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Magnetic molecules are investigated with respect to their usability as units in future quantum
devices. In view of quantum computing, a necessary prerequisite is a long coherence time of su-
perpositions of low-lying levels. In this article, we investigate by means of numerical simulations
whether a toroidal structure of single-ion easy anisotropy axes is advantageous as often conjectured.
Our results demonstrate that there is no general advantage of toroidal magnetic molecules, but that
arrangements of tilted anisotropy axes perform best in many cases.

I. INTRODUCTION

Molecular spins are being investigated as one prospec-
tive platform for quantum computation [1–15]. In order
to reduce decoherence effects, clock transitions have been
established as promising processes with long lasting co-
herence [6, 16–19]. Clock transitions are spin transitions
made up of two eigenstates having close to the same ex-
pectation value of the magnetic moment and thus the
same slope of their Zeeman energies as function of applied
field. The energy difference which provides the frequency
of the transition is thus rather stable against field fluctu-
ations. One preferred constellation is to have zero slope
of the Zeeman levels at all, either at the extreme points
of Zeeman curves of parabolic shape [6] or for Zeeman
curves that belong to zero moments and are thus totally
flat [20, 21].

Somewhat along these lines, toroidal magnetic states
of molecular nanomagnets [22–41] are considered to be
promising candidates of quantum computation since they
do not possess magnetic moments for ideally symmetric
cases [42]. Several recent publications echo this hypoth-
esis, e.g., [34, 43, 44], however, to our knowledge no de-
coherence calculations or systematical experiments have
actually been performed for such systems. The argument
that toroidal quantum states are promising for quantum
computing rests on the – maybe reasonable – assump-
tion that they as well are insensitive to weak fluctuating
homogeneous magnetic fields [43, 45]. It was, however,
shown in e.g. [20, 46] that a true many-body treatment
of the interacting system and bath spins goes beyond the
mean-field picture of a fluctuating field and that the rea-
son for decoherence is entanglement between system and
bath.

In the following we are going to investigate a spin
triangle as a typical representative of toroidal magnetic
molecules [42]. We study its decoherence while immersed
in a bath of nearby spins with mutual dipolar interac-
tions between system and bath spins and among bath
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spins. The time evolution of the combined systems is
described by the time-dependent Schrödinger equation
and thus unitary as in [20]. We thus refrain from mean
field assumptions or assumptions about transition matrix
elements necessary for a description in terms of Lind-
blad master equations or perturbation/scattering theory
[47, 48]. The Hamiltonian is designed to model the im-
pact of either electronic or nuclear bath spins since nu-
clear spins are often the source of decoherence in molecu-
lar insulators [19, 49–51] whereas electronic spins are the
source of decoherence for molecules deposited on metallic
surfaces, see e.g. [20, 21]. No approximations as in e.g.
[50–52] are made concerning the dipolar interaction; it is
fully anisotropic.

Figure 1. System of three spin-1 particles in red, Heisenberg
coupling in blue and anisotropy axes tilted by θ1 = θ2 = θ3 =
θ (here: θ = 50◦) in yellow with a varying number of bath
spins nbath (chosen between 4 and 10 in this paper) located
on the surface of the surrounding purple sphere. Bath spins
are coupled to each other and to the system spins via dipole-
dipole interactions.

We decided to choose electronic bath spins since the
sole purpose of our study, which hopefully initiates fur-
ther investigations, is to demonstrate that there is no sim-
ple correlation between toroidicity and extended coher-
ence times. To this end, we provide examples and system-
atic studies for numerous arrangements of the surround-
ing bath of decohering spins. In contrast to widespread
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expectations it turns out that a tilted toroidal arrange-
ment of easy anisotropy axes as displayed in Fig. 1 yields
the longest coherence times in most of our simulations
except for some cases with rather weak anisotropy dis-
cussed in Sec. V as well as in the appendix.

The paper is organized as follows. In Sec. II we in-
troduce the employed spin Hamiltonian as well as the
necessary technicalities. Section III presents numerical
examples whereas Sec. IV, V, VI, and VII, discuss de-
pendencies of coherence times on parameters of the spin
system systematically. A summary is given in Sec. VIII.

II. METHODS

We calculate decoherence times of superpositions in a
strongly anisotropic triangle of three spins s = 1 with
easy-axis anisotropy coupled to a spin bath using ex-
act diagonalization and unitary time evolution. To see if
there is anything inherently beneficial about toroidal (su-
perposition) states that makes them more stable towards
external perturbations in the context of decoherence, we
evaluate for which Hamiltonians there are superpositions
among the low-lying spectrum with longer or shorter co-
herence times.

The system considered is displayed in Fig. 1. The three
system spins (s = 1) are antiferromagnetically coupled
and there is a tangential easy-axis anisotropy on each
site, i.e. the anisotropy axes are perpendicular to the al-
titude of the equilateral triangle formed by the sites of
these three system spins reminiscent of e.g. Dy3 toroidal
molecules [22, 42]. We consider a bath of (s = 1

2 ) spins
that are coupled to each other and to the system spins
via dipole-dipole interactions. The number of bath spins
is chosen between 4 and 10. This small number is suffi-
cient for our purpose. The system spins are located at a
distance of rs = 1 from the origin, while bath spins are
placed randomly on the sphere around the origin with
radius rb = 2 (in arbitrary units, see below).

The complete Hamiltonian

H∼ = H∼ S +H∼ SB +H∼B (1)

is made up of the system Hamiltonian H∼ S, the system-

bath interaction Hamiltonian H∼ SB and the bath-bath in-

teraction Hamiltonian H∼B. The system Hamiltonian H∼ S

is comprised of three terms, the Heisenberg exchange in-
teraction

H∼Heisenberg = −2J ·
2∑
i=0

~s∼i
· ~s∼i+1

(2)

with ~s∼3 ≡ ~s∼0, the single-spin (single-ion) anisotropy

H∼ anisotropy =

2∑
i=0

~s∼i
·D · ~s∼i (3)

with the anisotropy tensors Di as well as a Zeeman inter-
action term. All calculations were performed with a weak
magnetic field Bz = 0.05 T acting only on the central
spin system. This splits the states that are degenerate
at B = 0 in order to be able to distinguish them nu-
merically. We have numerically verified that while there
is some quantitative effect on coherence times there is
no significant qualitative difference to the situation with
B = 0.

The system-bath Hamiltonian H∼ SB is defined as fol-

lows

H∼ SB =

2,N∑
i=0,
j=3

A1

r3ij

~s∼i · ~s∼j − 3
(
~s∼i · ~rij

)(
~s∼j · ~rij

)
r2ij

 (4)

with

A1 =
µ0gSµSgµ

4π
. (5)

The bath Hamiltonian H∼B reads

H∼B =

N∑
3≤i<j

A2

r3ij

~s∼i · ~s∼j − 3
(
~s∼i · ~rij

)(
~s∼j · ~rij

)
r2ij

 (6)

with

A2 =
µ0(gµ)2

4π
. (7)

Here µ0 is the vacuum permeability while gµ and gSµS

denote the magnetic interaction strength of the bath and
system spins, respectively. We do not specify them, and
we do not specify the unit of length since we take A1

and A2 as adjustable parameters of our investigation that
would enable us to switch between electronic and nuclear
bath spins. We would like to emphasize that we do not
approximate the dipolar interactions by their diagonal,
i.e. Heisenberg-like part, as often done, see e.g. [50–52]
as typical examples. If the dipolar interaction is approx-
imated by terms of the form 2s∼

z
i s∼

z
j + s∼

x
i s∼

x
j + s∼

y
i s∼

y
j , then

total S∼
z is a conserved quantity for this interaction as it

is for the Heisenberg part of the Hamiltonian. We are
truly convinced that the symmetry-breaking anisotropic
parts of the dipolar interaction play an important role
for decoherence since they allow many more transitions
like for instance flip-flop transitions which are often dis-
cussed in a perturbation picture of decoherence, compare
e.g. [16].

In Ref. [20], the effects of the magnitude of system pa-
rameters A1 and A2 are illustrated. To summarize, A1

has a significant effect on the time scale of decoherence
for all superpositions. This is because the many-body
energy eigenstates of the full system get less and less en-
ergetically isolated as A1 is increased and the original
Zeeman structure of the system is lost when adding the
bath and considering the full system. A2 controls the
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relative differences in coherence times between different
superpositions but affects them a lot less than A1. In an
approximate mean-field picture a strong A1 would lead to
stronger time-dependent detunings of the effective mag-
netic field at the site of the system spins, thus destroying
the coherence of the transition. Our findings align with
these general statements, and A1 and A2 are chosen to
have fixed values of 0.1 K for all following calculations
(for other values of A1 and A2 see the Appendix). This
somewhat arbitrary choice is justified as the aim of these
investigations is to find relative differences in coherence
times, not calculating them accurately for realistic sys-
tems.

The decoherence times are calculated via time evolu-
tion based on exact diagonalization. To perform the time
evolution of the whole system with a time-independent
magnetic field, let { | ai 〉} be the eigenbasis of the initial
(t = 0) Hamiltonian of the system A. Initialize A into
an initial state |ΨA(t = 0) 〉. Most often, this will be a
superposition of two non-degenerate states n and p

|ΨA(t = 0) 〉 =
1√
2

( | an 〉+ | ap 〉) . (8)

Then define a random initial state |ΨB(t = 0) 〉 for the
bath B and form a product state

|Ψ0 〉 = |Ψ(t = 0) 〉 = |ΨA(t = 0) 〉 ⊗ |ΨB(t = 0) 〉 .
(9)

Let { |m 〉} be the product basis of the whole system
(A ⊗ B) and { |ϕl 〉} the eigenbasis of the Hamiltonian
of the whole system with eigenvalues El. Then a change
into this eigenbasis

|Ψ0 〉 =

dim(H)∑
l=1

〈ϕl|Ψ0〉 · |ϕl 〉 (10)

yields for the time-evolved state

|Ψ(t) 〉 =

dim(H)∑
l=1

ei·El·t 〈ϕl|Ψ0〉 · |ϕl 〉 . (11)

Changing back into the product basis gives

|Ψ(t) 〉 =

dim(H)∑
l,m=1

ei·El·t 〈ϕl|Ψ0〉 · 〈m|ϕl〉 · |m 〉 . (12)

All terms in this equation are known to machine precision
by exact diagonalization.

In order to quantify the decoherence of the superposi-
tion, we employ the reduced density matrix, denoted by
ρ, as a quantifier. There are various options for the quan-
tification of decoherence but in our context it does not
really matter which one is chosen, and we just consider
the absolute value of the off-diagonal element of ρ. If the
initial state was a superposition as defined in Eq. (8),
this quantity can simply be calculated as

|ρn,p| = | 〈an|ρ
∼
|ap〉 | . (13)

Figure 2. LHS: System for θ = 0◦; this would be a typical
SMM configuration. RHS: System for θ = 90◦; this corre-
sponds to a perfect toroidal configuration. For angles inbe-
tween see Fig. 1.

In this paper we investigate the dependence of decoher-
ence rates on the tilting of all anisotropy axes along the
global θ direction where θ = 0◦ corresponds to a perfect
alignment of easy anisotropy axes for a single molecule
magnet (SMM) and θ = 90◦ represents a perfect toroidal
configuration, see Fig. 2. The configuration with θ = 90◦

will however not be considered in this paper as it is then
impossible to initialize a toroidal moment with a mag-
netic field in z-direction because the field direction is per-
pendicular to the one of the easy axes. We will also need
a definition of the toroidal magnetic moment of a spin tri-
angle in order to evaluate its relevance for decoherence
rates. This is given by

~τ∼ = g · µB
2∑
i=0

~ri × ~s∼i , (14)

with ~ri being the classical positions of the spins contribut-
ing to the sum. Then τz, as used in later figures, is de-
fined as the expectation value with respect to the initial
state, compare (9),

τz = 〈ΨA(t = 0) | τ∼z |ΨA(t = 0) 〉 . (15)

III. EXAMPLES OF DECOHERENCE
CALCULATIONS

To model a strongly anisotropic system, J = −10 K
and D = −50 K are chosen in order to work with (order
of magnitude) typical numbers. A few examples using
different parameters are provided in the appendix. Some
of the resulting Zeeman diagrams as a function of Bz dis-
playing the lowest eight eigenstates are shown in Fig. 3.
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Figure 3. Zeeman diagrams of the eight lowest-lying states
of the system without bath for different values for the tilting
angle of the anisotropy axes θ. For a given Bz (typically
Bz = 0.05 T) the states are enumerated 0, 1, 2, 3, . . . from
below.

In order to test which system configurations and which
superpositions show the longest coherence times, we con-
sider all possible two-state superpositions of the six en-
ergetically lowest eigenstates for different values of θ at
Bz = 0.05 T and perform a time evolution as laid out
above. We ignore possible experimental difficulties con-
cerning the initialization of these superpositions [53] as
we aim to identify characteristics of those superpositions
which display long coherence times. In order to avoid du-
plicate plot legends, the color code for the superpositions
is displayed once in Fig. 4.

Some sample results corresponding to the Zeeman di-
agrams from Fig. 3 are shown in Fig. 5. While many su-
perpositions decohere almost instantly, others show sig-
nificantly longer coherence times. In the SMM configura-
tion (θ = 0◦), all superpositions decohere quickly, while
for the almost toroidal configuration (θ = 88.2◦), there
are some states which survive a decent amount of time.
For the parameter configuration chosen here, however,
middle-sized angles θ ≈ 50◦ perform best in most cases.

1√
2

(ψ0 + ψ1)

1√
2

(ψ0 + ψ2)

1√
2

(ψ0 + ψ3)

1√
2

(ψ0 + ψ4)

1√
2

(ψ0 + ψ5)

1√
2

(ψ1 + ψ2)

1√
2

(ψ1 + ψ3)

1√
2

(ψ1 + ψ4)

1√
2

(ψ1 + ψ5)

1√
2

(ψ2 + ψ3)

1√
2

(ψ2 + ψ4)

1√
2

(ψ2 + ψ5)

1√
2

(ψ3 + ψ4)

1√
2

(ψ3 + ψ5)

1√
2

(ψ4 + ψ5)

Figure 4. Legend to show which superposition is represented
by which color.
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Figure 5. Decoherence (see Eq. (13)) over time of all two-
state superpositions of the six lowest-lying energy eigenstates
for a fixed random bath with nbath = 8; angles θ correspond
to Fig. 3. Legend is displayed in Fig. 4.

To make system configurations and superpositions
comparable, we choose to consider the time it takes for
the absolute value of the off-diagonal element to fall be-
low the more or less arbitrarily chosen value of 0.49 for
the first time for a given superposition. This time is de-
noted by T0.49. In Fig. 6, we first verify the claim that
superpositions of states with near-identical magnetic mo-
ments (clock transitions) indeed survive the longest. To
this end, we calculate the absolute value of the difference
in the magnetic moment Mν for each superposition and
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compare it to the corresponding coherence time. Here,
the magnetic moment of a state is defined as the negative
expectation value of the S∼z operator acting on the sys-

tem without bath times the gyromagnetic factor g = 2
times the Bohr magneton µB . Figure 6 (top) shows that
only states with small differences in magnetic moment
can form superpositions expressing long coherence times.
However, this property of clock transitions is not suffi-
cient to predict well-performing superpositions as can be
deduced from Fig. 6 (bottom). There must be additional
factors at play in order to explain why some superposi-
tions perform poorly despite |Mp−Mn| being very small.
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Figure 6. Coherence times vs. the absolute value of the differ-
ence in the expectation value for Sz of the eigenstates in each
superposition (|Mp −Mn|) for 50 values of θ between 0◦ and
88.2◦ at Bz = 0.05 T for a random bath with nbath = 8.
Top: Only superpositions |Mp − Mn| ≈ 0 have compara-
tively long coherence times. Bottom: Zoomed-in view. While
|Mp −Mn| ≈ 0 is necessary, however, it is not sufficient to
predict long coherence times. Legend is displayed in Fig. 4.

As a sidenote, we checked that this cannot be explained
by the second derivative of the energy difference with re-
spect to the magnetic field either. Rather, it is probably
related to the way a certain clock transition couples to
the decohering bath.

Figure 7 (top) provides an impression that systems
with strong SMM (θ ≈ 0◦) or toroidal (θ ≈ 90◦) orienta-
tion of the anisotropy axes both do not contain low-lying
states to form long-living clock transitions. Rather, mid-
sized angles seem to be most promising for the given pa-
rameter configuration. This is a strong indication against
the simple idea that superpositions with a larger toroidal
moment should display longer coherence times. And,
vice versa, there is also no indication of superpositions
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Figure 7. Coherence times vs. tilting angle (top) and absolute
value of the z-component of the toroidal moment of superpo-
sitions (bottom, see Eq. (14)) for 50 values of θ between 0◦

and 88.2◦ at Bz = 0.05 T for a random bath with nbath = 8.
Best coherence times are observed for mid-sized angles and
toroidal moments. Legend is displayed in Fig. 4. There is no
one-to-one relation between θ and the expectation value of
the toroidal moment; the latter may simply vanish for certain
energy eigenstates or their superpositions even if θ 6= 0.

of states forming a clock transition having large toroidal
moments which is, although not sufficient on its own,
obviously the deciding factor for long coherence times.
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Figure 8. Zeeman diagram of the six lowest-lying states of
the system without bath for θ = 50.4◦. The black arrow
indicates the transition with the longest coherence time (see
also Fig. 10) made up of the two orange states.
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IV. DEPENDENCE OF COHERENCE TIMES
ON THE PLACEMENT AND NUMBER OF

BATH SPINS

The best performing superposition of the system with
the parameters introduced above is found numerically
around a tilting angle of θ = 50.4◦ for the superposition
of the ground state and the third excited state. In the
following, we use this as a sample system in order to
illustrate our findings.

Note that θ = 50.4◦ is not a universal “magic angle” as
the performance of superpositions is highly dependent on
the parameter configuration and therefore the ideal angle
changes when altering the magnitude of parameters such
as D and J as will be shown in Sec. V. Figure 8 shows the
Zeeman diagram of the system without bath for θ = 50.4◦

together with the best-performing transition.
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Figure 9. Decoherence over time of all two-state superposi-
tions of the six lowest-lying energy eigenstates for nbath = 4
(top left), nbath = 6 (top right), nbath = 8 (bottom left),
nbath = 10 (bottom right), Bz = 0.05, and θ = 50.4◦. Legend
is displayed in Fig. 4.

In order to evaluate the effect of changes of the spin
bath and to eliminate the possibility of accidentally
choosing a non-typical bath, the decoherence calcula-
tions were repeated for baths with a different number of
bath spins, see Fig. 9, as well as for ten different sets of
nbath = 8 randomly placed bath spins, see Fig. 10. Both
Fig. 9 and Fig. 10 show that while coherence times are
somewhat dependent on the nature of the spin bath, the
main qualitative findings regarding which superpositions
show long coherence times and which do not are largely
independent of the number and placement of bath spins.
In particular, the robustness of 1/

√
2(ψ0 + ψ3) (orange

curves) both against various arrangements of the bath
spins and various sizes is astonishing as well as encour-
aging in view of future applications.

We have numerically verified that these results for a
tilting angle of θ = 50.4◦ are representative for other
angles. For simplicity, most of the following calculations
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Figure 10. Decoherence over time of all two-state superposi-
tions of the six lowest-lying energy eigenstates for 10 different
random baths with nbath = 8 at Bz = 0.05 and θ = 50.4◦.
Legend is displayed in Fig. 4.

have been performed using only a single random bath.
This is justified as the concrete values of the coherence
times are of no particular relevance to our findings and
the relative differences between superpositions are very
similar across all random baths we used.

V. DEPENDENCE OF COHERENCE TIMES ON
THE MAGNITUDE OF J AND D

In this section, we aim to take a look at if and how
the ideal tilting angle of θ = 50.4◦ found for the chosen
J = −10 K and D = −50 K changes with J and D.
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Figures 11 and 12 show the dependency in regards to J
and D, respectively.
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Figure 11. Coherence times vs. tilting angle for D = −50 K
and (from top to bottom) J = −5 K, J = −10 K, J = −15
K, J = −20 K for 50 values of θ between 0◦ and 88.2◦ at
Bz = 0.05 T for a single bath with nbath = 8. Legend is
displayed in Fig. 4.
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Figure 12. Coherence times vs. tilting angle for J = −10 K
and (from top to bottom) D = −10 K, D = −25 K, D = −50
K, D = −100 K for 50 values of θ between 0◦ and 88.2◦ at
Bz = 0.05 T for a single bath with nbath = 8. Legend is
displayed in Fig. 4.

There are some competing trends in the data but for
strongly anisotropic systems, the ideal angle is always at
around 50◦ while for systems with weaker anisotropies
D (compared to the exchange interaction J), this angle
may lie close to 90◦. It should be mentioned here that
one would not speak of a toroidal system if the anisotropy
was not dominant. These results show the exact opposite
of what would be expected if the argument for superpo-
sitions with strong toroidal moments having long coher-
ence times was right: The more anisotropic the system,

the more stable the toroidal states should become. In our
calculations, the configurations near θ = 90◦, which con-
tain superpositions with high toroidal moments, are do-
ing worse in terms of coherence times when the strength
of the anisotropy is increased, compare Fig. 12.

VI. GAP SIZES AND COHERENCE TIMES

The size of the energy gap ∆E between the two su-
perposed states is an easily measured characteristic of a
clock transition. It is obvious that by scaling up J and
D, the spacing of the energy levels and therefore ∆E will
increase. It is also obvious that this will lead to longer
coherence times when we leave the coupling to the bath
A1 unchanged as this is akin to reducing A1 while keep-
ing J and D unchanged which is a situation which was
already investigated to some extend in see Sec. II and is
also covered in the appendix. Therefore one might ar-
rive at the conclusion that large energy gaps ∆E always
lead to longer coherence times. To test if this is true,
we investigate how coherence times depend on ∆E by
changing the tilting angle θ instead of J and D. The
clock transition of the two lowest-lying states in the al-
most “toroidal” flat triangle (θ = 88.2◦) configuration
is chosen as an example. As θ is decreased, the upper
superposition state sometimes changes order with other
states as can be inferred from Fig. 13 while the lower
state always stays the ground state.
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Figure 13. Zeeman diagrams of the eight lowest-lying states
of the system without bath for some sample values of θ. The
states to be used for decoherence calculations are colored in
orange. Notice the different scalings on the y-axes.

The results for the decoherence calculations of these
systems are displayed in Fig. 14. Here, the idea is to
show decoherence time, gap size and tilting angle all in
one figure without having to resort to 3D plots. The col-
ored dots indicate decoherence time vs. gap size while,
starting in the left-hand lower corner with θ = 88.2◦ (al-
most toroidal configuration), the red arrows always point
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to the next configuration with the tilting angle decreased
by 1.8◦.
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Figure 14. Coherence times vs. gap size ∆E for the superpo-
sition indicated by the orange states in Fig. 13 for different
values of θ for a single bath with nbath = 8. The dots are col-
ored according to the legend displayed in Fig. 4 and indicate
the calculated coherence times. Red arrows connect consecu-
tive values of θ; they start in the almost “toroidal” configura-
tion at θ = 88.2◦ and always point to the next configuration
with θ decreased by 1.8◦ until θ = 19.8◦. Blue arrows indicate
data points corresponding to the systems displayed in Fig. 13.

There seems to be a strong positive relationship be-
tween gap size and coherence time between θ = 88.2◦

and θ = 50.4◦ interrupted only by a brief decrease in co-
herence times between θ = 57.6◦ and θ = 54◦ as one of
the superposition states gets energetically close to other
eigenstates with which it can now be connected via in-
teractions with the spin bath and therefore decoheres.
In this range of tilting angles, the upper superposition
state is either the energetically second or fourth lowest
state. When decreasing the tilting angle further, it again
gets energetically close to other states which causes the
coherence time to collapse almost to zero. From approx-
imately θ = 45◦ on, the upper superposition state is now
the sixth lowest eigenstate and there is no clear correla-
tion between gap size and coherence times. The reason
for this is not well understood and warrants further in-
vestigation.

VII. IMPACT OF A SYMMETRY-BREAKING
DIPOLAR INTERACTION

As discussed in Ref. [54], a Hamiltonian consisting of
a Heisenberg term and single-ion easy anisotropy axes is
invariant under a collective rotation of all anisotropy axes
(and the field direction) by a common angle. Therefore,
a rotation by e.g. ϕ = −π/2, which rotates all anisotropy
axes to point inwards, see Fig. 15, yields the same energy
spectrum and leaves (many) observables unchanged. The
superpositions, however, have zero toroidal moment now.

Figure 15. 3D representation of the spin system from Fig. 1
(left) and with anisotropy axes rotated by ϕ = −π/2 (right).

Out of curiosity, we introduced a symmetry-breaking
dipole-dipole interaction between the system spins (we
could have also chosen a Dzyaloshinskii-Moriya interac-
tion) to see if there would be any effect on the coherence
times if the above mentioned symmetry is lost and the
toroidal character of the system even stabilized [54]. The
new system Hamiltonian then reads

H∼
N
S = H∼Heisenberg +H∼ anisotropy +H∼Zeeman (16)

+

2∑
i=0,
j=i+1

A3

r3ij

~s∼i · ~s∼j − 3
(
~s∼i · ~rij

)(
~s∼j · ~rij

)
r2ij


with the third spin being again the zeroth spin so that
all system spins are coupled to each other.

When choosing A3 to be very small, the symmetry is
broken but numerically, the difference in coherence times
is also very small; the superpositions with large toroidal
moments do not perform significantly better than before.
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Figure 16. Coherence times vs. tilting angle (left) and ab-
solute value of the z-component of the toroidal moment of
superpositions (right, see Eq. (14)) with additional dipole in-
teractions between central spins with A3 = |J | = 10 K for
50 values of θ between 0◦ and 88.2◦ at Bz = 0.05 T for ten
different random baths with nbath = 8. Again, best coherence
times are observed for mid-sized angles and toroidal moments
although the latter now have a smaller range compared to the
original system, see Fig. 7. Legend is displayed in Fig. 4.

Choosing an A3 with the same magnitude as J , Fig. 16
shows there are even fewer states with large toroidal mo-
ments displaying long coherence times. We repeated the
calculation for ten different random baths to again elimi-
nate the possibility of choosing a non-typical bath. Oth-
erwise, there are no significant new findings; the system
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behaves very similarly to the one without dipolar inter-
actions between the system spins, see Fig. 7.

VIII. DISCUSSION AND CONCLUSIONS

On the basis of our calculations, we can state that sys-
tems with maximally “toroidal”-oriented anisotropy axes
do not necessarily exhibit long coherence times. There
are a number of factors at play, mainly the need for
|Mp −Mn| to be small, while other factors such as the
energy gap and perhaps the toroidal moment enter in
a complex way and cannot be considered independently
of each other. It was shown that, for the example of
a spin-1 triangle, superpositions with large toroidal mo-
ments can exhibit even very short coherence times. All
in all, we found no evidence that toroidicity should be
a desirable characteristic when designing, e.g., a qubit
with long coherence times. To our surprise, rather, non-
collinear tilted anisotropy axes that are almost mutually
orthogonal seem to be most promising in many cases.
The fundamental advantage of these systems is given by
the presence of clock transitions amongst the energeti-
cally low-lying states which is a feature not easily inferred
from the geometry or other characteristics of the system.

The present paper mainly states numerical findings
about decoherence properties of a triangular arrangement
of spins with C3-symmetric anisotropy axes. The very
interesting question why certain superpositions decohere
more slowly and how these effects are influenced by e.g.
the size of energy gaps of the system compared to the
spectral width of the bath remains open and thus sub-
ject to further studies. From previous studies we know
that decoherence is intimately related to entanglement
between system and bath [20] which suggests that some
initial states entangle more easily and quickly than others
for a given Hamiltonian of the total system.
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Appendix A: Investigations for other parameters of
the system

Following a suggestion by a referee, we considered dif-
ferent values for the system-bath coupling strength A1

and the bath-bath coupling strength A2 as choosing them
to be the same indicates an electronic spin bath which
is maybe too special. Furthermore, we also looked at a
system with J = −1 K and D = −10 K to work with
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Figure 17. Coherence times vs. tilting angle for 50 values of θ
between 0◦ and 88.2◦ at Bz = 0.05 T for a random bath with
nbath = 8, A1 = 0.01 K, and A2 = 0.001 K. Observations
align with those for the system with A1 = A2 = 0.1 K shown
in Fig. 7. Legend is displayed in Fig. 4.
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Figure 18. Decoherence over time of all two-state superposi-
tions of the six lowest-lying energy eigenstates for a random
bath with nbath = 8 at Bz = 0.05 and θ = 50.4◦ with A1 = 1.0
K and A2 = 0.1 K (top) or A1 = 0.1 K and A2 = 100.0 K (bot-
tom). At these extremes, all superpositions perform equally
well and there are no advantages in coherence times for clock
transitions. Large A1 lead to virtually instantaneous decoher-
ence, while large A2 lead to neither very quick nor very slow
decoherence. Legend is displayed in Fig. 4.

numbers more typical for dysprosium triangles. Our aim
here is to show that our main qualitative findings hold
for a wide range of parameters.
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1. Variation of A1 and A2 in the standard system
described in the paper

Figure 17 shows the coherence times of all superpo-
sitions considered vs. the tilting angle θ for the stan-
dard system with J = −10 K and D = −50 K but with
A1 = 0.01 K and A2 = 0.001 K instead of A1 = A2 = 0.1
K. This could e.g. represent a bath of protons. As ex-
pected, the coherence times increase substantially, as the
coupling between system and bath is now an order of
magnitude weaker. Other than that, however, the find-
ings align with the main qualitative observations of the
standard configuration shown in Fig. 7.

This behaviour only breaks down when considering
very strong A1 and/or A2, see Fig. 18 for an example. If
A1 is chosen too large, no superposition has a significant
coherence time and all decohere apparently instantly. We
believe that the reason for this behaviour is that the Zee-
man levels of the original system entangle strongly with
the bath and are thus deformed so extremely that it does
not matter if they formed a clock transition in the origi-
nal system.

If A2 is chosen very large, all superpositions show sim-
ilar, mid-sized coherence times. We believe this to be
caused by the fact that the states of each superposi-
tion can, when combined with the energetically now very
broad spectrum of the environment, be energetically con-
nected to a multitude of other states of the original sys-
tem. On the other hand, the density of bath states is
significantly reduced, so that the process of decoherence
may be hindered to some extend as suggested in [20].

2. More realistic values of J and D to
approximately represent dysprosium triangles

Papers claiming toroidal moments to be promising can-
didates for quantum technologies often consider triangles
of dysprosium [22, 42]. Therefore, we choose J = −1
K and D = −10 K in order to work with more realis-
tic values for the Heisenberg interaction and strength of
the anisotropy. We find, as shown in Fig. 19, that there
are again some superpositions with long coherence times

around θ = 50◦. However, the best-performing superpo-
sitions are made up of the third and fifth excited states
similar to those in Fig. 11 (top) and Fig. 12 (bottom).
These have almost zero toroidal moment and therefore
do not disprove the main statement of this paper.
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Figure 19. Coherence times vs. tilting angle (top) and abso-
lute value of the z-component of the toroidal moment of su-
perpositions (bottom, see Eq. (14)) for 50 values of θ between
0◦ and 88.2◦ atBz = 0.05 T for a random bath with nbath = 8,
J = −1 K, and D = −10 K, A1 = 0.01 K, A1 = 0.001 K.
The coherence times are again very similar to those shown for
the system with J = −10 K, D = −50 K, see Fig. 7 with the
exception of the superposition of the third and fifth excited
states at angles θ ' 60◦. However, these superpositions have
a toroidal moment close to zero so that they are of no signifi-
cance to the main findings of this paper. Legend is displayed
in Fig. 4.
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