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Quantum tunneling of the magnetization is a major obstacle to the use of single-molecule magnets
(SMMs) as basic constituents of next-generation storage devices. In this context, phonons are
often only considered (perturbatively) as disturbances that promote the spin system to traverse the
anisotropy barrier. Here, we demonstrate the ability of phonons to induce a tunnel splitting of the
ground doublet which then reduces the required bistability due to Landau-Zener tunneling of the
magnetization. Harmful are those phonons that modify the spin Hamiltonian so that its rotational
symmetry about the field axis is destroyed. In our calculations we treat spins and phonons on
the same footing by performing quantum calculations of a Hamiltonian where the single-anisotropy
tensors are coupled to harmonic oscillators.

I. INTRODUCTION

Single-molecule magnets (SMMs) constitute magnetic
materials in which the sufficiently separated molecules
exhibit a magnetic hysteresis of purely molecular origin.
Typically, such magnetic molecules are characterized by
low-lying magnetic levels whose energies form a barrier
against magnetization reversal. This situation is sketched
in Fig. 1. Initialized in one of the two magnetic ground
states, the system shows bistability and thus allows the
storage of information in the same way a bit on a hard
drive would do. Ever since the discovery of such behavior
in Mn12-acetate [1–7], this promises future miniaturiza-
tion of magnetic storage devices.
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Figure 1. Sketch of the low-lying energy levels of an SMM vs.
magnetic quantum number. Red bars denote energy eigen-
values; they form an anisotropy barrier. The tiny (invisible)
energy differences between almost degenerate states for neg-
ative and positive magnetic quantum number, respectively,
are called tunnel splitting. Blue arrows show magnetization
tunneling pathways for states with negative magnetic quan-
tum number, and green arrows depict some of the possible
excitations due to phonons, compare e.g. [8].

Among others, two major processes prevent an easy
use of SMMs: quantum tunneling of the magnetization
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between nearly degenerate levels at avoided level cross-
ings, depicted by blue arrows in Fig. 1, as well as thermal
excitations across the barrier transmitted by the phonons
of the molecule or the lattice of the crystal [8–18]. A very
good and recent summary is provided in Ref. [8], where
particulary Figure 3 explains that the transitions im-
posed by direct, van Vleck, Orbach, or second-order Ra-
man processes are assumed to be of resonant nature sim-
ilar to scattering processes. Only recently this paradigm
has been challenged by the observation of sub-barrier
tunneling which was subsequently modeled by means of
anharmonic phonons [19]. The question, what is or is not
required to make a good SMM [20], got a new twist.

In the present article, we do not want to contribute
to the discussion of the role of the anisotropy barrier or
the various transitions harmonic or anharmonic phonons
can induce [16, 21–31]. Instead, we want to contribute a
new question, namely whether spin-phonon interactions
can open a tunneling gap and thus enable temperature-
independent groundstate tunneling of the magnetization.

Figure 2. Model system investigated in this article: red
spheres denote spins that interact ferromagnetically with
their neighbors, blue sticks represent single-ion easy-axis
anisotropies. The latter are allowed to vibrate.

In order to answer this question, we are going to in-
vestigate the model system shown in Fig. 2. Three spins
at the corners of a triangle interact with each other fer-
romagnetically. In addition, each spin is subject to an
easy-axis anisotropy. In our model, all three anisotropy
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axes are coupled to harmonic oscillators and can thus
fluctuate away from their uniaxial rest direction. Such
a simple, but yet realistic model leads directly to the
opening of a tunneling gap. Consequently, a unitary time
evolution of a state initialized at negative magnetic field
results in magnetization tunneling at zero field due to
Landau-Zener transitions [6].

The paper is organized as follows. In Section II, we
introduce the model together with our numerical proce-
dures. We present our numerical results in Section III.
The article closes with a discussion in Section IV.

II. METHOD

The central idea of this paper is to investigate a com-
bined quantum system of spins and phonons by numer-
ically exactly diagonalizing an appropriate Hamiltonian.
For the purpose of demonstrating the ability of phonons
to open a tunneling gap, we choose a scenario where
the easy anisotropy axes are coupled to vibrations of the
molecule [32]. As shown schematically in Fig. 2, our sys-
tem consists of three spins s = 1 which couple ferro-
magnetically with each other and are subject to a single-
ion easy-axis anisotropy. Each of the anisotropy axes is
coupled to its own harmonic oscillator and thus vibrates
independently of the other axes. Thus, the total Hamil-
tonian of our model consists of four parts, a Heisenberg
term, the single-ion anisotropy, the harmonic oscillators,
and the Zeeman term:

H∼ = −2J
(
~s∼1
· ~s∼2 + ~s∼2

· ~s∼3 + ~s∼3
· ~s∼1
)

(1)

+~s∼1
·D1(θ∼1) · ~s∼1 + ~s∼2

·D2(θ∼2) · ~s∼2
+~s∼3

·D3(θ∼3) · ~s∼3

+ω1

(
a∼
†
1a∼1 +

1

2

)
+ ω2

(
a∼
†
2a∼2 +

1

2

)
+ω3

(
a∼
†
3a∼3 +

1

2

)
+gµB · ~B ·

(
~s∼1

+ ~s∼2
+ ~s∼3

)
.

Here, ~s∼i
are the spin-vector operators of the three spins;

J > 0 denotes the ferromagnetic coupling. The Di(θ∼i)

model the easy anisotropy axes

Di(θ∼i) = D ~ei(θ∼i, φi)⊗ ~ei(θ∼i, φi) (2)

~ei(θ∼i, φi) =

cos(φi) sin(θ∼i)

sin(φi) sin(θ∼i)

cos(θ∼i)

 (3)

φi = (i− 1)2π/3, i ∈ {1, 2, 3} . (4)

They depend on two angular coordinates of which θ∼i cou-

ples to the harmonic oscillator degrees of freedom

θ∼i = θi,0 + α
√
ωx∼i, i ∈ {1, 2, 3} (5)

x∼i ∝
(
a∼
†
i + a∼i

)
. (6)

We assume the same coupling strength α for all three
anisotropy axes with their respective oscillators and the
same frequency ω for all of these oscillators. It is obvious
that this model can be easily generalized to less idealized
cases.

Without loss of generality, we choose a ferromagnetic
exchange of J = 10 K and an easy anisotropy of D =
−5 K for the following calculations. The external field

will always point in global z-direction, i.e. ~B = B~ez.
For numerical diagonalization, we have to represent

Hamiltonian (1) with respect to a basis. We use the prod-
uct basis { |m1,m2,m3;n1, n2, n3 〉}, where mi = −1, 0, 1
are the magnetic quantum numbers of the individual
spins and ni = 0, 1, . . . are the quantum numbers of the
three oscillators. Matrix elements containing sine or co-
sine functions of θ∼i can be evaluated exactly with the

help of an intermediate basis transform. The dimension
of the underlying Hilbert space is infinite due to the har-
monic oscillators. We therefore cut the oscillator quan-
tum numbers at some nmax for our numerical treatment.
We investigated carefully that this indeed does not in-
fluence the qualitative conclusions of the present paper.
Under these conditions, it turns out that nmax = 1 is
sufficient to demonstrate our main finding, the opening
of a tunneling gap.

The numerical solutions of the stationary as well as
of the time-dependent Schrödinger equation presented in
the next section have been obtained with Mathematica™
in a recent thesis [33].

III. NUMERICAL RESULTS

The interesting case is given by a situation where the
anisotropy axes are at rest and point uniaxially along
the field direction, which is chosen in positive global z-
direction. This means θi,0 = 0,∀i. Without phonons,
such a system would possess a perfect crossing of the two
degenerate ground state levels at B = 0, and thus would
not show any magnetization tunneling.

If the coupling between spins and phonons is switched
on, one observes two results. Each level of the spin
Hamiltonian splits into a bunch of combined spin-phonon
levels, and level crossings, e.g. of the ground state, turn
into avoided level crossings. The width of a bunch, com-
pare top of Fig. 3, depends both on α and ω. The num-
ber of levels in a bunch is given by the dimension of the
phonon subspace, in our calculation 8 (but the levels are
degenerate). The bottom of Fig. 3 shows the behavior
of the lowest levels at the avoided level crossing. The
energy difference at B = 0 is the tunnel splitting EG

The size of the tunneling gap EG depends strongly
on α and rather weakly on ω, as can be seen in Fig. 4.
For values EG < 10−13, the numerical determination of
the tunneling gap is no longer accurate. For values of α
in the range from 0.02 to 0.5, the values of the tunnel-
ing gap EG span nine orders of magnitude. This means
that vibrations of the anisotropy tensors can have a mas-
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Figure 3. Top: Energy levels vs. magnetic moment MB
ν =

−gµB〈 ν |S∼
z | ν 〉 for α = 0.01, nmax = 1, ω = 1. The two

nearly degenerate ground states are denotes as |Ψ1 〉 and
|Ψ2 〉. Bottom: Avoided level crossing of the lowest doublet
for α = 0.5. The energy difference at B = 0 is the tunnel
splitting EG.
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Figure 4. Size of the tunnel splitting EG. Top: EG vs. α for
ω = 5 and nmax ∈ {1, 2, 3, 4}. Bottom: EG vs. ω for α = 0.1
and nmax = 1.

sive influence on the character of the low-lying energy
spectrum. This tendency increases with the number of
available phonons, i.e. the number of oscillator excita-
tions. A larger number of available oscillator excitations
corresponds to a larger quantum mechanical (as well as
thermal) variance of the deflection of all anisotropy ten-

sors.
Finally, we calculate the time evolution for an initial

state for various sweep rates Ḃ of the external magnetic
field. For our calculations, we choose α = 0.5, ω = 5 and
nmax = 1. This results in a relatively strong coupling
between oscillators and anisotropy axes, but we choose
this for educational reasons since the effect is stronger
and therefore easier to observe. For smaller couplings α,
it will of course also be present, just less obvious.
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Figure 5. Landau-Zener transitions in the case of strong cou-
pling α = 0.5 and ω = 5 for nmax = 1. The initial state
is |Ψ1 〉. Top: Example of the unitary time evolution with

Ḃ = 1 · 10−6. Bottom: Transition probability at the avoided
crossing of the two ground state levels as a function of Ḃ. Blue
dots are numerical integrations, the solid curve corresponds
to the Landau-Zener theory.

Figure 5 shows the time evolution of the overlap be-
tween the time-evolved state |Ψ(t) 〉 and the asymptotic
state |Ψ2 〉 the system tunnels into for a certain sweep

rate Ḃ of the external field (top). The time evolution
starts with |Ψ(tstart 〉) = |Ψ1 〉, see Fig. 3, at some
initial time and negative external field. While passing
B = 0, the system undergoes a Landau-Zener transi-
tion and oscillates about a limiting overlap with the state
|Ψ2 〉, compare Fig. 5. Such time evolutions have been
performed for several sweep rates. The resulting transi-
tion rates, i.e. the probabilities to find the system in the
other limiting state, are given by blue dots in Fig. 5 (bot-
tom). These numerical values coincide perfectly with the
results obtained from Landau-Zener theory which also
tells us that the higher-lying excited states of the system
do not really mix in at the transition. With that confi-
dence, one can now read off the transition probabilities
for smaller sweep rates that are not accessible in numeri-
cal time evolutions due to the prohibitively large number
of time steps one would have to perform.
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Figure 6. Landau-Zener transitions in the case of strong cou-
pling α = 0.5 and ω = 5 for nmax = 1. The initial state is
|Ψ1 〉. Top: Magnetization tunneling during the unitary time

evolution with Ḃ = 1 · 10−6. Bottom: Expectation values of
α
√
ω(a∼

†
1 + a∼1) ∝ θ∼1. θ∼2 and θ∼3 behave in the same way. All

numerical values are virtually zero.

Finally, we want to discuss the behavior of the phonon
subsystem, i.e. the dynamics of the anisotropy axes. For
the time evolution depicted in Fig. 5, where one of the
two nearly degenerate ground states is taken as initial
state and evolved via a time-dependent magnetic field,
we can not only evaluate the amount of magnetization
that tunnels. We can also calculate the phononic exci-
tations, i.e. the vibrations of the anisotropy axes while
the system is swept across B = 0. Both |Ψ1 〉 and |Ψ2 〉
are practically in their phononic ground states, i.e. the
phononic contribution to these eigenstates of the total
Hamiltonian is dominantly |n1 = 0, n2 = 0, n3 = 0 〉. It
turns out that this does not really change in the course
of the time evolution, i.e. phonons are not excited and
the anisotropy axes do not vibrate noticibly, nevertheless
some part of the magnetization tunnels, compare Fig-
ure 6.

We also considered a superposition of initial states that
belong to a bunch of levels which may be simultaneously
occupied at non-zero temperature. For this purpose we
chose a smaller ω = 0.1. The situation is displayed in
Fig. 7. Although the anisotropy axes vibrate fiercely
about the z-direction with a high internal frequency and
a much larger amplitude, the effect on the magnetiza-
tion tunneling is only slightly bigger compared to a situ-
ation with only |Ψ1 〉 as initial state but adapted smaller
ω = 0.1 (not shown). We suppose that the internal fre-
quency of the phonon subsystem is just too big in the
present scenario, so that the spin system is too inert to

-10000 -5000 0 5000 10000

-4.000

-3.500

-3.422

0 0.005 0.010-0.005-0.010

t

M
ψB

Bz

-10000 -5000 0 5000 10000
-0.2

-0.1

0.0

0.1

0.2
0 0.0100.005-0.005-0.010

t

α
ω

(a
1†
+
a 1

) ψ

Bz

Figure 7. Landau-Zener transitions in the case of strong cou-
pling α = 0.5 and ω = 0.1 for nmax = 1. The initial state is
a supersosition of all state in the bunch of |Ψ1 〉, see Fig. 3.
Top: Magnetization tunneling during the unitary time evo-
lution with Ḃ = 1 · 10−6. Bottom: Expectation values of
α
√
ω(a∼

†
1 + a∼1) ∝ θ∼1. θ∼2 and θ∼3 behave in the same way.

The dynamics contains very high frequencies due to which
the plots look fuzzy. Each plot shows 20,000 points which
corresponds to ∆t ≈ 1 between points. Mathematica™ uses a
variable step size that is much smaller.

follow.
The last investigations lead us to the final and impor-

tant conclusion that the mere coupling α of the spins
to the zero-point motion of the oscillator/phonon sub-
system is sufficient to open the tunneling gap and in-
duce Landau-Zener transitions. Although the expecta-
tion value of the anisotropy axes does not deviate from
the uniaxial z-direction, the fact that this value is not
sharp but subject to a quantum mechanical variance
leads to the reduction of bistability.

IV. DISCUSSION AND CONCLUSIONS

In this article, we were able to demonstrate that
phonons can open up a tunneling gap between otherwise
degenerate ground states of a single-molecule magnet. In
our model calculation, the phonons destroyed the uniax-
ial character of the single-ion easy-axis anisotropies. We
expect that phonons breaking the rotational symmetry
about the common axis of the field and the anisotropy
tensors in any other way would result in a similar effect.

Our investigations are in line with earlier studies
of spin-phonon interactions, for instance in Ref. [34],
where the phonons that modify the exchange integrals
are treated classically as well as in Ref. [35] where a
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distortion-dependent Dzyaloshinskii-Moriya interaction
is considered. Despite having a different focus, both pa-
pers agree with our observation that if the spin-phonon
coupling is too strong, static distortions of the system
occur since the combined system of spins and lattice be-
comes spin-Peierls unstable.

Summarizing, we would like to state that investigations
such as the present one help determining prerequisites
for the successful design of single-molecule magnets by
identifying harmful vibrations that should be suppressed

in such molecules.
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