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By contrast to strongly frustrated classical systems their quantum counterparts typically have a non-degenerate ground

state. A counterexample is the celebrated Heisenberg sawtooth spin chain with ferromagnetic zigzag bonds J1 and

competing antiferromagnetic basal bonds J2. At a quantum phase transition point |J2/J1 | = 1/2 this model exhibits

a flat one-magnon excitation band leading to a massively degenerate ground-state manifold which results in a large

residual entropy. Thus, for the spin-half model the residual entropy amounts to exactly one half of its maximum value

limT→∞ S(T )/N = ln 2. In the present paper we study in detail the role of the spin quantum number s and the mag-

netic field H in the parameter region around the transition (flat-band) point. For that we use full exact diagonalization
up to N = 20 lattice sites as well as the finite-temperature Lanczos method up to N = 36 sites to calculate the density

of states as well as the temperature dependence of the specific heat, the entropy and the susceptibility. The study of

chain lengths up to N = 36 allows a careful finite-size analysis. At the flat-band point we find extremely small finite-size
effects for spin s = 1/2, i.e., the numerical data virtually correspond to the thermodynamic limit. In all other cases the

finite-size effects are still small and become visible at very low temperatures. In a sizeable parameter region around

the flat-band point the influence of the former massively degenerate ground-state manifold acts as a large manifold of

low-lying excitations leading to extraordinary thermodynamic properties at the transition point as well as in the vicinity

of it, such as an additional low-temperature maximum in the specific heat. Moreover, there is a very strong influence of
the magnetic field on the low-temperature thermodynamics including an enhanced magnetocaloric effect.
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1. Introduction

The sawtooth chain is one of the paradigmatic frustrated quantum spin models built of corner-sharing

triangles. The corresponding Heisenberg Hamiltonian is given by

H = J1

∑

〈i, j 〉

si · sj + J2

∑

〈〈i, j 〉〉

si · sj − H
∑

i

Sz
i

(1.1)

with s
2
i
= s(s + 1). Here the first sum runs over the zigzag bonds and the second one over the basal bonds, see

figure 1. There are numerous studies of this spin model, see, e.g., references [1–24] within different contexts

ranging from exact dimer product ground states [1, 3, 4, 14] via quantum three-coloring description [17, 18, 23]

to many-body quantum scars [24]. As a prototype of a flat-band model the sawtooth chain has attracted particular

attention by the community investigating frustrated quantum spin systems, see, e.g., references [2, 9, 10, 12,

13, 15, 16, 19, 21, 23] as well as by groups studying electronic systems, see, e.g., references [25–33], and also
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Figure 1. A schematic picture of the sawtooth chain.

photonic lattices, see, e.g. references [34, 35]. Further motivation for theoretical studies comes from several

magnetic compounds where the magnetic ions reside on sawtooth lattice sites, see, e.g. references [36–40].

The focus of the present paper is on a specific version of the sawtooth Heisenberg model with ferromagnetic

(FM) zigzag bonds J1 < 0 and competing antiferromagnetic (AFM) basal bonds J2 > 0. We will call this model

the FM-AFM sawtooth chain. This model undergoes a quantum phase transition at κc = |J2/J1 | = 1/2 from a

FM to a ferrimagnetic ground state [7, 11, 15], where κc is independent of the spin quantum number s [15]. At the

transition (flat-band) point κc , the lowest one-magnon excitation band above the FM state becomes flat and it has

zero energy [15, 16, 19, 22, 23]. Such a flat one-magnon band leads to a massively degenerate set of localized

multi-magnon ground states resulting in an s-independent residual entropy limN→∞ S0(N)/N = 1
2

ln 2 [15],

which is even larger than for the AFM sawtooth chain at its flat-band point [9, 10]. While the thermodynamics of

the AFM sawtooth chain is well studied see, e.g., references [9, 10, 12, 13, 41], so far only a few investigations

are available for the FM-AFM sawtooth chain [15, 16, 19, 22, 23]. Since the flat-band physics for this model

can be observed at zero field it might be even more interesting than the AFM model, where flat-band physics

appears around the saturation field, i.e., typically at high magnetic fields. Therefore, by contrast to the FM-AFM

sawtooth chain, the high-field flat-band physics for purely AFM models is not easily (or not at all) accessible in

experiments, for the few exceptions see references [42–46]. A strong further motivation to extend the theoretical

study of the FM-AFM sawtooth chain comes from the recently synthesized magnetic molecule Gd10Fe10 [38].

This magnetic system is well described by the FM-AFM sawtooth chain with of 10+ 10 alternating gadolinium

(S = 7
2
) and iron (S = 5

2
) ions, sitting on apical and basal sites, correspondingly. Importantly, the ratio of its

exchange parameters is close to the transition point [16, 19, 38]. We further mention that the model is also

relevant for Cs2LiTi3F12 that hosts ferro-antiferromagnetic sawtooth chains as magnetic subsystems [47].

Here we present a systematic study of the role of the system size N , the spin quantum number s as well the

change of the thermodynamic properties in dependence on the distance to the transition point d f = |J2/J1 | − κc .

Moreover, we also discuss the influence of the magnetic field on the thermodynamics, which may have a strong

impact on the low-temperature physics, because it lifts partially the huge degeneracy present at |J2/J1 | = κc .

For that we use full exact diagonalization (ED) and the finite-temperature Lanczos method (FTLM).

2. Methods

2.1. Full exact diagonalization (ED)

The exact-diagonalization technique is a powerful numerical tool which is widely applied to quantum lattice

models, see, e.g. reference [48]. Using a complete set of basis states the stationary Schrödinger equation for

a finite system of N sites is transformed to an eigenvalue problem. Then the full spectrum can be determined

by numerical diagonalization without approximations. We use here Jörg Schulenburg’s spinpack code [49, 50]

which allows to treat periodic s = 1/2 sawtooth chains up to N = 20 sites easily.

2.2. Finite-temperature Lanczos method (FTLM)

The FTLM is a Monte-Carlo like extension of the full ED briefly described in the previous section. Ther-

modynamic quantities are determined using trace estimators [51–61]. The partition function Z is approximated

by a Monte-Carlo like representation of Z , i.e., the sum over a complete set of (2s + 1)N basis states entering Z

is replaced by a much smaller sum over R random vectors | ν 〉 for each subspace H(γ) of the Hilbert space. To

split the Hilbert space into small subspaces we use conservation of total Sz as well as the lattice symmetries of

the Hamiltonian, where the mutually orthogonal subspaces are labeled by γ. The exponential of the Hamiltonian
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is approximated by its spectral representation in a Krylov space spanned by the NL Lanczos vectors starting

from the respective random vector | ν 〉. Then the FTLM approximation of the partition function is given by

Z(T) ≈

Γ
∑

γ=1

dim(H(γ))

R

R
∑

ν=1

NL
∑

n=1

exp

(

−
ǫ
(ν)
n

kT

)

|〈 n(ν) | ν 〉|2 . (2.1)

Here | n(ν) 〉 is the nth eigenvector of H in the Krylov space with the corresponding energy ǫ
(ν)
n . As for ED

we use for the numerical Lanczos calculations J. Schulenburg’s spinpack code [49, 50] to get FTLM data for

periodic sawtooth chains up to N = 36 sites.

3. Results

3.1. The model at the flat-band point

Let us first recapitulate some important results found in reference [15]. Due to the characterization of the

ground-state manifold by localized multi-magnon (LMM) states explicit expressions for the degeneracies in each

Sz-sector were found. For periodic spin-half chains with N sites the ground-state degeneracy at the transition

point in a particular Sz-sector with Sz
= Smax − k is

Dk
N =

n!

(n − k)!(k)!
, 0 ≤ k ≤

n

2
, n =

N

2

Dk
N =

n!

(n/2)!(n/2)!
+ δk,n ,

n

2
< k ≤ n . (3.1)

That yields the total degeneracy

DN = 2n + n
n!

(n/2)!(n/2)!
+ 1 , n =

N

2
(3.2)

leading to a residual entropy per site s0 = limN→∞
1
N

ln DN =
1
2

ln 2. Note that this value is independent of s (for

N → ∞ only) and it corresponds to a system of N/2 independent spin-half objects. Interestingly, the excitation

gap ∆ above the ground-state manifold is extremely small. Thus, for N = 20 the ED yields ∆ = 7.502 · 10−9.

Moreover, ∆ decreases with increasing N . Thus, the FM-AFM sawtooth chain at |J2/J1 | = κc is a (rare) example

of a virtually gapless finite quantum spin system.

Applying a magnetic field H > 0, the fully polarized state with Sz = Smax = Ns becomes the ground state

and the former LMM ground states of the other Sz-sectors are excited states, where their excitation energy is

related to the Zeeman term. Because of their huge degeneracy, see equation (3.1), this class of excitations may

dominate the low-temperature physics. Thus the contribution of the LMM states to the partition function can be

explicitely given, see equation (27) in reference [15]. Based on this knowledge universal scaling relations for the

magnetization and the susceptibility were found. For the susceptibility the universal finite-size scaling function

reads [15]

χN (T) = T−α f (cN NTα−1), (3.3)

where the N-dependent factor cN (given by a cumbersome formula) becomes cN = 1/48 for N ≫ 1 and the

scaling exponent α for s = 1/2 was determined to α ≃ 1.09 by fitting to corresponding finite-size data for

N = 16 and N = 20. Below we will verify this scaling behavior by comparing corresponding finite-size data for

much larger systems up to N = 36.

3.1.1. Density of states

Before we will present our numerical data for thermodynamic quantities such as the specific heat c(T) and the

susceptibility χ(T) we will briefly illustrate in more detail the low-energy spectrum by discussing the excitation

gaps and the density of states ρ(E). In Table 1 we present ED data for the excitation gaps in different sectors of

Sz
= Ns − k for N = 16 and spin s = 1/2, 1, 3/2 and 2. Obviously, the gaps are rather small if k > 1, where the
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Table 1. Excitation gaps ∆(k) ≡ E1(k) − E0 of the periodic FM-AFM sawtooth chain of N = 16 sites at the

transition point |J2/J1 | = 1/2 = κc , J1 = −1, for spin quantum numbers s = 1/2, 1, 3/2 and 2 in different

subspaces Sz = Ns−k. E1(k) is the energy of the lowest excitation in the subspace of k magnons and E0 = −12s2

is the ground-state energy.

s = 1/2 s = 1 s = 3/2 s = 2

k ∆(k) ∆(k) ∆(k) ∆(k)

1 1.0 2.0 3.0 4.0

2 2.178 · 10−2 7.094 · 10−2 8.596 · 10−2 9.326 · 10−2

3 4.718 · 10−4 4.829 · 10−3 6.902 · 10−3 7.924 · 10−3

4 9.935 · 10−6 2.740 · 10−4 4.797 · 10−4 5.917 · 10−4

5 3.034 · 10−6 1.550 · 10−4 2.682 · 10−4 3.248 · 10−4

6 2.584 · 10−6 1.550 · 10−4 2.682 · 10−4 3.248 · 10−4

7 7.361 · 10−7 1.550 · 10−4 2.682 · 10−4 3.248 · 10−4
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Figure 2. (a) Density of states (histogram, bar width ∆E = 0.02) of periodic chains of N = 16 sites with J1 = −1

and J2 = 1/2 for spin s = 1/2 and s = 1 (ED), where the y-axis is cut at 1800. Note that within the first

histogram bar between E0 and E0 + ∆E not only the ground states but also excited states are collected, see also

Table 1. (b) Field dependence of the density of states (histogram, bar width ∆E = 0.02) of periodic chains of

N = 20 sites with J1 = −1, J2 = 1/2 and spin s = 1/2 (ED), where the y-axis is cut at 8000.

extreme quantum case plays a particular role with a virtually vanishing gap (see also Table I in reference [15]

for s = 1/2 with N = 16, 20, 24, 28 and k = 1, . . . , 6).

In figure 2(a) we show ρ(E) for N = 16 and spin quantum numbers s = 1/2 and s = 1. An exceptional

feature of the density of states for s = 1/2 is the collection of about 6% of the states in the low-energy region

below E − E0 . 0.6, where this region is separated by a quasi-gap from the high-energy region E − E0 & 0.6.

This feature is present also for larger system sizes, see references [15] and [23]. The particular low-energy

structure of ρ(E) is important for the low-temperature physics, see below. As can be also seen in figure 2(a) the

separation of the low-energy part of the spectrum is much less pronounced for s = 1 and gradually vanishes

as further increasing of s. Another peculiar feature of the spectrum of the s = 1/2 model is the absence of the

expected typical maximum of the density of states in the middle of the spectrum.

The influence of a small magnetic field on the density of states is illustrated in figure 2(b) for s = 1/2 and

N = 20. As already briefly discussed above, at H > 0 the ground state is the single fully polarized ferromagnetic

state and the degeneracy of the different Sz sectors is lifted. However, the degeneracy of the LMM states within

a certain Sz sector, see equation (3.1), is still present leading to the unconventional spiked structure of ρ(E)

below (E − E0)/s(s + 1) . 2 for H = 0.1 and below (E − E0)/s(s + 1) . 4 for H = 0.2, where the location of

the peaks corresponds to the Zeeman energy of the respective Sz sector. These parts of the spectrum related to
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Figure 3. (a) Specific heat c(T ) per site of periodic chains of N = 16, 20, 24, 28, 32, 36 sites with J1 = −1,

J2 = 1/2 and spin s = 1/2 (ED for N = 16, 20, FTLM for N = 24, 28, 32, 36) at zero magnetic field. (b) Log-log

plot for the dependence of the susceptibility per site on temperature for periodic chains of N = 16, 20 (ED)

and N = 24, 36 (FTLM) with J1 = −1, J2 = 1/2 and spin s = 1/2. The symbols correspond to the formula

χ(T ) = 0.317/T1.09 .

the LMM states will dominate the low-temperature properties.

3.1.2. Specific heat, entropy and uniform susceptibility

Similar as for the energy scale of the density of states we use for the thermodynamic quantities the normalized

temperature T/s(s + 1) to get a better comparison between systems of different s. (Note that the temperature

dependences of the specific heat c(T) as well as for the susceptibility χ(T) for different s become identical at

high temperatures as a function of T/s(s + 1) [63].)

In reference [15], by comparing data for N = 16, 18, 20, 22 for the s = 1/2 sawtooth chain, it was found (i)

that the low-temperature part is very specific with a long tail down to very low temperatures including two weak

additional maxima below the typical main maximum and (ii) that the finite-size effects seem to be very small.

It is also worth mentioning that the unconventional low-temperature part of c(T) below the main maximum is

entirely covered by the energy levels below the quasi-gap, cf. reference [23].

We strengthen these statements by including FTLM data up to N = 36, see figure 3(a), where we show

the specific heat at the transition point for spin s = 1/2. Obviously, there are no finite-size effects down to

T/s(s + 1) ∼ 0.0001 (only for the smallest system of N = 16 we see small deviations from the curves for larger

N at T < 0.001). We also observe, that the FTLM approximation is very accurate, cf. reference [60]. Thus our

finite-size data for spin s = 1/2 virtually correspond the thermodynamic limit. This feature can be attributed

to the virtually vanishing excitation gaps, cf. Sec. 3.1.1. For the temperature dependence of the susceptibility,

which is related to equation (3.3), in reference [15] the formula χ(T) = 0.317/T1.09 was found. In figure 3(b)

we show ln(T χ) vs. T/s(s + 1) for N = 16, 20, 24, 36. Obviously, the finite-size effects are again small and the

curves for N = 24 and 36 perfectly coincide with the above given formula for χ(T) in the whole temperature

region shown in figure 3(b). Thus the data for larger N further confirm equation (3.3). It turns out that the

scaling exponent α present in the scaling function equation (3.3) depends on the spin quantum number s [22]. It

changes from α = 1.09 for the extreme quantum case s = 1/2 to α = 1.23 for s = 1 and then it smoothly tends

to α = 1.5 at s → ∞.

We consider now the sawtooth chain with higher spin s. In figure 4(a) and (b) we show the specific heat

and the entropy for N = 12 and spin values s = 1/2, 1, 3/2, 2, 5/2, 3. As for s = 1/2, for all s > 1/2 we

observe a long tail below the main maximum reaching to very low temperatures. However, by contrast to the

extreme quantum case s = 1/2, the low-temperature part does not exhibit additional maxima rather there is a

shoulder just below the main maximum. The position Tmax/s(s + 1) and the height cmax of the main maximum

in c(T) strongly depend on s, see the inset of figure 4(a). Obviously, the maximum moves to smaller values of

T/s(s + 1) as increasing of s. From the exact solution of the classical case [19] it is known that for s → ∞ there
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Figure 4. (a): Main panel: Specific heat c(T ) per site of periodic chains of N = 12 sites with J1 = −1, J2 = 1/2

for spin s = 1/2, 1, 3/2, 2, 5/2, 3 at zero magnetic field. Inset: Position Tmax/s(s+1) and height cmax of the main

maximum in c(T ) as a function of the inverse spin quantum number s. (b): Scaled entropy s(T )/N ln(2s + 1) per

site for N = 12 sites with J1 = −1, J2 = 1/2 for spin s = 1/2, 1, 3/2, 2, 5/2, 3 at zero magnetic field.
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Figure 5. (a) Specific heat c(T ) per site for periodic chains of N = 12 and 16 sites with J1 = −1, J2 = 1/2 and

spin s = 1 (ED for N = 12, FTLM for N = 12 and N = 16) at zero magnetic field. (b)-(c) Same as in (a) but

without ED for s = 3/2 and 2, respectively.
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Figure 6. (a) Scaled entropy s(T )/N ln(2s + 1) per site for periodic chains of N = 20 (ED) and 36 (FTLM) sites

with J1 = −1, J2 = 1/2 and spin s = 1/2 for various magnetic fields H. (Note that the curves for N = 20 and

N = 36 coincide, i.e., the dashed lines are practically not visible.) (b) Main panel: Influence of the magnetic

field H on the specific heat c(T ) per site for periodic chains of N = 20 (ED - solid) and N = 36 (FTLM - dashed)

sites with J1 = −1, J2 = 1/2 and spin s = 1/2. (Note that the curves for N = 20 and N = 36 perfectly coincide,

i.e., the dashed lines are practically not seen.) The broad yellow curves are calculated using a restricted set of

energies to determine the specific heat, namely E < E0 + 0.15 (E < E0 + 1.5) for H = 0.01 (H = 0.1). Inset:

Density for states for H = 0.01 and H = 0.1 shown for that energy region relevant for the extra low-temperature

maximum in c(T ) presented in the main panel.

is no maximum, rather the c(T) exhibits a plateau-like shape with c(T < Tp) > 0, Tp/s(s + 1) ∼ 0.2. We may

conclude, while for most spin systems the low-T thermodynamics for the pretty large spin value s = 3 is close

to the classical case, the highly frustrated FM-AFM sawtooth chain is an example, where s = 3 is still far from

the classical limit. For all considered values of s the general entropy profiles (figure 4 (b)) are similar, however,

with different values of the residual entropy. The slow convergence towards the classical limit as increasing of

s may be related to the exponentially large ground state degeneracy.

According to the larger excitation gaps for s > 1/2, see Table 1, we may expect that finite-size effects set in

earlier as T → 0. In figure 5 (a), (b), (c) we show the specific heat at the flat-band point κc = |J2/J1 | = 1/2 for

spin s = 1, s = 3/2 and s = 2 and N = 12 and N = 16. Finite-size effects become visible below the shoulder,

i.e., at about kT/s(s + 1) < 0.01, but the general shape of the c(T) curve remains similar as increasing N .

3.1.3. Influence of the magnetic field

As briefly discussed for the density of states (see Sec. 3.1.1) a magnetic field may have a drastic influence

on the low-energy physics by partial lifting the massive ground-state degeneracy. Here we focus on the specific

heat c(T) and the entropy s(T). The magnetization process has been recently studied in detail in reference [22].

We present numerical data for s(T) and c(T) for N = 20, N = 36 and s = 1/2 in figure 6(a) and (b),

respectively, where magnetic fields H = 0, 0.001, 0.01, 0.1, 0.2 are considered. The lifting of the massive

ground-state degeneracy by the magnetic field is well visible in figure 6(a). There is no residual entropy at

H > 0, however, by increasing the temperature, at small fields the entropy s(H,T) approaches the zero-field

value s(H = 0,T) (green line in figure 6(a)) pretty fast.

At small nonzero field H . 0.121 the specific heat exhibits a fairly high low-temperature maximum. This

maximum is caused by a series of low-lying excitations stemming from the former degenerate LMM zero-field

ground states, see the well separated sharp peaks in the density of states shown in the inset of figure 6(b).

This becomes evident by the broad yellow curves which are determined using a restricted set of energies to

compute the specific heat. Clearly, the position of the low-temperature maximum Tmax(H) is related to the

Zeeman energies of the LMM states and it is approximately given by Tmax = 0.615H. Again, finite-size effects

are negligible.
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Figure 7. Low-energy part of the density of states (histogram, bar width ∆E = 0.002) of periodic s = 1/2 chains

of N = 20 sites with J1 = −1 and (a) J2 = 0.49 and J2 = 0.51 as well as (b) J2 = 0.45 and J2 = 0.55 compared

with the density of states at the flat-band point (J2 = 0.5). Note that the y-axis is cut at 1500.
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Figure 8. Scaled entropy S(T )/N ln 2 per site of periodic chains of N = 20, 28, 36 sites [N = 20 (ED) - thin,

N = 28 (FTLM) - middle, N = 36 (FTLM) - thick)] for spin s = 1/2, J1 = −1 and various values of (a) J2 ≤ κc
and (b) J2 ≥ κc (the J2 values are given in the legend) at zero magnetic field.

3.1.4. Signatures of flat-band physics away from the flat-band point κc

The realization of the ideal flat-band physics in an experiment on a sawtooth magnet is unlikely. Rather, one

may expect that in a specific magnetic compound the exchange parameters are sufficiently close to the flat-band

point. A striking example is the FM-AFM sawtooth-chain magnetic molecule Gd10Fe10 [38], where the ratio of

exchange parameters J1 and J2 is slightly below the flat-band point. However, the Gd and Fe ions carry large

spins s and the system of N = 20 spins is not accessible by ED or FTLM. Hence, we focus here on spin s = 1/2

that again allows the analysis of finite-size effects for |J2/J1 | , κc by considering various N up to N = 36.

The LMM states stemming from the flat-band are exact eigenstates only at the flat-band point. Moving

away from this point the states and thus also the eigenvalues are modified. As result the massive ground-state

degeneracy is lifted and the majority of the former LMM states become a large manifold of low-lying excitations.

One may expect that the change of energies is smooth, where the excitation energies depend on the distance

from the flat-band point d f = |J2/J1 | − κc .

We start with the discussion of the density of states ρ(E), see figure 7, where we show the low-energy part of

ρ(E) for several values of J2. The lifting of the ground-state degeneracy as well as the low-energy manifold of

the former LMM ground states and the energy shift of them with growing d f = |J2/J1 | −κc is evident. Moreover,

the quasi-gap is still present and the states below the quasi-gap determine the low-temperature physics.

The specific features of the low-energy spectrum lead to a specific behavior of the entropy shown in figure 8.
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Figure 9.Main panel: Specific heat per site of periodic chains of N = 20, 28, 36 sites [N = 20 (ED) - thin, N = 28

(FTLM) - middle, N = 36 (FTLM) - thick)] for spin s = 1/2, J1 = −1 and various values of (a) J2 ≤ κc and (b)

J2 ≥ κc (the J2 values are given in the legend) at zero magnetic field. The inset in panel (b) shows the position

of the low-temperature maximum of c(T ) as a function of the distance to the transition point df = |J2/J1 | − κc .

There is only a small residual entropy related to the ferromagnetic (ferrimagnetic) ground-state multiplet at

J2 < 1/2 ( J2 > 1/2), which vanishes as ln N/N when N → ∞. This size-dependent residual entropy yields

the splitting of the curves for various N at low T . By increasing the temperature, at small deviations from the

flat-band point the entropy approaches the flat-band value s(J2 = 1/2,T) (blue line in figure 8).

The specific heat c(T) is shown in figure 9(a) and (b) for a few values below and above the flat-band point κc.

Apparently, c(T) exhibits clear signatures of flat-band physics in a sizeable parameter region below and above

κc , namely a well-pronounced low-temperature peak coming from the former LMM ground states. On the other

hand, the main peak is quite stable against small deviations from κc. Noticeable finite-size effects set in around

the low-temperature peak, i.e., only at very low temperatures. The position of the low-temperature peak Tmax

depends on the energy-shift of the LMM states, i.e., on the distance from the flat-band point d f , see the inset in

figure 9(b). For d f > 0, there is a linear relation Tmax ≈ 0.33d f , 0 < d f . 0.3, where the finite-size effects are

small. On the other hand, for d f < 0 the peak position is noticeably dependent on N , but there is no doubt of

the double-maximum structure in the c(T) profile.

Last but not least, we briefly discuss the magnetic cooling. There are several theoretical studies reporting an

enhanced magnetocaloric effect in the vicinity of a quantum phase transition, in particular if there is a residual

entropy at the transition point, see, e.g., references [6, 9, 12, 64–66]. However, most of the previous studies in

flat-band systems report on an enhanced magnetocaloric effect near the saturation field [6, 9, 12, 64–66], which

often is not accessible in experiments. By contrast, the FM-AFM sawtooth chain exhibits this phenomenon when

approaching zero field [15] which is more promising thinking in terms of a possible experimental realization.

In figure 10 we show as an example the temperature variation as a function of the applied magnetic field for

an isentropic cooling with fixed entropy S/N = 0.5 for spin s = 1/2 and N = 36 and various values of J2.

Apparently, there is a noticeable downturn in the T(H) curve as H → 0 for values of J2 in the vicinity of the

flat-band point, indicating the presence of an enhanced magnetocaloric effect in the FM-AFM sawtooth chain.

4. Summary

In the present paper we study finite spin-s Heisenberg sawtooth chains with ferromagnetic (FM) zigzag bonds

J1 < 0 and competing antiferromagnetic (AFM) basal bonds J2 > 0 by means of full exact diagonalization

and the finite-temperature Lanczos method. The model exhibits at κc = |J2/J1 | = 1/2 a zero-temperature

transition between a ferro- and a ferrimagnetic ground state. At the transition (flat-band) point κc , the lowest

one-magnon excitation band above the ferromagnetic state is flat (dispersionless) and has zero energy. This leads

to a massively degenerate ground-state manifold resulting in a residual entropy limN→∞ S0(N)/N = 1
2

ln 2, that

is independent of s. Moreover, in the extreme quantum case s = 1/2 already for the finite systems of up to N = 36

sites the excitations above the ground-state manifold are virtually gapless with the result that the finite-size data
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Figure 10. Temperature in dependence on the applied magnetic field for an isentropic cooling with fixed entropy

S/N = 0.5 for spin s = 1/2 and N = 36 and various values of J2 (given in the legend). Corresponding data for

N = 20 (not shown) demonstrate that finite-size effects are small.

practically correspond to the thermodynamic limit.

For spin quantum numbers s > 1/2 the quantum effects at low temperatures remain strong, even for the largest

spin s = 3 considered here. Thus, at the flat-band point the specific-heat profile exhibits a well-pronounced

maximum with a shoulder-like part and long tail down to very low temperatures below this maximum for all

s = 1, . . . , 3, whereas this feature is not present in the classical case.

In a sizeable parameter region around the flat-band point the influence of the former massively degenerate

ground-state manifold acts as a large manifold of low-lying excitations setting an extra low-energy scale yielding

unconventional low-temperature thermodynamics which can be understood as a remnant of flat-band physics.

A specific feature of the flat-band system at hand is the strong influence of an applied magnetic field on

the low-temperature properties caused by a partial lifting of degenerate ground-state manifold, i.e., most states

collected in the residual entropy at zero field become low-energy excitations according to their Zeeman energy.

Finally we argue that our results for the FM-AFM Heisenberg sawtooth chain might be (at least to some

extent) representative for other systems with a large residual entropy such as the three-coloring XXZ sawtooth

chain [17, 18, 23] and the FM-AFM kagome chain [67].
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