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Molecular magnetic toroidal moments are molecule-based structures of quantum spins that are
expected to boost magnetic storage technology and quantum computing. We study selected fictitious
but typical examples of single-molecule toroidal magnet behavior, discuss the essence of the concept
and clarify inappropriate or even wrong assignments of physical properties. We provide an outlook
that discusses necessary ingredients to the concept of toroidicity.

I. INTRODUCTION

Magnetic molecules constitute a fascinating class of
magnetic materials, see e.g. [1–5], for which in partic-
ular two properties give rise to hope for technological ap-
plications. The first property is the appearance of slow
relaxation of the magnetization [6–11] which would allow
to use a single molecule as a bit of magnetic storage. The
main obstacle in the context of this paper is the appear-
ance of temperature-independent quantum tunneling of
the magnetization due to a tunneling gap (avoided level
crossing) that opens up for non-Kramers systems for in-
stance for non-collinear arrangements of easy anisotropy
axes [12, 13].

The second property is slow decoherence which would
allow to use a single molecule as a bit in quantum com-
puting schemes [14–25]. Here, recent efforts focus on
clock transitions, i.e., transitions where at least the first
derivative of the transition energy with respect to an ex-
ternal magnetic field is zero. Such transitions are more
robust against fluctuations of the field than others and
should thus exhibit longer coherence times.

Molecular toroidal magnetic states [13, 26–41] are of-
ten advertised as a means to improve the properties for
the use as both units of single-molecule magnetic stor-
age and quantum q-bits. The basic quantum states to be
manipulated in such schemes are left and right circular
(chiral) orientations of the toroidal (ground) states. One
of the reasons for the assumed improved properties is
that toroidal arrangements of spins appear less suscepti-
ble to fluctuating magnetic fields, at least in a mean field
picture, which should shield them from magnetic distur-
bances by other spins, compare discussion in [42] for the
related chirality in spin triangles. This might indeed be
the case but the usability of toroidal states and structures
depends on finer details of the spin Hamiltonian as well
as on the precise coupling to disturbing sources [43–45].

In the following, we demonstrate that quantum spin
Hamiltonians that consist of isotropic Heisenberg inter-
action terms as well as of toroidal arrangements of single-
ion easy-axis anisotropy terms may have toroidal low-
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lying states but these states do not offer any new insight
compared to systems with simple non-collinear single-
ion easy-axis anisotropy terms. The reason is that the
toroidal arrangement of single-ion easy axes can be trans-
formed into non-toroidal arrangements without altering
the Hamiltonian and its spectrum. This insight also ex-
plains that the S-shape of magnetization curves, often
taken as hallmark of toroidal systems, is not a feature
that can be used to unquestionably identify toroidal spin
systems.

Non-Kramers toroidal spin systems, i.e., systems with
integer total spin, practically unavoidably possess a tun-
neling gap between their lowest states at B = 0. One
therefore must expect non-negligible quantum tunneling
as decades of investigations of single-molecule magnets
have taught us. We present tunneling gaps for dimeric
and trimeric systems. For Kramers systems (odd number
of half-integer spins) which show no gap, transition rates
between toroidal ground states induced by small (fluctu-
ating) fields may impact their stability, see Ref. [13] for
a recent discussion.

If toroidal states should provide concepts and
prospects beyond what we already know from single-
molecule magnets we have to ask which terms in a Hamil-
tonian would foster a new behavior that is indeed inti-
mately connected to the concept of toroidal moments.
Again in line with [13], we think that dipolar interac-
tions as well as Dzyaloshinskii-Moriya interactions or
anisotropic exchange in general are a prerequisite for a
magnetization dynamics where toroidicity plays a role.

The paper is organized as follows. In Section II we
discuss spin Hamiltonians with toroidal arrangements of
easy-axis single-ion anisotropies together with their prop-
erties. In Section III we discuss necessary prerequisites
for the use of toroidal moments in magnetic molecules.
A summary is provided in Sec. IV.

II. SPIN SYSTEMS WITH NON-COLLINEAR
SINGLE-ION ANISOTROPIES

A typical Hamiltonian employed for magnetic
molecules made of d-elements (and used as approxima-
tion for f-elements) consists of a Heisenberg exchange
term, a term collecting the single-ion anisotropies, and
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a Zeeman term, i.e.

H∼ = −2
∑
i<j

Jij~s∼i · ~s∼j +
∑
i

~s∼i ·Di · ~s∼i (1)

+µB
~B ·
∑
i

gi~s∼i .

Here operators are marked by a tilde, and Jij denotes the
exchange parameters between spins at sites i and j. A
negative Jij corresponds to an antiferromagnetic interac-
tion, a positive one to a ferromagnetic interaction. For
the sake of simplicity it is assumed that the spectroscopic
splitting is given by numbers gi.

Di denotes the single-ion anisotropy tensor of the spin
at site i which, in its eigensystem ~e 1

i , ~e 2
i , ~e 3

i , can be
decomposed as

Di = Di~e
3
i ⊗ ~e 3

i + Ei

{
~e 1
i ⊗ ~e 1

i − ~e 2
i ⊗ ~e 2

i

}
. (2)

In the following we will assume that the Ei are zero and
all Di < 0, i.e. the anisotropy is locally of pure easy axis
type [46].

Such a Hamiltonian is often employed when approx-
imately modeling, e.g., dysprosium-containing magnetic
molecules where the Dy moments experience very strong
easy axes [13, 28, 47]. This corresponds to large negative
Di.

A toroidal moment of a set of spins is defined as

~τ∼ =
∑
i

~ri × ~s∼i , (3)

where the ~ri are classical position vectors of the respec-
tive spin sites with respect to a chosen point of reference.
The definition reminds one of the respective formula for
the angular momentum, and it shares with that definition
the property that the quantity contains some arbitrari-
ness due to the arbitrariness of the point of reference, see
Fig. 1 for the simple example of a single spin.

(a) (b)

Figure 1. The toroidal moment of a single spin is arbitrary
due to the arbitrariness of the point of reference (X). In (a)
the toroidal moment is non-zero, in (b) it is zero. The red
arrow depicts a classical spin, the brown bar symbolizes the
easy-axis single-ion anisotropy (for later use).

A. Symmetry properties, toroidal moments, and
energy spectrum

Hamiltonian (1) possesses an interesting symmetry in
view of the concept of toroidal moments. If one rotates

all easy axes as well as the field vector by the same angle
about a common axis, the energy spectrum remains the
same, and so does the magnetization as function of tem-
perature T and magnitude of the field B. The reason is
that the Heisenberg term is isotropic and does not know
anything about the absolute orientation of the anisotropy
tensors in space. Only the relative orientations of the
anisotropy tensors with respect to each other matter.

This is a very important and far reaching property
since it allows to transform a toroidal moment to a value
between a minimum and a maximum by a global rotation
without changing the energy spectrum and the magne-
tization. In many, in particular symmetric, cases the
toroidal moment can thus be eventually transformed to
zero.

The following graphical representations show such
transformations for classical spin systems for simplic-
ity but symmetries and transformations extend to the
respective quantum versions. The applied field is not
shown; one should keep in mind that it has to be trans-
formed alongside.

90
o

(a)

(b)

Figure 2. The non-zero toroidal moment of the ground state of
an antiferromagnetically coupled classical dimer defined with
respect to the center between both spins (a) can be trans-
formed to zero (b) by a common rotation of both easy axes
(brown bars) by 90◦ about a common axis.

Figure 2 shows in (a) the simple case of a toroidal
moment of the ground state of an antiferromagnetically
coupled classical dimer defined with respect to the center
between both spins. This moment can be transformed to
zero, compare part (b), by a common rotation of both
easy axes by 90◦ about a common axis.

The same is true for other arrangements as for instance
shown in Fig. 3 for a triangular configuration that can be
transformed to zero toroidal moment without changing
the energy spectrum and the magnetization. Squares,
hexagons etc. behave in the same way.

Therefore we can state that if a spin Hamiltonian
contains only Heisenberg interactions and single-ion
anisotropy, the concept of toroidicity is virtually mean-
ingless insofar as it does not offer any new insight into the
magnetic properties of the spin system. The energy spec-
trum as well as thermal expectation values of magneti-
zation, susceptibility, or heat capacity remain unchanged
under the discussed transformation, i.e., are not corre-
lated at all with the expectation value of the toroidal
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(b)
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Figure 3. The non-zero toroidal moment of the ground state
of an antiferromagnetically coupled classical spin triangle de-
fined with respect to the center of the triangle (a) can be
transformed to zero (b) by a common rotation of the easy
axes (brown bars) by 90◦ about a common axis.

moment.

φφ

B B

(b)(a)

Figure 4. (a) Top view of an antiferromagnetically coupled
classical dimer with slightly tilted easy axes (brown bars).
The tilt angle is seen in the side view (b). φ denotes the
angle by which the anisotropy axes are collectively rotated
about the field axis.

We demonstrate these statements on the simple exam-
ple of a spin dimer. The arrangement is similar to that of
the hexagonal ring in [28] where the easy anisotropy axes
are tilted with respect to a plane that is perpendicular
to the field along z-direction, compare Fig. 4.

We evaluate the toroidal moment as well as the magne-
tization, which both point along z-direction, at T = 0 for
a small magnetic field. This problem, by the way, can be
solved analytically [48]. For φ = 0, which corresponds to
the situation shown in Fig. 4, the ground state |ψ0 〉 has
got a non-vanishing toroidal moment τ0 = 〈ψ0 | τ∼

z |ψ0 〉.
With increasing φ the toroidal moment decreases steadily
until it vanishes at φ = 90◦, see Fig. 5(a). The magnetiza-
tion of the ground state, M0 = −gµB〈ψ0 |S∼

z |ψ0 〉, does

not change at all and neither does the whole energy spec-

Figure 5. (a) Ground state magnetization, toroidal moment,
and energy for a magnetic field of B = 0.1 T as a function of
φ = 0 . . . 90◦ (appropriately scaled). Without loss of general-
ity we choose typical parameters J = −0.5 K, Di = −2 K,
and gi = 2.0. The anisotropy axes are tilted by 10◦ with
respect to the plane perpendicular to the field axis, compare
Fig. 4(b). (b) Magnetization along z and powder average as
function of field strength B for T = 2 K for the two extreme
cases with φ = 0 and φ = 90◦.

trum (only ground state energy E0 shown). This means
that both the magnetization along z-direction as well as
the powder-averaged magnetization remain the same for
all angles φ as it must be since the Hamiltonian is not at
all altered by the symmetry transformation. The result
is shown in Fig. 5(b), where the magnetization curves for
φ = 0◦ and φ = 90◦ are displayed along the field.

B. Shape of magnetization curves

Sometimes, it is argued that a shape of the low-
temperature low-field magnetization curve which resem-
bles the letter “S” is a signature of a toroidal moment, see
Ref. [47] for an example. The same authors weaken their
statement in Ref. [41]. As one may deduce from the pre-
vious discussion, S-shaped magnetization curves cannot
be taken as signature of toroidal moments. In particu-
lar, cases where the toroidal moment can be transformed
to zero without altering the magnetization curve demon-
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strate unquestionably that such a simple relation cannot
exist.

Figure 6. Magnetization of the triangular spin arrangement
(Fig. 3): s = 5/2, D = −10 K, curves for increasing antifer-
romagnetic coupling, J = 0,−0.1,−0.2, · · · − 2.0 K from left
to right. Bx points along one of the easy axes.

Figure 6 nicely demonstrates that the magnetization
may assume an S-shape, here shown for the triangle in-
troduced in Fig. 3. The curves show the magnetization
for three spins s = 5/2 for a strong easy-axis anisotropy
D = −10 K as function of increasing antiferromagnetic
coupling, J = 0,−0.1,−0.2, · · ·−2.0 K from left to right.
Bx points along one of the easy axes. This figure does
not change if the easy axes are oriented in toroidal fash-
ion, Fig. 3(a) or are collectively rotated and point along
radial directions, Fig. 3(b).

Figure 7. Structures of an hourglass molecule (l.h.s.) and
a hexagonal ring (r.h.s.). Yellow sticks represent the easy
axes; the red and blue connections represent J1 and J2 in the
hourglass, whereas the blue connections represent J for the
ring.

In general, the situation is much more involved. It
seems that one needs a certain strength of exchange in-
teraction compared to the easy-axis anisotropy in or-
der to obtain S-shape magnetization curves. We pro-
vide two examples along this line: an hourglass-like spin
systems that might stand for Dy6Cr and similar com-
pounds [41, 47] and a hexagonal ring. For simplicity, the
easy axes are aligned in toroidal fashion in a plane, see
Fig. 7. When looking at these structures one should keep
in mind that the magnetization as well as other magnetic
properties do not change, when all anisotropy tensors are

rotated by a common angle of 90◦ about the field axis.
The toroidal moment could collapse to zero under such
a transformation.

Figure 8. Magnetization curves for various parameter sets as
function of applied field along x- or z-direction for (top) an
hourglass molecule and (bottom) a hexagonal ring. z denotes
the direction perpendicular to the triangular or hexagonal
planes whereas x is in plane.

Figure 8 shows several magnetization curves along x-
or z-direction for various parameter sets for an hourglass
molecule and a hexagonal ring. Depending on parameters
and field direction the curves might resemble an S-shape
or not, compare [41] for similar experimental curves. The
same also holds for the powder average which again would
not change if all anisotropy axes in Fig. 7 would be ro-
tated by 90◦ about the z-axis to point radially outwards.

Sometimes the S-shape is taken as signature of a non-
magnetic ground state, but this statement is too weak
because a non-magnetic ground state dominates the low-
field magnetization only if it is separated by a non-
negligible energy gap from magnetic states. Thus an S-
shaped magnetization curve signals that the low-energy
spectrum is populated with non-magnetic states whereas
magnetic states appear only above some energy gap.

C. Tunneling gap

The key problem of toroidal arrangements of easy axes
(including the af dimer discussed above) is the tunnel-
ing gap at the avoided level crossing of the two lowest
energy eigenstates at B = 0. This practically unavoid-
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D -1.0 -2.0 -4.0 -8.0

s = 1 0.561553 0.372281 0.216990 0.116844
s = 3/2 0.227998 0.087343 0.027536 0.007767
s = 2 0.072088 0.015878 0.002738 0.000407
s = 5/2 0.019653 0.002519 0.000239 0.000019

Table I. Tunneling gaps ∆ for antiferromagnetic dimers with
J = −0.5 K and D as well as s as given in the table. All quan-
tities are provided in kelvin. For real materials the accuracy
of the gap is of course not better than for J and D.

D -1.0 -2.0 -4.0 -8.0

s = 1 0.415911 0.161685 0.047158 0.013061
s = 3/2 0 0 0 0
s = 2 0.011954 0.001137 0.000074 0.000004
s = 5/2 0 0 0 0

Table II. Tunneling gaps ∆ for antiferromagnetic trimers with
J = −0.5 K and D as well as s as given in the table. All quan-
tities are provided in kelvin. For real materials the accuracy
of the gap is of course not better than for J and D.

able property of many spin Hamiltonians, in particular in
case of non-collinear easy axes, not only leads to a quan-
tum tunneling of the magnetization [49, 50], but also of
the toroidal moment. In view of the symmetry discussed
above, the tunneling rates are just the same and thus a
major obstacle against bistability and thus technological
use.

We provide tunneling gaps ∆ for antiferromagnetic
dimers as well as trimers with J = −0.5 K and D as well
as s in tables I and II, respectively. A slight prospect
is provided by the observation that the tunneling gap
shrinks with increasing easy axes anisotropy Di of the
participating spins as well as with increasing spin quan-
tum number [51], the latter being a good argument to use
dysprosium in such compounds. We conjecture that the
major reason for this behavior is that with increasing spin
quantum number as well as with increasing D the con-
tribution of the single-ion anisotropy to the total energy
increases. Since single-ion anisotropy is a one-body oper-
ator this increases the anisotropy relative to the Heisen-
berg interaction and therefore decreases the entangle-
ment between the spins, which is due to the Heisenberg
interaction, in the zero-field split ground states. This
way the system approaches the limit of independent, i.e.,
non-interacting spins, for which there is no avoided level
crossing.

But even with a very small tunneling gap or for
Kramers systems (in total odd number of spin 1/2),
where ∆ = 0, the ground state might be very susceptible
to small transverse fields since the anisotropy axes are
not collinear and ground states are thus superpositions
of basis states with various magnetic quantum numbers,
compare investigations in, e.g., Refs. [13, 50, 52–54].

III. INTERACTIONS THAT FOSTER
TOROIDAL MOMENTS

Under which circumstances is the concept of toroidal
moments useful? We are convinced that one needs
terms in the Hamiltonian that break the symmetry
of the discussed collective rotations. There are (at
least) two options: The exchange interactions are also
anisotropic, due to contributions of, e.g., antisymmetric
Dzyaloshinskii-Moriya interaction, dipolar interaction, as
well as anisotropic symmetric exchange, or the magnetic
field depends on the space coordinates and has got cyclic
character, for instance.

The following Hamiltonian contains both options

H∼ = −2
∑
i<j

~s∼i · Jij · ~s∼j +
∑
i

~s∼i ·Di · ~s∼i (4)

+µB

∑
i

gi ~B(~ri) · ~s∼i .

Here Jij is the 3 by 3 matrix of the anisotropic exchange
between spins at sites i and j.

Anisotropic exchange comprises all kinds of anisotropic
interactions, among them symmetric anisotropic ex-
change, e.g. with 4d or 5d elements [55] or Kitaev in-
teractions [56–59] as well as antisymmetric anisotropic
exchange of Dzyaloshinskii-Moriya type [60–62] and gen-
eralizations thereof, e.g. topological-chiral magnetic in-
teractions [63–65]. The strength of such interactions does
of course depend on the symmetry of the chemical struc-
ture of the considered molecules (including ligands etc.).
However, many 4d or 5d ions that show anisotropic ex-
change are effective doublets (effective spins s = 1/2),
and therefore do not possess single-ion anisotropy. The
simplest anisotropic interaction is the dipolar interaction
which acts between all kinds of magnetic moments and
in addition to all other terms in the Hamiltonian.

One should, however, keep in mind that the thermal
stability of toroidal effects is limited by the strength of
the respective anisotropic interaction at work. For in-
stance, if the contribution of the dipolar interaction to
the Hamiltonian amounts to 1 K, then one cannot ex-
pect it to stabilize toroidal states for temperatures above
this scale, and such a system will be similar to that with-
out dipolar interactions for higher temperatures. We
demonstrate this behavior with the following example of
a toroidal hexagonal ring, see r.h.s. of Fig. 7.
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Figure 9. Magnetization along the field direction of a spin ring
with single spins s = 2 and a toroidal arrangement of easy
axes as shown in Fig. 7. (a) Comparison of magnetization
curves for a ring with ferromagnetic nearest neighbor cou-
pling of J = 0.5 without (red) and with dipolar interactions
(blue). (b) Comparison of magnetization curves for a ring
with dipolar interactions with (blue) and without ferromag-
netic nearest neighbor coupling of J = 0.5 (green). The field
is applied in the xy-plane defined by the toroidal anisotropy
axes along one of these axes.

Figure 9 compares three scenarios. Panel (a) compares
the magnetization curves for a ring with a ferromagnetic
nearest neighbor coupling of J = 0.5 without (red) and
with dipolar interactions (blue). The dipolar interaction
was taken to be realistic for a six-membered ring such
as in [30, 37] (R = 3.74 Å); it acts pairwise between all
spins of the ring. One notices that the dipolar interaction
indeed stabilizes the toroidal arrangement of the ground
state since the field at which the magnetization jumps at
low temperatures is shifted to higher values. One also no-
tices that this effect is weakened by higher temperatures;
in particular at T = 2 K it is almost gone. It should be
added here, that the dipolar interaction not necessarily
stabilizes a toroidal moment; it may also counteract.

Panel (b) investigates how the dipolar interaction alone
would perform compared to a combined action of ferro-
magnetic and dipolar interaction. The result is depicted
by the green curves in Fig. 9(b). They show that at least
for the discussed example the magnetization is not sta-
bilized against the magnetic field which leads us to con-
clude that a combined action of isotropic and anisotropic
exchange is preferential.

Finally we would like to speculate about toroidal mag-

Figure 10. Artistic view of a toroidal dimer whose toroidal
quantum states can be driven by the field of the tunneling
current of the scanning probe microscope. Unfortunately, the
estimated field of about 10−6 T for realistic tunnel currents
at the sites of the spins is too weak for practical use.

netic fields that would match toroidal states perfectly in
the same way a homogeneous field matches a collinear ar-
rangement of ferromagnetically aligned spins. A perfectly
suited magnetic field to pick up or initialize a toroidal mo-
ment would be the field of a straight wire as for instance
realized by the tunneling current in a scanning tunneling
microscope, see artistic view in Fig. 10. Unfortunately,
such a tunneling current generates a much too weak field
of only about 10−6 Tesla for nowadays STMs [66]. One
could however employ a magnetic tip that would initialize
or pick up a toroidal moment by being placed above one
of the magnetic ions as was demonstrated in Ref. [67].

IV. DISCUSSION AND CONCLUSIONS

There are three lessons to be learned from our investi-
gation.

1. Even if a magnetic molecule possesses easy
anisotropy axes that are arranged in a toroidal fashion
its properties will not be related to possible toroidal mo-
ments if the Hamiltonian consists dominantly of Heisen-
berg exchange and single-ion anisotropy. The toroidal
moment is a coincidence and does not influence the spec-
trum and thermal properties.

2. Toroidal moments might play a role if additional
anisotropic exchange enters the Hamiltonian [13]. Then
a symmetry transform as discussed above is not possi-
ble, and the toroidal moment might be stabilized by the
anisotropic exchange. In such a case one can hope to
employ toroidal moments for quantum devices.

3. In physics one can usually estimate simple figures
of merit by looking at scales. Here, the thermal stability
of the toroidal moment is given by the magnitude of the
anisotropic interactions. If these terms sum up to less
than a kelvin, then the concept of a toroidal moment is
useful below a kelvin and useless above a kelvin. Thus,
we need to search for materials where both the single-ion
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anisotropy as well as the anisotropic exchange are large.
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ler, H. Bögge, J. Schnack, A. Postnikov, and T. Glaser,
“Environmental Influence on the Single-Molecule Magnet
Behavior of [MnIII6CrIII]3+: Molecular Symmetry ver-
sus Solid-State Effects,” Inorg. Chem. 51, 10929 (2012).

[50] T. Glaser, V. Hoeke, K. Gieb, J. Schnack, C. Schröder,
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