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Quantum tunneling of the magnetization is a phenomenon that impedes the use of small
anisotropic spin systems for storage purposes even at the lowest temperatures. Phonons, usually
considered for temperature dependent relaxation of magnetization over the anisotropy barrier, also
contribute to magnetization tunneling. Here we demonstrate that certain spin-phonon Hamiltoni-
ans are unexpectedly robust against the opening of a tunneling gap. The key to understanding this
phenomenon is provided by an underlying supersymmetry not yet considered.
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Introduction.—Single-ion magnetic anisotropy pro-
vides the simplest mechanism for fundamental phenom-
ena such as magnetic bistability as well as quantum tun-
neling of the magnetization [1-3]. The Hamiltonian is so
simple that any student after an introductory course on
quantum mechanics can diagonalize it. It consists of two
terms,

Heor = D(s* + E{(52)* = (3,)*} (1)
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which, for obvious reasons, have been termed D- and
E-term, see e.g. [1] for a full account of the story. A
negative D, D < 0, results in an easy-axis anisotropy
which, in the absence of the E-term, would express itself
as a perfect parabolic anisotropy barrier, compare Lh.s.
of Fig. 1. FE leads to a splitting of the otherwise degen-
erate pairs of states left and right of the barrier if the
considered spin is integer, compare r.h.s. of Fig. 1. If the
spin is half integer, Kramers’ theorem applies, and the
levels are bound to be degenerate.
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Figure 1. L.h.s.: Sketch of the low-lying energy levels of a
spin with dominant easy-axis anisotropy vs. magnetic quan-
tum number. Red bars denote energy eigenvalues. Blue ar-
rows show magnetization tunneling pathways for states with
negative magnetic quantum number, and green arrows depict
some of the possible excitations due to phonons, compare e.g.
[4]. R.h.s.: Example of a tunnel splitting for a spin s = 1
with D < 0 and E # 0 anisotropy terms.

In a magnetic field applied along the easy-axis one en-
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Figure 2. Sketch of the coupling of the anisotropy tensor to
phonons of the material. The coupling modifies the E-terms
of the tensor.

counters a perfect level crossing for E = 0; such systems
- single ion magnets (SIM) or single molecule magnets
(SMM) — do show bistability of the magnetization and
are thus suitable candidates for magnetic storage devices
[5—-11]. In case of a splitting of the two lowest levels,
one observes an avoided level crossing as depicted on the
r.h.s. of Fig. 1. The magnetization is not bi-stable at
B =0, instead it tunnels as described for two-level sys-
tems by Landau, Zener, and Stueckelberg [12-14]. The
splitting therefore is also called tunnel splitting.

To our surprise this simple scheme — tunnel splitting
for integer spins, no tunnel splitting for half-integer spins
— needs a modification for integer spins in the case of
phonon-induced tunnel splitting, if the spin is coupled to
phonons of the material in a certain way. It may then
happen that the tunnel splitting opens up only for even
spin quantum numbers, whereas one observes a perfect
level crossing in the case of odd spin quantum numbers.
This behavior can be traced back to a supersymmetry
of the problem. Note that already the authors of [15]
have recognized that the rules concerning the occurrence
of avoided level crossings are overridden by existing sym-



metries.
Method.—Specifically,
Hamiltonian

we consider the following

g:g51+gHO+gZeemana (3)

where the interaction of the spin with the phonons of the
system is reduced to a single harmonic oscillator,

EHo=w(ng+%) : (4)

for educational reasons. The spin interacts with the ex-
ternal magnetic field along the easy axis described by
gZeeman .

Key to our observation is the way the oscillator mode
couples to the spin. Out of the many couplings possible
[16], we investigate those cases where the phonons modify
only the E-terms, compare Fig. 2, and we assume two
different couplings, a linear coupling

E:a(gj—f—g), (5)

where FE is proportional to the elongation as well as a
quadratic coupling

E:a(gug)? . (6)

Somewhat sloppily, we term the coupling strength « in
both cases. It will later turn out that the fundamental
difference we found exists between odd and even powers
of the elongation (QT + g).

Hamiltonian (3) can be diagonalized numerically ex-
actly using the product basis |m,n ), with m being the
magnetic quantum number and n the oscillator quantum
number, if n is cut at some maximal value n,.. We in-
vestigated various nyax = 0,1,...5, and it turns out that
small nyay, €ven nyax = 1, are sufficient to accurately
describe ground state properties [17].

Results.—A numerical diagonalization with practically
arbitrary parameters reveals that an odd-even effect de-
termines the tunnel splitting for the linear coupling, see
Fig. 3. For the quadratic coupling, the tunneling gap
opens for all integer spins, see Fig. 4. The behavior per-
sists for higher spin quantum numbers and ny.x as we
have numerically verified.

The case of a quadratic coupling, or in general of a

coupling with an even power of (a® + a ), can be imme-

diately understood when considering that, whatever the
eigenstates of the total Hamiltonian (3), the oscillator
part will contribute zero-point motion, i.e. a parameter
FE definitely larger than zero. Similar to the case with
constant F, these yield a tunnel splitting for all integer
spin quantum numbers [17, 18].

The case of a linear coupling, where the unexpected
level crossings for odd integer spins occur, needs a
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Figure 3. Linear coupling: Lowest energy eigenvalues vs.
magnetic field strength for different integer spin quantum
numbers s = {1,...,4} (from left to right and top to bot-

tom) with D = =5, nmax = 1, @ = 0.5, w = 5 in natural
units.
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Figure 4. Quadratic coupling: Lowest energy values vs. mag-
netic field strength for different integer spin quantum num-
bers s = {1, ...,4} (from left to right and top to bottom) with
D = =5, npmax = 1, « = 0.5, w = 5 in natural units.

deeper investigation. The key to understanding this phe-
nomenon is provided by an underlying not yet considered
supersymmetry together with some reasonable estimates.
To this end we rewrite Hamiltonian (1) using the coordi-

nate operator (gT + g)

Hs = D(s.)" + a2 2 [(s.)" = ()] . ()

with g being the oscillator mass (A = 1 troughout the
paper). It is now more obvious that this operator, and
also the full Hamiltonian without Zeeman term, has got
a fourfold symmetry with respect to the following sym-
metry operation

Q:exp{—méz/Q}@l;I , (8)



which inverts x (parity operation II) and simultaneously
rotates the spin vector operator about its z-axis by /2.
The cyclic group generated by U is of order four and
has got four irreducible representations that may be la-
beled by their characters exp{—inf/2},¢=0,1,2,3. All
four irreps are realized by product basis states that are
already eigenstates of U,

Ulm,n) = exp{—imm/2} (=1)"|m,n) (9)
= (=" (=1)"[m,n) , (10)

and can thus be grouped according to these eigenvalues.
Therefore, the total Hilbert space can be decomposed
into four mutually orthogonal subspaces H = Ho D H1 P
Ho @ Hs. This is graphically depicted in Fig. 5.

Figure 5. Graphical representation of the four sets of prod-
uct basis states spanning He, ¢ = 0,1,2,3 (clockwise from 3
o’clock) according to their eigenvalue with respect to the sym-
metry transform U, see (9). m denotes the magnetic quantum

number, k is an integer, and n is the oscillator quantum num-
ber.

The system possesses a second symmetry
Zzexp{—iwgr}@)l , (11)

which affects the spin part only. It leaves s, invari-
ant and rotates s, and s. into their respective nega-
tives. This operation also commutes with the Hamilto-
nian, since H depends on the squares of these operators.
But symmetry V' does not commute with U, at least not
on the full Hilbert space. However, thanks to the prop-
erties of Hamiltonian (2), basis states |m,n) are only
connected to |m,n) by (s.)* and [m £2,n) by (s1)?
and (s~ )%, which divides the Hilbert space into a direct
sum of two mutually orthogonal subspaces for even and
odd m, i.e.

H= Heven 2] Hodd 5 with (12)
7'[even = HO @ H? ) (13)
Hodd = H1 B Hs . (14)

ZNI and L/ commute on Heven, Whereas they anticommute
on Heqq- Using concepts from supersymmetry, where U
and V' can be embedded into a Lie superalgebra [19], one
can derive the following conclusions, see also supplemen-
tal material.

One can show that symmetry V' maps H; onto Hs and
vice versa and eigenstates of H that are element of one
of these two subspaces onto the respective eigenstates
in the other space. Therefore, their energy eigenvalues
must be at least twofold degenerate. V leaves Ho and
Ho invariant. Since H; and H3 contain the states with
odd m quantum number, these states are bound to be
degenerate at B = 0 and thus have to cross. Eigenstates
with even values of m are not degenerate by symmetry,
except for a possible, but unlikely accidental degeneracy.
These levels split, and therefore we observe an avoided
level crossing in such cases.

Although from the point of view of applications only
interesting for the ground state, this observation holds
also for excited states. All levels, that have been degen-
erate for £ = 0 split under linear coupling to phonons if
m is an even integer and they remain degenerate if m is
an odd integer.

The question, whether the pair of levels, that make up
the ground state without anisotropy, i.e. without cou-
pling to the phonons, remains a (tunnel-split) pair of
ground state levels shall be answered using perturbation
theory. If the interaction with the phonon subsystem is
weak, i.e. much weaker than given by the energy scale
provided by the easy-axis anisotropy D — and only these
systems are technologically interesting — we find that the
ground states consist to a large extend of

|m=s,n=0)and |[m=—-sn=0) (15)
for odd m and of the two superpositions
lm=s,n=0)+ |m=—-s,n=0) (16)

for even m. Admixtures of other basis states remain very
small, see analytical examples for s = 1 and s = 2 in
the supplemental material. Therefore, the related energy
eigenvalues of the ground states also deviate only little
from those of the axial system with £ = 0. Our numer-
ical studies for spin quantum numbers up to s = 8 and
Nmax = 9, of which a part is shown in Figs. 3 and 4,
arrive at the same comclusions.

Discussion.—Our findings provide an interesting in-
sight into the effect of phonons on the tunneling gap at
an avoided level crossing. Counter-intuitive for a physics
approach, the linear term of a power series describing
the interaction of the phonon with the E term of the
anisotropy tensor — which one would naively assume to
have the strongest effect — does not lead to any tunnel
splitting in the case of odd integer spin quantum num-
bers. It is the quadratic term that does the job.



The symmetry argument we found holds for all odd
powers of (gT + g) where no splitting is observed for

odd integer spins, whereas for all even powers thereof, a
tunnel splitting exists.

Further on, the argument carries through also for cou-
pled spins. If spins interact via a Heisenberg interaction,
and if the phonons affect the anisotropy tensors as de-
scribed, our findings hold for the zero-field split multi-
plets in case of total integer spin.

Thus, we understand from a more fundamental point
of view why a phonon that tilts an anisotropy tensor, as
investigated in [17], always opens a tunneling gap (for any
integer spin). The tilt, expressed as changes of both E
and D, yields a Taylor series in E that contains only even
powers of the oscillator elongation. Thanks to the zero-
point motion of the oscillator, this leads to £ > 0 and
an immediate opening of the tunneling gap, as explained
above. In addition, also D is modified contrary to the
investigation in this paper.

Odd-even effects appear in many places in physics. In
the context of tunneling and supersymmetry, we found
an article on Inelastic cotunneling into a superconductor
nano particle, where odd and even numbers of tunneling
electrons behaved differently [20], for curiousity.
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In this supplementary material, we will substantiate
the statements in the main part of the paper about the
role of supersymmetry for the problem under considera-
tion, see Section I. In the following two sections, we will
further confirm the numerical results on the degeneracy
of the ground state by exact analytical diagonalization of
the Hamiltonian (without Zeeman term) for the case of
s = 1, see Section II, and by rigorous estimates for the
analogous case of s = 2, see Section III.

I. ROLE OF SUPERSYMMETRY

The even-odd effect described in the main part of the
paper depends on the fact that the second symmetry
L/:exp{—mgm}@)l (S5.1)

permutes the eigenspaces Hy, ¢ = 0,1,2,3, of the first
symmetry

Q:exp{—iﬂ'ﬁz/Q}@g, (S5.2)
in the following way:
KHO = Ho, ZHQ = Ho, (83)

but VH; =Hz and VHz =H; .

This in turn follows from the observation that Q and IN/

commute on the subspace Heven = Ho @ Ha, but anti-
commute on Hoqqa = Hi @ Hs. In fact, let ¢ € Hy, £ =
1,3, be an eigenvector of U,

Uo=(-i)o, (S-4)
then it follows that
u(ve) = -vue (5:5)
oy (- (5.6)
= ()2 (Vo) . (S.7)

Hence V¢ € Hyyo, where £ + 2 is understood modulo 4,

and V' maps H, onto Hyo for £ =1, 3, if {Q’Z} =0 on
Hoda-

* jschnack@uni-bielefeld.de

This particular situation concerning the symmetries
U,V can be conveniently reformulated by using con-
cepts from supersymmetry. This reformulation could
also be useful to identify other examples that fit into
the same scheme. In particular, we will embed U and
V into a Lie superalgebra such that these symmetries

“super-anticommute” in a sense to be explained. Since
the spacial factors of U and V, namely II and 1, com-
mute anyway, it will suffice to consider their spin factors
and hence to confine ourselves to finite-dimensional Lie
superagebras.

Recall that a Lie superalgebra (LSA) is defined as a
Zso-graded algebra. This means it is a linear space (over
the field R or C) of the form

A=A A, (S.8)
equipped with a bilinear map
[} AxA— A, (S.9)

called the “super-bracket”. An element a € Ag or a € A;
is called “homogeneous of degree |a|” if a € A, and the
following axioms (S.10) - (S.12) are understood to hold
for homogeneous elements.

| [a,b} [ =la[ +[b] ~ mod 2,
“Zso-grading” (S.10)
[aa b} - - (71)|a| 1 [b’a} s
“(anti)symmetry” (S.11)
[a7 [67 C}} = [[av b} ) C} + (_1)‘(1‘ 1o [ba [(I, C}} )
“Jacobi identity” (5.12)

see, e. g., [1].

In the following we will only use a special complex LSA
defined as follows: Let s be an (integer) spin quantum
number and M, denote the space of all complex
(25 + 1) x (2s + 1)-matrices. Let My be a copy of M,
such that

M=MygdM;j. (8.13)

The matrices M € Mg will be called “even” and those of
M; will be called “odd”. The Lie superbracket [ , } is
defined as the commutator [A, B] € M, for A, B € M,,
or, similarly, as [4, B] € M; for A € My and B € M.
On the other hand, the superbracket between two odd
matrices A, B € M, is defined as the anti-commutator
{A, B} € M. Finally, the superbracket is extended to



M by means of bilinearity. It is straightforward to show
that (S.10) - (S.12) is satisfied and hence (M, [,}) will
be a complex LSA.

We will denote by U and V the spin factors of U and
V, resp. , that w. r. t. the eigenbasis [m), m = —s,...,s,
of s, assume the form

“.0 0 000 0 OO
0 -2 0 000 0 O0ODO
0O 0 -100 0 O OO
0O 0 0 2z0 0 O OO
U= 0O 0 001 0O O O0OODO , (S.14)
0O 0 0 00— 0 OO
0O 0 0 00O O -100
0O 0 00O O O 72 0
0O 0 0 0O O OO
and
0 00O0OO0OO0O0OO0 .-
0 0O0O0OO0OOOT1I O
0 0000010 O
0 00O0O0O1O0O0 O
V= (-1)° 0 0001000 O (S.15)
0 00O100O0OO0O O
0 01000O0OO0 O
0 1000000 O
--00000O0O0O O

5

Next, we split U and V into “even” and “odd” parts ac-

cording to

U=Up+ U, (816)
.0 0 000 0 0 O
00 0000 OUOO O
0 0-1000 0 0 O
000000 OO0OO O

= 00 0 010 0 O00O0
00 00OOO OOO
00 000OO0O-100
00 0000 OUODO
000 000 OO
.0 000 0 00 O
0 000 0 00 O
0 0000 O0OO0OO0OO
0 00¢0 O O0OO0O

+ 0 0000 OOO0OO ,  (S.17)
0 0000—-<00 0
0 0000 O0OO0OO0OO
0 0000 OO O
0 0000 O OO°

and

V=Vy+V; (S.18)
0 0O0O0O0OO0OO0OO .-
0 0O0O0O0OO0OO0OO0O O
0 0O0O0O0O0O1O0 O
0 0O0O0O0ODO0OO0OO0O O

=(-1)° 0 0O0O0O1O0O0O0 O
0 0O0O0O0OO0OO0OO0O O
0 0O1000O0O0 O
0 0O0O0OO0OO0OO0OO0O O
- 0000000 O
0O 0O0O0O0OO0OO0OO .-
0 0O0O0O0OO0OO0OT1 O
0O 0O0O0O0OO0OO0OO0O O
0 0O0O0O0O1O0O0 O

+ (-1)° 0 0O0O0OO0OO0OO0OO0O O . (S5.19)
0 0O0O100O0O0 O
0O 0O0O0O0OO0OO0OO0O O
0 10000O0OO0 O
- 0000000 O

We embed these parts into M such that
Ug, Vg € Mg and Uy, V1 € My . (820)

W. r. t. this embedding it can be easily shown that the
following holds:

Proposition 1
[U,V} =0, (S.21)
that is,

[Uo, Vo] = [Uo, V1] = [Vo,U1] =0,
and {Ul,Vl} =0.

(S.22)

Thus the general scenario where we can expect a sim-
ilar alternating behaviour between level crossing and
avoided level crossing as in the present paper is the case
where there exist two super-commuting symmetries. Fur-
ther aspects of super-symmetric quantum mechanics like
the occurrence of super-symmetric pairs of Hamiltonians
do not appear to be realized in the present case.

II. EXACT DIAGONALIZATION FOR s =1

The phenomenon of degenerate eigenspaces caused by
super-symmetry occurs for all Hamiltonians of the form
provided by Egs. (4) and (8) in the main document, such
that B = 0 and hence Ij zeeman = 0. The latter condition
will be tacitly assumed in the remainder of this Section,
i. e., we always write

H = Hgs1 + Huo (S.23)
=D(s.Pe1+5{(s)+(s) e
1
+lQw (g*g + 2) : (S.24)



using ((Ew)Q — (gy)z) =1 ((5+)2 + (37)2). Addition-
ally, the question arises whether the ground state is de-
generate, i.e., whether the ground state lies in one of the
subspaces Hi1 or Hs and hence in both. Numerical evi-
dence suggests that this will be the case for D < 0 and
odd s. In this section we will confirm this finding by
exact diagonalization of the Hamiltonian for s = 1 and
B=0.

Since the Hamiltonian H leaves the eigenspaces H, of
U for £ =0,1,2,3 invariant, it is possible to perform the

diagonalization for each of the four subspaces separately.
Due to the symmetry V' only one of the two cases H; or

‘H3 needs to be considered.

A. Subspace H;

The subspace H; is spanned by the product states

D™n), n=0,1,2.... (S.25)

Im,n) = |(—

Let H denote the matrix of H w. 1. t. this basis. It is tri-
diagonal since z is represented by a tri-diagonal matrix.
The diagonal elements of H are obtained as

Hup = <(—1)"+1 n’H‘ (—1)"*! n> (S.26)
-D <( n+1’ 2’ n+1>

+w < ’(a a + )’n> (S.27)

=D+4w(n+43), (S.28)

since (n|x|n) = 0. For the upper secondary diagonal of
H we have

Hpmi1 = <(—1)"+1,n ‘ " ’ (—1)",n + 1>

{0 (512 + (5792 (<17

(S.29)

<n’g‘n+1> (5.30)
=a\2uwn, (S.31)
since the secondary diagonal matrix elements of (s,)? and
Hyo vanish and
002
(sT2+(s7)*=1000 | . (S.32)
200

Obviously, Hy11,n = Hp 1.
It follows that H is the same matrix as that of the
operator

K=Huo+Dl+az, (S.33)

w. r. t. the harmonic oscillator eigenbasis |n), n =
0,1,2,.... Neglecting for the moment the constant en-

ergy shift due to D 1 we may write

1 2
HHo+ax—ﬂ]N3 +HT£E +azx (S.34)
1 L 2 2 Hw2
=5+ 5y (a4 m) —Fab
(S.35)
where
e
= —. S.36
0= (S.36)

We conclude that K is the matrix of a harmonic oscilla-
tor Hamiltonian with a spatially shifted minimum of the
potential and a constant energy shift of

2 2
LW 5 (5.36) Q
oE=D—— = — .
50 5w’ (S.37)
Its eigenvalues are hence of the form
(1) 1 a?
with the relative ground state energy
(W _ o’
Ey/ ==—+4+D—-—. .
0 5 + 5 (S.39)

Moreover, this result supports the remark in the main
document referring to Eq. (15), since the ground state
of the shifted oscillator and the ground state of the un-
shifted have a considerable overlap for small zg.

B. Subspace Ho

The subspace H is spanned by the product states

|m,n) =0,n),n=0,2,4,... . (S.40)

Since the matrix elements of z between different states of
this basis vanish the matrix K of the restriction of H to

the subspace H is already of diagonal form. Its diagonal
elements that represent the energy eigenvalues read

Knn = (0,716 Huo + D(s.)*
—w ),

® 11’ 0,n> (S.41)
(S.42)

for n = 0,2,4,..
energy

., and yield the relative ground state

B =%

= (S.43)



C. Subspace H:

Analogously to Subsection IIB, the subspace Hs is
spanned by the product states

|m,n) =10,n), n=1,3,5,... . (5.44)

Since the matrix elements of 2 between different states of
this basis vanish, the matrix K of the restriction of H to

the subspace Hy is already of diagonal form. Its diagonal
elements read

Knn = <O,n’]l ® Huo + D(5.)° ® ]l‘ 0,n> (S.45)

=w(n+3), (S.46)

for n = 1,3,5,..., and yield the relative ground state
energy

S.43
E§2) _ 37(,0 (5.43)

ST B (S.47)

D. Total ground state

Summarizing the results of the Subsections ITA - IIC

we conclude that E((Jl) according to (S.39) represents the
total ground state energy since

2
1 0 (63
E(())—E(()):D—2mw2 <0

(S.48)

according to the assumption D < 0 made in this Section.
This completes the arguments for the groundstate lying
in the subspace Hoqq in the case of s = 1.

III. GROUND STATE FOR s =2

According to numerical evidence, the groundstate lies
in Heven for even s. We will confirm this result by rigor-
ous estimates of the (relative) ground state energies for
s = 2. We again consider the Hamiltonian (S.24) and the
various invariant subspaces Hy, £ =0,1,2,3.

A. Subspace H;

The results of Subsection IT A can largely be adopted,
with the exception that for s = 2 the matrix of
(sT)? + (s~)? assumes the form

0 02V60 0

00 0 6 0
(stY?+(s7)*’=|2/60 0 0 2V6 (S.49)

0 6 0 0 0

0 0260 0

By comparison with (S.32) this means that the param-
eter o in Subsection IT A has to be replaced by 3« for

the present case which gives the new expressions for the
eigenvalues

E(l)zw(n—i-l)—&—D—97042 forn=20,1,2
n 2 2/~Lw2 ) gy Ly Lo
(S.50)
and the relative ground state energy
9a?
EW=%24p- 2% S.51
0 2 + 2//4(*)2 ( )

B. Subspace H-

The subspace Hs is spanned by the product states

Im,n) = | £2,0),]0,1),| £2,2),]0,3),... .  (S.52)

It can be further split into the two eigenspaces of V
formed by symmetric or antisymmetric linear combina-
tions of the states | £ m,n) in (S.52). These eigenspaces
are also left invariant by the Hamiltonian H. In the fol-
lowing, we only consider the symmetric subspace Hs ¢
spanned by the states

2,0),10,1),12,2),10,3),... , (S.53)
where |2) denotes the spin state
~ 1
2)=—Z=(2+1-2) . (5.54)

V2
Let K denote the matrix of the Hamiltonian H
w. r. t. the basis (S.53). Its diagonal entries read
Ko = (2, ’ 1® Huo + D (s:)*® 1 ‘ 2,m) (8.55)
=w(n+1)+4D, (S.56)

for even n .

Here we have used that the state |2) is an eigenstate of
(52)2 corresponding to the eigenvalue m? = 4. Analo-

gously,
Knm = (0,7 1€ Huo + D (52 @ 1] 0,n) (8.57)
=w(n+1), foroddn, (S.58)

since the state |0) is an eigenstate of (s.)? corresponding

to the eigenvalue m? = 0.
For the upper secondary diagonal entries of K, we first
consider the case of even n and obtain

% <0,n‘ ((§+)2 + (g_)g) Rz } 2,n + 1>
55 (0] + 2

+ (0[(s)2 + (57| - 2)) {nlgn +1)

Kn,nJrl -

(S.59)

(5.49) % (2 y 2\/g> V2pwn (S.60)
= a2V3\/2pwn. (S-61)



The result for odd n is the same. It follows that, analo-
gously to Subsection IT A, K equals the matrix of a shifted
harmonic oscillator Hamiltonian I:{ plus a diagonal oper-
ator A. Here,

~ 1 Hw 2 pw
Ij:ﬂg +7(£—|—x0> —733(2), (S.62)
where
2v/3a
To = ’uw2 5 (863)
and hence
~ 1 5 2 a?
B+ 5 (gra) -0 (5.64)
Further,
Q:ZlDdiag(l,(),l,O,...,) . (S.65)

We want to determine an upper bound of ESQ) of the
form

E® < <‘H+A‘<I>> (S.66)

where ® is chosen as the normalized ground state of IE ,
to wit,

b(x) = (%)1/4 exp (—% (x+ x0)2) .

Further, we will have to use the explicit form of the har-
monic oscillator eigenfunctions

bn(z) = <2nn! \/z)m

exp (—%ﬁ) H, (y/pwzx) ,

(S.67)

(S.68)

where H,(...) denotes the n-th Hermite polynomial.
We first note that

<<I> ‘13‘ q>> - % - Sa:z . (S.69)
Then we consider
<q> ‘g’ <I>> =4D Y (®n) (n]®) . (.70)

n=0,2,...

After some calculations we obtain the intermediate result

oo

() pn(z) do

— 00

) ()

2nn) 4

(®[n) =

(S.71)

and hence

(s]s]e) -

(S.72)

(59
)

AD > |2l

n=0,2,.

2
4D exp (J“;)

= 2D (1+exp (—pwzj)

S.6: 12
G599 p (1 +exp <— ° )) . (S.73)
Jw
Summarizing,
E® <@ 8
=2 uw?
1202
+2D (1 +exp (— ° )) . (S.74)
Lw
C. Total ground state
Combining the previous results, we obtain
(5.74,551) 3 2
(2) (1)
Ey” — E; < —im (S.75)
1202
+D (1 + 2exp (— a3 )>
Jw
< 0, (S.76)

since D < 0. This proves that E(()l) cannot be the total
ground state energy and hence the total ground state
cannot lie in Hoqq. Actually, the numerical calculations
show that it lies in the subspace H3 s considered above,
while the above analytical considerations prove only the
weaker result that the total ground state lies in Heven-

Finally, we would like to provide an example for our
statement that the ground state with spin-phonon cou-
pling consists mainly of the two ground states for £ = 0.
The ground state in the discussed case of s =2 (D = —5,
Nmax = 1, @ = 0.5, and w = 5 in natural units) is

| o) = +0.706684 |m = 2,n=0)
+0.706684 |m = —2,n = 0)
—0.034579 |m =0,n=1) .

(S.77)

Thus, it contains only 0.1 % admixture of other states.
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