whereas for the (only slightly) dispersive band the mag-
netization delocalizes across the system. Since the sys-
tem is rather small one observes to a small extend waves
that run around the system due to periodic boundary
conditions; they give rise to interferences.

Figure 3. N = 40, sa = sb = s = 1/2, |Ψ(0) 〉 = 1√
2s
s∼
−
20 |Ω 〉:

Magnetization dynamics for α = 0.5 (l.h.s.) as well as α =
0.48 (r.h.s.). The legend shows 0.5− 〈 s∼

z
i 〉t.
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Figure 4. N = 200, sa = sb = s = 1/2, |Ψ(0) 〉 =
1√
2s
s∼
−
100 |Ω 〉: Magnetization dynamics for α = 0.5 (l.h.s.)

as well as α = 0.48 (r.h.s.). The legend shows 0.5− 〈 s∼
z
i 〉t.

The question is how larger systems behave. To this
end we show results for N = 40 in Fig. 3 as well as
N = 200 in Fig. 4. One clearly sees – left hand sides
of both figures – that a remanent magnetization persists
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at the site of the localized magnon overlapping with the
single-spin excitation for the case of a flat band. In case
of dispersive bands the initially maximally localized mag-
netization fluctuation redistributes over the entire system
(right hand sides of the figures).

Figure 5. N = 16, sa = sb = 1/2, |Ψ(0) 〉 = 1√
2s7

s∼
−
7 |Ω 〉:

Magnetization dynamics for α = 0.5 (l.h.s.) as well as α =
0.48 (r.h.s.). The legend shows 0.5− 〈 s∼

z
i 〉t.

Figure 6. N = 40, sa = sb = s = 1/2, |Ψ(0) 〉 = 1√
2s
s∼
−
19 |Ω 〉:

Magnetization dynamics for α = 0.5 (l.h.s.) as well as α =
0.48 (r.h.s.). The legend shows 0.5− 〈 s∼

z
i 〉t.
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Figure 7. N = 200, sa = sb = s = 1/2, |Ψ(0) 〉 = 1√
2s
s∼
−
99 |Ω 〉:

Magnetization dynamics for α = 0.5 (l.h.s.) as well as α =
0.48 (r.h.s.). The legend shows 0.5− 〈 s∼

z
i 〉t.

The situation changes somewhat if the spin flip is ex-
ecuted at an apical site. Such a site belongs to two
independent localized one-magnon states, therefore the
magnetization remains dominantly localized across both
states. It should also be somewhat smaller since it is now
distributed over 5 sites.

The figures 5, 6, and 7 display the cases of N = 16,
N = 40, and N = 200, respectively. Again the main
insight we gain is that for the flat band cases there is
a remanent magnetization distributed about the site of

the single-spin flip whereas for the (only slightly) disper-
sive band the magnetization redistributes over the entire
system.

Figure 8. Time-averaged local magnetization (above back-

ground of magnon vacuum) (0.5 − 〈 s∼
z
i 〉t) at sufficiently late

times, compare (5), for various sizes of the spin system:
α = 0.5 (l.h.s.) and α = 0.48 (r.h.s.). All systems were
time-evolved over t = 1, 000, 000 of our time units and then
averaged over additional nt∆t = 2, 000 time units, compare
(5).

We summarize our results graphically in Fig. 8 where
we plot the time-averaged local magnetization, Eq. (3), at
sufficiently late times for various sizes of the spin system,
i.e.

〈 s∼
z
i 〉t =

1

nt∆t

nt∑
n=1

〈Ψ(t+ n∆t) | s∼
z
i |Ψ(t+ n∆t) 〉 .(5)

We restrict ourselves to single-spin flips at a basal site.
As one can see on the l.h.s. of Fig. 8 the local magneti-
zation at the site of the flip drops from one to 1/2 above
background. At the neighboring sites that belong to the
localized magnon |µ = j 〉 the local magnetization ap-
proaches roughly 0.1 above background. This means that
out of the initial magnetization fluctuation about sev-
enty percent remain localized at the respective localized
magnon, a substantial fraction that never equilibrates.
The precise contributions of a local spin flip, that do not
perticipate in an equlibrating dynamics will be exactly
evaluated in Sec. III.

For the case of a dispersive band, shown on the r.h.s.
of Fig. 8 one immediately realizes that the magnetization
fluctuation due to the single spin flip is practically evenly
redistributed over the entire system. All late-time single-
spin expectation values approach the background value
of the magnon vacuum (set to zero) plus 1/N for the
redistributed single-spin flip.

Finally, since this is not the focus of the paper at hand,
we refer readers interested in the question how the sys-
tem approaches its long-time limit, i.e. ballisticly or dif-
fusively to the existing extensive wealth of papers on that
topic [25, 27–31, 48, 49].

III. ANALYTICAL SOLUTION FOR THE
DELTA CHAIN

All results discussed in Sec. II can be obtained either
numerically or even analytically. An analytical solution
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for the delta chain can be achieved using the symmetries
of the Hamiltonian. One-magnon space is spanned by N
states 1√

2si
s∼
−
i |Ω 〉, and thus has got a dimension of N .

A unit cell of the chain hosts two spins, one sa and one
sb spin, respectively, with a translational symmetry

T∼ |m0,m1, . . . ,mN−1 〉 = |mN−2,mN−1,m0, . . . 〉 .(6)

This leads to two bands of energy eigenvalues, each
with N/2 states with momentum quantum numbers k =
0, 1, . . . , N/2, compare Fig. 1 (bottom). The energy
eigenvalues εk,τ=±1 as well as eigenstates | εk,τ=±1 〉 can
be obtained analytically since the Hamiltonian matrix is
only of size 2× 2 for each value of k,

εk,1/2 = −2J1(Nsasb − sa − sb)− 2J2

(
N

2
s2b − sb

(
1− cos

(
4πk

N

)))
(7)

±

{
J2
1 s

2
a + 2J1J2sasb + (J1 − J2)2 + sb cos

(
4πk

N

)(
2(J1 − J2)(J1sa + J2sb) + J2

2 sb cos

(
4πk

N

))}1/2

,

where εk,1 corresponds to the “+”-sign and εk,2 to the
“−”-sign, respectively. For J2 = J and J1 = 2J one
obtains

εk,1 = −Jsb
{
N(4sa + sb)− 4

(
1− cos

(
4πk

N

))}
(8)

εk,2 = −J {4sa(Nsb − 2) + sb(Nsb − 8)} , (9)

where εk,2 constitutes the flat band. The local magneti-
zation at site j as displayed in Figs. 2-7 can analytically
be evaluated as [46]

〈ψ(t) | s∼
z
j |ψ(t) 〉= 〈ψ(0) | e

i
~H∼ ·ts∼

z
je
− i

~H∼ ·t |ψ(0) 〉(10)

=
∑
k,τ

∑
k′,τ ′

〈ψ(0) | εk,τ 〉〈 εk,τ | s∼
z
j | εk′,τ ′ 〉

×〈 εk′,τ ′ |ψ(0) 〉e
i
~

(
ετk−ε

τ′
k′

)
·t
.

A deeper insight of the magnetization dynamics can be
obtained by using a new basis in one-magnon space that
consists of the localized magnons introduced in Eq. (2)
and Fig. 1 complemented by analogous states constructed
from the upper band,

|φ1µ 〉 =
1√
6

(
1√
2sb

s∼
−
µ−1 +

2√
2sa

s∼
−
µ +

1√
2sb

s∼
−
µ+1

)
× |Ω 〉 . (11)

We term the latter non-stationary localized magnon
states; they are depicted in Fig. 9. For these states
we find 〈φ0µ |φ1ν 〉 = 0, but otherwise they are not or-
thogonal. Although this complicates their use for easy
(hand-waving) interpretations of the results a little bit,
the typical arguments we used in Sec. II resting e.g. on
overlaps are dominantly correct, i.e. up to small technical
corrections.

A technically correct decomposition of the initial spin
flip at site j

1√
2sj

s∼
−
j |Ω 〉 =

∑
µ=0,2,4,...

c(j)µ |φ0µ 〉 (12)

+
∑

µ=1,3,5,...

c(j)µ |φ1µ 〉

Figure 9. Structure of the delta chain with apical spins sa and
basal spins sb as well as exchange interactions J1 and J2. The
spin are numbered 0, 1, . . . , N −1. A localized non-stationary
localized one-magnon state is highlighted.

has to be performed e.g. by a Householder QR-

decomposition. The coefficients c
(j)
µ are not given by dot

products (overlaps) between the spin-flip state and the
basis states as would be the case for an orthonormal ba-
sis. However, the easy (handwaving) interpretation used
in Sec. II that the spin-flip state has got an overlap with
a localized magnon (or two) and thus remains partially
trapped at the site of the localized magnon remains true.

Figure 10. Decomposition of a spin-flip state at a basal site
into localized magnons and non-stationary localized magnons
according to (12).

Figure 10 demonstrates for an example of a spin-flip

state at a basal site how the coefficients c
(j)
µ fall off with
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growing distance |µ − j| from the site of the spin flip.
The overwhelming weight is indeed taken by the localized
magnon at that position, i.e. µ = j. The two nearest lo-
calized magnons, µ = j±2, also carry some non-neglibile,
but already much smaller weight. These contributions
will also remain localized for all times. The numbers
given in Fig. 10 can be directly related to the long term
averages given in Fig. 8.

The case of a spin flip excitation at an apical side be-
haves very similarly and is therefore not shown. As an-
ticipated, the contributions of the two localized magnons
connected to that apical site is indeed largest, and con-
tributions from localized magnons further away again fall
off very rapidly.

IV. DISCUSSION AND CONCLUSIONS

In this article, we demonstrated that certain care-
fully prepared Hamiltonians show non-ergodic dynamics
in contrast to the vast number of generic Hamiltonians
nearby in some parameter space. In our demonstration,
the behavior can be traced back to the influence of a
perfectly flat energy band that is characterized by zero
group velocity or equivalently by independent localized
one-magnon states that are eigenstates of the Hamilto-
nian and therefore stationary. The latter phenomenon

has thus been termed “disorder-free localization”. It is
an interference effect due to the fine-tuned frustration of
the competing interactions J1 and J2 [50].

Although we only investigated the time-evolution of
single-spin flips on the background of a magnon vacuum
the results can be easily transferred to arbitrary initial
states since these can be written as superpositions of
single-spin flip states.

Flat bands appear for all kinds of Hamiltonians and
have initially been investigated for the Hubbard model
[32]. It is therefore no surprise that observations similar
to ours have been discussed in connection with Hubbard
models [51]. Many flat-band systems have a realization
as a magnetic material, for instance kagome or pyrochlore
systems. Recently, the idea was brought up that Hamil-
tonians of such systems can be tuned by electric fields in
order to set up a flat-band scenario [44]. This can po-
tentially be achieved with multiferroic materials as e.g.
discussed in [52].
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[35] Blundell, S. A. and Núñez-Regueiro, M. D., Quantum
topological excitations: from the sawtooth lattice to the
Heisenberg chain, Eur. Phys. J. B 31, 453 (2003).

[36] J. Richter, J. Schulenburg, A. Honecker, J. Schnack, and
H.-J. Schmidt, Exact eigenstates and macroscopic mag-
netization jumps in strongly frustrated spin lattices, J.
Phys.: Condens. Matter 16, S779 (2004).

[37] H.-J. Schmidt, J. Richter, and R. Moessner, Linear inde-
pendence of localized magnon states, J. Phys. A: Math.
Gen. 39, 10673 (2006).

[38] M. E. Zhitomirsky and H. Tsunetsugu, Exact low-
temperature behavior of a kagomé antiferromagnet at
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