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The J1-J2 quantum spin sawtooth chain is a paradigmatic one-dimensional frustrated quantum
spin system exhibiting unconventional ground-state and finite-temperature properties. In particular,
it exhibits a flat energy band of one-magnon excitations accompanied by an enhanced magnetocaloric
effect for two singular ratios of the basal interactions J1 and the zigzag interactions J2. In our pa-
per, we demonstrate that one can drive the spin system into a flat-band scenario by applying an
appropriate electric field, thus overcoming the restriction of fine-tuned exchange couplings J1 and
J2 and allowing one to tune more materials towards flat-band physics, that is to show a macro-
scopic magnetization jump when crossing the magnetic saturation field, a residual entropy at zero
temperature as well as an enhanced magnetocaloric effect. While the magnetic field acts on the
spin system via the ordinary Zeeman term, the coupling of an applied electric field with the spins
is given by the sophisticated Katsura-Nagaosa-Balatsky (KNB) mechanism, where the electric field
effectively acts as a Dzyaloshinskii-Moriya spin-spin interaction. The resulting novel features are
corresponding reciprocal effects: We find a magnetization jump driven by the electric field as well
as a jump of the electric polarization driven by the magnetic field, i.e. the system exhibits an ex-
traordinarily strong magnetoelectric effect. Moreover, in analogy to the enhanced magnetocaloric
effect the system shows an enhanced electrocaloric effect.

PACS numbers: 71.10.-w, 75.40.Mg, 75.10.Jm
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I. INTRODUCTION.

The magnetoelectric effect (MEE) allows to manipu-
late magnetic materials by electric fields [1]. Such an
approach promises several fundamental advantages since
electric fields can be manipulated on shorter time scales
and can be confined to smaller regions compared to mag-
netic fields. To drive future quantum devices by means
of electric control is thus at the focus of substantial re-
search activities in fields such as energy transformation,
sensors, magnetic storage, and spintronics [1–12].

Related to the aspect of energy conversion is the elec-
trocaloric effect (ECE), i.e. the ability to change temper-
ature by changing the electric field similar to the more fa-
miliar magnetocaloric effect (MCE) [13]. The renewed in-
terest is mainly stimulated by materials research on ferro-
electric thin films showing a strongly enhanced ECE [14–
16] which opens the window for future solid-state refrig-
eration technologies based on the ECE [17, 18].

Quantum systems hosting flat bands in their energy
spectrum, on the other hand, constitute realizations of
materials that already exhibit enhanced magnetocaloric
effects thanks to the special frustrated nature of their in-
teractions. These systems appear in different branches
of physics such as highly frustrated magnetism, strongly
correlated electronic systems, cold atoms in optical lat-

tices, photonic lattices as well as twisted graphene bi-
layers [19–44]. Not only the enhanced MCE, but many
intriguing phenomena such as macroscopic magnetiza-
tion jumps [23, 25, 34] or fractional quantum Hall physics
[19, 32] are related to flat bands.

In the present paper we bring together flat-band phe-
nomena and magnetoelectric coupling. In particular, we
demonstrate that one can drive systems into the flat-
band scenario by means of electric fields and that one
can thus achieve novel phenomena such as a magnetiza-
tion jump driven by the electric field as well as a jump
of the electric polarization driven by the magnetic field,
and in analogy to the enhanced magnetocaloric effect we
find an enhanced electrocaloric effect.

The MEE in most common terms can be described
as the magnetic-field dependence of dielectric polariza-
tion and vice versa the electric-field dependence of the
magnetization in solids. The origin of the coupling be-
tween spins and the dielectric polarization can be very
different [1, 3, 5, 8]. The one to be considered in
the present paper is based of the so-called spin-current
model or inverse Dzyaloshinskii-Moriya (DM) model and
is called the Katsura-Nagaosa-Balatsky (KNB) mecha-
nism [45, 46]. The KNB mechanism links the dielectric
polarization corresponding to the pair of spins at adja-
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FIG. 1. (Color online) Sketch of the sawtooth chain together
with the electric field E, the z-aligned magnetic field B =
Bez and the resulting electric polarization P. For the plane
defined by the sawtooth geometry the x-y plane is chosen.

cent lattice sites with the following expression:

Pij = γij eij × Si × Sj , (1.1)

where eij is the unit vector pointing from site i to site
j and γij is a microscopic parameter characterizing the
quantum chemical features of the bond between two ions
with spins Si and Sj [45, 46].

In recent years, there is a growing interest in
the realization of the magnetoelectric effect in low-
dimensional magnetic compounds. A prominent class
of these (quasi-)one-dimensional materials is given by
edge-shared cuprates with ferromagnetic (FM) nearest-
neighbor (J1 < 0) and antiferromagnetic (AFM) next-
nearest neighbor (J2 > 0) interactions between the Cu2+

ions carrying spin 1/2, see, e.g., Refs. [3, 47–58]. These
studies have stimulated several theoretical studies on one-
dimensional quantum spin models with KNB mechanism
[59–72]. Interestingly, for various one-dimensional un-
frustrated models with the KNB-mechanism an exact so-
lution is possible, see [59, 64, 66, 67, 70, 71].

At the same time, many different frustrated spin-
lattice models in dimension D = 1, 2, 3 were found, where
the lowest band of one-magnon excitations above the FM
vacuum is dispersionless (flat) [73, 74]. Caused by the
flat band a number of unconventional features emerge
in magnetic fields, such as a magnetization jump at the
saturation field Bsat [23, 75], a magnetic-field driven
spin-Peierls instability [24], magnon-crystallization in
D = 2 [25, 44, 76], a finite residual entropy at Bsat

[25, 73, 74, 76, 77], a very strong magnetocaloric effect
[73, 76, 78], and an additional low-temperature maximum
of the specific heat signaling the occurrence of an addi-
tional low-energy scale [73, 74]. Below we will demon-
strate that due to the magnetoelectric coupling there are
electric analogues to the above mentioned magnetization
jump and the enhanced magnetocaloric effect.

A prototype flat-band model is the sawtooth (or delta)
spin chain that has been widely investigated for different
realizations such as frustrated quantum spin systems, see,
e.g. [23, 25, 73, 75, 77, 79–87], electronic systems, see,

e.g., Refs. [20–22, 88–96] as well as photonic lattices, see,
e.g. Refs. [39, 97].

In the present paper we consider the Heisenberg spin-
half sawtooth chain coupled to a z-aligned magnetic field
B (Zeeman term) and to an electric field E (KNB term)
with arbitrary direction but located within the plane
defined by the sawtooth geometry. The corresponding
Hamiltonian is given by

H = J1

N/2∑

j=1

S2j−1 · S2j+1 + J2

N/2∑

j=1

S2j · (S2j−1 + S2j+1)

−BM −E ·P , B = Bez , M = Sz =

N∑

j=1

Sz
j ,(1.2)

P =

N/2∑

j=1

P2j−1,2j+1 +

N/2∑

j=1

(P2j−1,2j +P2j,2j+1) , (1.3)

see Fig. 1 for the arrangement of spins and bonds as well
as the electric and magnetic fields. While we consider
AFM J1, the zigzag bond J2 can be AFM or FM, how-
ever, restricted to the region 2J1 ≤ J2 ≤ −2J2, where
flat-band physics is possible. In case of zero electric field,
for this model two flat-band scenarios are known: For the
AFM sawtooth chain, J1, J2 > 0, the lowest band of one-
magnon excitations above the fully polarized FM state
|FM〉 = | ↑↑↑ . . .〉 is dispersionless for J2 = 2J1 (flat-
band point) [25, 34, 73, 75, 77, 81, 82]. As a result there
exist localized multi-magnon states (also called flat-band
states) for N/4 ≤ Sz < N/2, which are the lowest states
in the respective sectors of Sz. At half of the saturation
magnetization, Sz = N/4, there is a wide plateau and
the plateau state is a magnon-crystal state [23]. All the
flat-band states are linearly independent [98] and their
number growths exponentially with the number of sites
N . In magnetic fields close to saturation the flat-band
states dominate the low-temperature thermodynamics of
the model [25, 34, 73, 75, 77, 81, 82]. The experimen-
tal observation is not straightforward because the rele-
vant physics typically takes place at (very) high magnetic
fields. For a possible experimental realization of an alter-
native flat-band spin system, where the saturation field
is accessible, see [99, 100].

The second flat-band scenario is realized for the saw-
tooth Heisenberg chain with FM bonds between the api-
cal and basal spins (J2 < 0) and AFM bonds (J1 > 0)
within the basal line [80, 101–104]. Here, the flat-band
point where the lowest band of one-magnon excitations
above the fully polarized FM state is dispersionless is
given by J2 = −2J1 [80]. Notably, the flat-band states
exist here in all magnetization sectors 0 ≤ Sz < N/2,
and again they are the lowest states in the respective
magnetization sectors. The number of flat-band states
growths even faster exponentially with N than for the
first (purely AFM) flat-band scenario leading again to the
dominance of these states at low T [80, 82, 103]. A strik-
ing difference to scenario 1 is that flat-band physics takes
place at zero-magnetic field which enhances the chance
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to observe the flat-band physics in an experiment. In-
deed, there are magnetic compounds which are well de-
scribed by the FM-AFM sawtooth spin chain, such as
malonate-bridged copper complexes [105, 106] and the
very recently synthesized and studied magnetic molecule
Fe10Gd10 [107]. While the parameter situation in the
former one is not very close to the flat-band point, the
Fe10Gd10 molecule exhibits exchange parameters close to
the flat-band point [107], and, therefore signatures of flat-
band physics are well seen in this system [103, 104, 107].
Further examples for magnetic compounds with saw-
tooth chain geometry of exchange bonds are the ata-
camite Cu2Cl(OH)3 [108], the fluoride Cs2LiTi3F12 [109],
the euchroite Cu2(AsO4)(OH)·3H2O [110], the sawtooth
spin ring Mo75V20 [111] or a frustrated [Mn18] magnetic
wheel-of-wheels molecule [112].

A. Summary of results

The key target of the present paper is the study of
the interplay of the KNB mechanism and magnetic frus-
tration at and in the vicinity of a flat-band point. As
mentioned above, for the model at hand at zero electric
field the realization of flat-band physics requires fine tun-
ing of the exchange parameters, i.e., the very existence
of a strictly flat one-magnon band appears only at two
singular ratios J2/J1. Naively, one may expect that the
presence of the electric field leading to additional DM
terms in the Hamiltonian eliminates flat-band phenom-
ena.

• A crucial finding of our work is that actually just
the electric field via the KNB mechanism may dis-
solve the fine tuning of J1 and J2 and can lead to
a large variety of J1-J2 ratios, where for appropri-
ate direction and magnitude of E the lowest one-
magnon band is flat.

• Thus, for a certain system at hand with given val-
ues of J1 and J2 we can achieve flat-band physics by
application of an appropriate value of the electric
field Ef(J1, J2) (flat-band field).

• Moreover, the saturation field Bsat in the vicinity
of which the flat-band physics can be observed is
lower in the presence of an electric field than for
the previously studied flat-band situation at zero
electric field [23, 25, 73, 74], this way leading to a
better access to flat-band physics in experiments.

• The flat-band effects known from previous stud-
ies [23, 25, 73, 74] without electric field, such as
a macroscopic magnetization jump at saturation
field, the huge degeneracy of the ground states at
the flat-band point leading to a residual entropy,
the emergence of an extra-low energy scale in the
vicinity the flat-band point as well as an enhanced
magnetocaloric effect are also present in case of the
electric-field driven flat-band physics.

• In addition to these flat-band phenomena, the pres-
ence of an electric field leads to intriguing reciprocal
effects: macroscopic jumps in the electric polariza-
tion P driven by magnetic field B and macroscopic
jumps in the magnetization M driven by the elec-
tric field E, i.e., there is an extraordinary MEE.

• Last but not least, besides an enhanced magne-
tocaloric effect known for flat-band magnets there
is an enhanced electrocaloric effect. If consider-
ing adiabatic cooling for isentropes with entropy s
below the residual entropy sres ∼ 0.24, the tem-
perature drops quickly to zero when approaching
E = Ef(J1, J2).

II. KNB MECHANISM FOR THE SAWTOOTH

CHAIN

In this section we specify the KNB mechanism for the
sawtooth-chain geometry. We choose the x axis along the
basal line of J1 bonds and the x-y plane for the location
of the J1-J2-J2 triangle, where the angle between the J1
and J2 bonds is θ, see Fig. 1. The unit vectors along the
exchange bonds entering Eq. (1.1) read

e2j−1,2j+1 = ex, (2.4)

e2j−1,2j = cos θ ex + sin θ ey,

e2j,2j+1 = cos θ ex − sin θ ey.

Then the corresponding local polarization vectors are
given by

P2j−1,2j = γ (cos θex + sin θey)× S2j−1 × S2j ,

P2j,2j+1 = γ (cos θex − sin θey)× S2j × S2j+1,

P2j−1,2j+1 = γ′
ex × S2j−1 × S2j+1, (2.5)

where a different KNB parameter γ′ = αγ is consid-
ered for the polarization in the basal line taking care
of the possibility to have different microscopic quantum-
chemical parameters of the KNB mechanism for different
exchange bonds. We can merge the first two relations
of the Eqs. (2.5) by rewriting them appropriately in one
equation:

Pj,j+1 = γ
(
cos θ ex − (−1)j sin θ ey

)
× Sj × Sj+1.

(2.6)
Note, that this expression coincides with the one consid-
ered for the XY zigzag chain in Ref. [70]. For an electric
field E = (Ex, Ey, 0) residing in the x-y plane, see Fig. 1,
the interaction between the polarization and the electric
field entering the Hamiltonian (1.2) reads

− E ·P (2.7)

=

N∑

j=1

(
γEy cos θ + (−1)jγEx sin θ

) (
Sx
j S

y
j+1 − Sy

j S
x
j+1

)

+ αγEy

N/2∑

j=1

(
Sx
2j−1S

y
2j+1 − Sy

2j−1S
x
2j+1

)
.
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For convenience, we absorb the KNB constant γ in E,
which in turn is measured in appropriate units. The ob-
servables relevant for the MEE are the expectation values
of the x and y components of total polarization and the
z-aligned magnetization:

Px =
sin θ〈∑N

j=1
(−1)j

(
Sy
j S

x
j+1 − Sx

j S
y
j+1

)
〉

N
,

Py =
cos θ〈

∑N
j=1

(
Sy
j S

x
j+1 − Sx

j S
y
j+1

)
〉

N
,

−α
〈
∑N/2

j=1

(
Sx
2j−1S

y
2j+1 − Sy

2j−1S
x
2j+1

)
〉

N
,

M = Mz =
〈∑N

j=1
Sz
j 〉

N
, (2.8)

where 〈·〉 denotes either the expectation value with re-
spect to a specific state or the thermal average.

Let us mention here, that the considered interaction
term (2.7) can be also understood as DM interaction

Di = Diez, i = 1, 2, 3, with

D1 = αE sinφ, (2.9)

D2 = E(sin φ cos θ − cosφ sin θ),

D3 = E(sin φ cos θ + cosφ sin θ),

where D1 belongs to the basal bonds, and D2 and D3

belong to the two zigzag bonds, respectively. Such a DM
term could be relevant for spin lattices with low symme-
try.

III. ELECTRIC FIELD INDUCED FLAT BANDS

In this section we will figure out how the lowest one-
magnon band can be flat also in the presence of an electric
field. We start with the fully polarized FM state |FM〉 =
| ↑↑ . . . ↑〉 which is the ground state for strong enough
magnetic field B. Imposing periodic boundary conditions
we construct one-magnon excitations above the magnon
vacuum |FM〉

|1k〉 =
∑

l=0,1

al

N/2∑

j=1

ei jkS−
2j+l|FM〉, (3.10)

where k is the quasi-momentum. The calculation of the
two branches (according to the two sites per unit cell) of
the one-magnon spectrum is straightforward:

ε±(k) = B − J1 + 2J2
2

+
1

2

[
J̃1 cos(k − k1)±

√(
J1 − J̃1 cos(k − k1)

)2

+ 2J̃2J̃3 cos(k − k2 − k3) + J̃2
2 + J̃2

3

]
(3.11)

J̃1 =
√
J2
1 +D2

1, J̃2 =
√
J2
2 +D2

2, J̃3 =
√
J2
2 +D2

3, k1 = arctan
D1

J1
, k2 = arctan

D2

J2
, k3 = arctan

D3

J2
. (3.12)

Because the expression for the spectrum (3.11) is a bit
cumbersome due to the phase shifts ki, we will con-
sider two special cases for which simplified expressions
for ε±(k) are obtained that enable to extract criteria in
analytical form for the very existence of flat-band physics.

A. Flat-band case I

Here we consider an electric field pointing along the
x-axis, i.e., φ = 0. In this case we have D1 = 0, D2 =
−D3 = −E sin θ yielding for the phase shifts k1 = 0 and
k2 = −k3, and the one-magnon dispersion then reads

ε±(k) = B − J1 + 2J2
2

+
1

2

(
J1 cos k (3.13)

±
√
J2
1 (1 − cos k)2 + 2(J2

2 + E2 sin2 θ)(1 + cos k)
)
.

Obviously, this expression is very similar to the known
standard cases, namely replacing J2

2 +E2 sin2 θ by an ef-

fective coupling J2
2,eff we just obtain the expression for the

k-dependent term for the pure Heisenberg model without
KNB terms, see, e.g., Eq. (3) in [79]. Thus, one gets a
flat band if the x-aligned electric field obeys the relation

E = Ef = ±
√
4J2

1 − J2
2

sin θ
. (3.14)

This equation also implies that a flat band driven by an
electric field does exist for arbitrary values of J1 and J2
with the constraint 4J2

1 ≥ J2
2 .

Inserting (3.14) in Eq. (3.13) we obtain:

ε+(k) = B + J1 − J2 + J1 cos k

ε−(k) = B − 2J1 − J2. (3.15)

This yields for the saturation (flat-band) field

Bf = Bsat = 2J1 + J2, (3.16)

which is lower than the corresponding value Bsat = 4J1
for the standard AFM flat-band case. Let us mention
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that the above discussed flat-band scenario also cor-
responds to a purely magnetic system without electric
field, i.e., for the J1-J2 Heisenberg sawtooth chain with
a staggered DM-interaction term in z-direction along

the zigzag J2 bonds, D
∑N

j=1
(−1)j

(
Sx
j S

y
j+1 − Sy

j S
x
j+1

)
,

if D =
√
4J2

1 − J2
2 .

We conclude that the above outlined case I for the
model at hand opens the window for a flexible access
to flat-band physics via the KNB mechanism, because
no fine-tuning of the exchange parameters J1 and J2 is
necessary. Moreover, the reduced saturation field also
improves the possibility to have experimental access to
flat-band physics.

B. Flat-band case II

Let us consider a second specific case allowing a sim-
plification of Eq. (3.11). It is given if the electric field is
directed parallel to the zigzag bonds, i.e., either φ = ±θ
or φ = ±(π − θ). Without loss of generality we will take
the sign to be plus. The corresponding DM terms be-
come D1 = αE sin θ, D2 = 0, and D3 = 2E sin θ cos θ

which leads to J̃2 = J2 and k2 = 0 in Eqs. (3.11) and
(3.12). A flat band is possible if the remaining phase
shifts k1 and k2 in Eq. (3.11) are equal, i.e.,

J2 =
2 cos θ

α
J1. (3.17)

Finally, the lower band of the one-magnon excitations
becomes flat for

E = ±2J1
√
cos2 θ − α2

α2 sin θ
, |α| ≤ | cos θ|. (3.18)

Obviously, the possible values for α are restricted by the
bond angle θ. As in the previous case the two signs of E
correspond to the symmetry θ → −θ, E → −E. Note,
however, that for φ = −θ, the DM-terms in the zigzag
part of the chain will be non-zero for odd zigzag-bonds,
and we have D1 = −αE sin θ, D2 = −2E sin θ cos θ, and
D3 = 0.

Again it is appropriate to mention that the above dis-
cussed flat-band scenario also corresponds to a purely
magnetic system without electric field, i.e., for the J1-
J2 Heisenberg sawtooth chain with specific DM terms,
namely uniform DM-interaction along the basal line and
non-zero DM-terms only for the even bond on the zigzag
line,

Da

N∑

j=1

(1 ± (−1)j)
(
Sx
j S

y
j+1 − Sy

j S
x
j+1

)
(3.19)

+Db

N/2∑

j=1

(
Sx
2j−1S

y
2j+1 − Sy

2j−1S
x
2j+1

)
,
Da

Db
=

J2
J1

.

Then the flat band is realized for Da = ±
√
J2
2 − 4J2

1 .

We may conclude that by contrast to case I the above
outlined flat-band scenario II is less promising with re-
spect to a possible experimental realization because the
precondition of fine-tuning of the exchange parameters
J1 and J2 is not removed.
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FIG. 2. (Color online) GS data of the magnetization M/Msat

as a function of the magnetic field B for N = 24, 28, 32, 36.
(a) Flat-band case I (i.e., φ = 0) with θ = π/8, J1 = 1 and
various values of J2. (b) Flat-band case II (i.e., φ = θ) with
α = 1/2 and three values of θ (obeying |α| ≤ | cos θ|, see
Eq. (3.18)) and

√

J2
1
+ J2

2
= 1.

IV. NUMERICAL RESULTS

We will focus here on case I as the promising case that
does not require fine-tuning of J1 and J2. The case II will
be discussed only secondarily. Having in mind, that for
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the case I the value of the bond angle enters the Hamil-
tonian via E sin θ only, cf. Eqs. (2.9) and (3.14), we will
show in what follows numerical data for one example of
the bond angle, namely θ = π/8.

We use the exact diagonalization method (ED) to
determine the ground state (GS) as well as finite-
temperature properties for finite chains with periodic
boundary conditions. To exploit translational symmetry
we perform the ED calculations using Jörg Schulenburg’s
spinpack code [113, 114].

The ED is a well established quantum many-body tech-
nique which is widely applied to frustrated quantum spin
systems. It is especially appropriate for one-dimensional
systems, because one can apply the ED to a set of fi-
nite systems with various numbers of spins N . Thus,
by comparing systems with different N the finite-size ef-
fects can be controlled. Moreover, from previous studies
[23, 80, 115] it is known that finite-size effects can be
particularly small for the sawtooth spin chain. In the
present paper we calculate the GS up to N = 36 by
using the Lanczos method and the thermodynamics by
calculating the full spectrum up to N = 20.

In addition to the ED we apply the approximate finite-
temperature Lanczos method (FTLM) to calculate ther-
modynamic properties of larger chains N > 20. FTLM is
a Monte-Carlo like extension of the full ED. Thermody-
namic quantities are determined using trace estimators
[116–126]. The partition function Z is approximated by
a Monte-Carlo like representation of Z, i.e., the sum over
a complete set of (2s + 1)N basis states entering Z is
replaced by a much smaller sum over R random vectors
| ν 〉 for each subspace H(Sz) of the Hilbert space.

A. Ground-state properties

We start with the flat-band case I and consider the
magnetization curve M(B) first, see Fig. 2(a). M(B) is
typical for the known standard (i.e., E = 0) AFM flat-
band case [23, 79]: There is a wide plateau at M/Msat =
1/2 preceeding the jump to saturation. The jump is size-
independent. Moreover, the dependence of the width of
the plateau on the system size is very weak. Only when
approaching the standard FM-AFM flat-band case (i.e.,
J2 → −2J1) [80] the plateau shrinks and finally the jump
takes place directly from M = 0 to M = Msat. Below
the plateau the finite-size steps in M(B) become smaller
with growing N , and the magnetization curve gets finally
smooth without peculiarities as N → ∞.

As for the standard AFM flat-band case there is a mas-
sively degenerated ground-state manifold at the satura-
tion field which is built by the localized localized multi-
magnon (flat-band) states leading to a residual entropy

per site of sres =
1

2
ln 1+

√
5

2
= 0.240606 [25, 77]. Thus we

conclude that the GS properties of the flat-band system
driven by an electric field E are identical to those of the
well-studied AFM flat-band system in absence of E.

We mention here that for the flat-band case II the GS
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FIG. 3. (Color online) MEE for flat-band case I (i.e., φ =
0) with θ = π/8, J1 = 1 and various values of J2. The
numbers in the legend denote the system size N . (a) Electric
polarization P =

√

P 2
x + P 2

y as function of the magnetic field
B for E = Ef . (b) Magnetization M as function of the electric
field E for B = 1.01Bsat .

flat-band physics at B = Bsat is identical to case I, i.e.,
the magnetization jump and the magnon-crystal plateau
are also present, see Fig. 2(b). Moreover, the residual
entropy at B = Bsat is the same for cases I and II.

The discontinuous change of M upon crossing Bsat sug-
gests that similar abrupt changes of P can appear when
B traverses Bsat. On the other hand, we may also expect
that the electric field E can drive a jump-like behavior of
the magnetization M . We demonstrate this in Fig. 3. In
the upper panel (a) we show the electric polarization P
as a function of the magnetic field B for J1 = 1, θ = π/8
and various J2 values, where the electric field E is set
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FIG. 4. (Color online) Entropy s = S/N (main panel) and
specific heat c = C/N (inset) for the flat-band case I with
J1 = 1, J2 = 0, φ = 0, and θ = π/8 for N = 20 (full ED, short
dashes), N = 28 (FTLM, long dashes) and N = 36 (FTLM,
solid) at and near the flat-band point B = Bf = Bsat = 2.0
and E = Ef = 2/ sin(θ). (a): E = Ef , B = 1.01Bf , 1.0Bf ,
and B = 0.99Bf . (b) B = Bf = 2, E = 1.01Ef , 1.0Ef , and
E = 0.99Ef . Note, that the curves for different N almost
coincide.

to the flat-band value Ef given by Eq. (3.14). Indeed,
we observe a jump of P at B = Bsat that amounts to
more than 50% of the initial value P at B = 0. Again,
finite-size effects are very small. In the lower panel (b)
we show the magnetization M as a function of the elec-
tric field E for J1 = 1, θ = π/8 and various J2 values,
where the magnetic field is set to B = 1.01Bsat, i.e., for
values of the electric field below the flat-band value Ef

the GS is the fully polarized FM state. When E crosses
Ef we find a jump down to about 60% of saturation.
Interestingly, the jump is even larger for larger N . We
may conclude that discontinuous changes in M(E) and
P (H) most likely remain for N → ∞. Thus, we found
evidence of an extraordinarily enhanced MEE with an
abrupt change of M (resp. P ) when varying the electric
(resp. magnetic) field due to the very existence of a flat
band in the spin system at hand. This provides the op-

portunity of switching the magnetization by an electric
field or the electric polarization by a magnetic field.

 0

 0.1
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 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10  12  14

 T
 

 E 

s=0.2
s=0.25
s=0.3

FIG. 5. (Color online) Finite-size effects of the electrocaloric
effect for the flat-band case I (φ = 0, θ = π/8, B = Bf)
for J1 = 1 and J2 = 0 (green lines - N = 12, black lines -
N = 16, red symbols - N = 24). Isentropes are shown for
s = S/N = 0.2, 0.25, and 0.3.

B. Finite-temperature properties

Again, we focus on flat-band case I. As shown by pre-
vious studies [25, 73, 74, 79, 80, 82, 103] the flat-band
states dominate the low-temperature thermodynamics at
the flat-band point E = Ef and B = Bf = Bsat as well as
in the vicinity of it. This is related to the fact that the
flat-band (localized multi-magnon) states build a mas-
sively degenerate GS manifold at the flat-band point,
and, that in a sizeable parameter region around E = Ef

and B = Bf this former GS manifold acts as a huge man-
ifold of low-lying excitations setting an extra low-energy
scale.

This is evident by the temperature profile of the en-
tropy as shown exemplarily in the main panels of Fig. 4,
(a) and (b), for J1 = 1, J2 = 0 and a few values of B
(resp. E) at and in the vicinity of the flat-band value Bf

(resp. Ef). The pronounced low-temperature plateaus in
s(T ) are caused by the manifold of flat-band states, where
the width of these plateaus depends on the distance to
Bf and Ef , i.e. on |B−Bf | and on |E−Ef |, respectively.
The different temperature regimes in the s(T ) profile are
also obvious in the specific heat c(T ) = T

(
∂S
∂T

)
, see the

insets in Fig. 4, (a) and (b). At E = Ef , B = Bf (red
curves in Fig. 4) the huge GS manifold leads to a van-
ishing specific heat at low T , whereas slightly away from
the flat-band point the additional Schottky-like peak in
the c(T ) profile indicates the extra low-energy scale. It is
worth mentioning that, interestingly, for the contribution
of the flat-band states to the partition function explicit
analytical formulas can be found which describe the low-
temperature physics near the flat-band point very well
[25, 73, 74, 79, 80, 82].
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FIG. 6. (Color online) Electrocaloric effect (ECE) for the
flat-band case I (φ = 0, θ = π/8, B = Bf) J1 = 1 and
J2 = 1.5, 1.0, −1.0, −1.5. The white lines represent isentropes
for s = S/N = 0.27, 0.23 and 0.1.

Next, we study the electrocaloric effect (ECE) which

currently attracts enormous attention as a promising new
approach for refrigeration technologies [14–18]. From
previous studies we know that due to the large resid-
ual entropy at the flat-band point an enhanced magne-
tocaloric effect is observed when traversing the saturation
field (flat-band point) [25, 73, 74, 78, 80, 127–129]. Con-
sequently, we may expect an extraordinary ECE when
pinning the magnetic field at B = Bf and varying the
electric field E through the flat-band value Ef . To ver-
ify this we study adiabatic cooling, i.e., the isentropic
variation of the temperature when changing the electric
field. Computationally that is demanding, since an ex-
tensive T −E scan is needed to pin the entropy s = S/N
at a predefined value. Fortunately, again the finite-size
effects are very small as demonstrated in Fig. 5. Thus
we performed extensive simulations of adiabatic cooling
for a small system of N = 12 to create contour plots
of the ECE, see Fig. 6. As already shown in Fig. 5
and in more detail demonstrated by the contour plots
for J2 = 1.5, 1.0,−1.0,−1.5, the variation of the electric
field through the flat-band value Ef leads to a strong
change of temperature. In particular, when considering
isentropes with s below the residual entropy sres ∼ 0.24,
the temperature rapidly drops to zero when approaching
E = Ef . Obviously, the general shape of the isentropes
does not depend on J2. However, the flat-band values Bf

and Ef depend on J2, see Eqs. (3.16) and (3.14).

V. CONCLUSION

This paper connects frustrated quantum magnetism (a
traditional research field in solid state physics) and the
Katsura-Nagaosa-Balatsky (KNB) mechanism to couple
spin degrees of freedom to an electric field (a more recent
research field in solid state physics) hereby opening the
possibility to study flat-band effects in quantum magnets
by applying an appropriate electric field. Prominent ef-
fects related to the interplay of frustration and the KNB
mechanism are strongly enhanced magnetoelectric and
electrocaloric effects.

As an example, we consider a specific quantum spin
model, the spin-half J1-J2 sawtooth Heisenberg chain
(see Fig. 1). The sawtooth spin chain is a paradig-
matic frustrated quantum spin model that can serve as
the relevant spin model for various magnetic compounds
[105–112]. However, the discussed electric-field driven
flat-band physics also exists for more general sawtooth-
chain models, e.g. models with two different zigzag bonds
J2 and J3 including different XXZ anisotropies on all
three bonds. Moreover, the flat one-magnon band is also
present for corresponding models with s > 1/2 [130].
The investigation of the generalized sawtooth model and
of other flat-band spin systems, e.g. [73, 74], promises a
rich future of combined effects of frustration and KNB
mechanism.

The large variety of frustrated quantum magnetic in-
sulators as well as the progress in synthesizing new mag-
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netic molecules and compounds with predefined spin lat-
tices may open the window to get access to the obser-
vation of the discussed phenomena. We expect that the
strength of the electric field necessary for that can be
achieved since typical exchange couplings are of the or-
der of a few to a hundred kelvin which corresponds to
1 . . . 10 meV. Depending on the KNB constant γ this
could translate into field strengths applicable to the typ-
ically insulating quantum spin materials where a break-
down voltage of 10-30 kV/mm could possibly be achieved.
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