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The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging prob-
lems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of
M. Planck [M. Planck, Verhandl. Dtsch. phys. Ges. 2, 202-204 (1900)] we calculate thermody-
namic properties of this model by interpolating between the low- and high-temperature behavior.
For that we follow ideas developed in detail by B. Bernu and G. Misguich and use for the inter-
polation the entropy exploiting sum rules [the “entropy method” (EM)]. We complement the EM
results for the specific heat, the entropy, and the susceptibility by corresponding results obtained
by the finite-temperature Lanczos method (FTLM) for a finite lattice of N = 32 sites as well as
by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects
the FTLM data for N = 32 are not representative for the infinite system below T ≈ 0.7. A similar
restriction to T & 0.7 holds for the HTE designed for the infinite PHAF. By contrast, the EM
provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for
a gapless spectrum leading to a power-law behavior of the specific heat at low T and for a single
maximum in c(T ) at T ≈ 0.25. For the susceptibility χ(T ) we find indications of a monotonous
increase of χ upon decreasing of T reaching χ0 ≈ 0.1 at T = 0. Moreover, the EM allows to estimate
the ground-state energy to e0 ≈ −0.52.

PACS numbers: 75.10.-b, 75.10.Jm

Keywords: quantum Heisenberg antiferromagnet, pyrochlore lattice, finite-temperature Lanczos method,

high-temperature expansion, entropy interpolation method

I. INTRODUCTION

A paradigmatic highly frustrated spin model is the py-
rochlore Heisenberg antiferromagnet (PHAF). The py-
rochlore lattice is built of corner-sharing tetrahedra, see
Fig. 1, below. There are several compounds where the
magnetic atoms reside on the sites of the pyrochlore lat-
tice and the exchange interaction is antiferromagnetic,
see, e.g., Refs. [1–3].

Already the classical PHAF (i.e., for spin S → ∞)
exhibits interesting properties and its study is far from
being trivial [4–10]. Thus, the ground-state manifold is
highly degenerate, the model exhibits strong short-range
correlations, but it does not exhibit any long-range order,
and, because of the huge degeneracy of the ground state,
the model is very susceptible to various perturbations.

The quantum spin S = 1/2 PHAF is even more com-
plicated. Thus, so far no accurate values for the ground-
state energy e0 for this model are available. On the one
hand, the S = 1/2 case opens the route to new quantum
phases [11]. On the other hand, such powerful straight-
forward numerical tools like standard quantum Monte
Carlo or molecular dynamics simulations are not appli-
cable for the S = 1/2 PHAF. Moreover, several approxi-
mation methods developed for one- and two-dimensional
quantum spin systems (e.g., density matrix renormaliza-
tion group and tensor network methods) are very limited
in three dimensions.

Theoretical studies of the quantum PHAF are mostly

focused on ground-state properties, see, e.g., [11–25],
whereas much less attention has been paid to its finite-
temperature properties. One reason for that is the lack of
methods to study thermodynamics of three-dimensional
frustrated quantum spin systems. Among the few pa-
pers studying the thermodynamics of the S = 1/2 PHAF
we mention bold diagrammatic Monte Carlo simulations
(stochastic sampling of all skeleton Feynman diagrams)
down to the temperature J/6 [26]. This paper reports
data for the susceptibility χ(T ) but no data for the spe-
cific heat c(T ). We will refer to these data for χ(T ) in
Sec. IVB. A comprehensive analysis of the spin-S J1−J2
Heisenberg model by employing the pseudofermion func-
tional renormalization group technique was presented
in Ref. [11]. However, this paper does not contain
data for χ(T ) and c(T ). Finally, we mention the high-
temperature expansion study and the rotation-invariant
Green’s function study of the S = 1/2 PHAF [25, 27]. In
these recent papers [11, 25, 26] no evidence for a finite-
temperature phase transition was found, i.e., the spin-
half PHAF is most likely a three-dimensional spin system
without singularities in the specific heat and the suscep-
tibility.

The goal of the present paper is to study the thermody-
namics of the S = 1/2 PHAF for the whole temperature
region focussing on the specific heat c(T ) and the static
uniform susceptibility χ(T ), both being basic and easily
accessible quantities in experimental studies of PHAF
compounds. To deal with the above mentioned chal-
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Figure 1. The pyrochlore lattice visualized here as a three-
dimensional structure which consists of alternating kagome
(cyan) and triangular (gray) planar layers. The four-site unit
cell is marked with the red bonds.

lenges when studying the finite-temperature properties
of the S = 1/2 PHAF, we follow M. Planck’s ideas of his
seminal paper in 1900 [28], see also Appendix A, and per-
form a sophisticated interpolation between the low- and
high-temperature behavior of a thermodynamic poten-
tial, namely, the entropy s as a function of internal energy
e. For that we exploit also sum rules valid for the specific
heat as proposed by B. Bernu and G. Misguich [29, 30],
for details see Sec. III A. In what follows we call this ap-
proach the entropy method (EM). We complement our
studies based on the EM by using the finite-temperature
Lanczos method (FTLM) for a finite pyrochlore lattice of
N = 32 sites and the high-temperature expansion (HTE)
up to order 13.

In the present paper, we estimate the ground-state en-
ergy to e0 ≈ −0.52 and find evidence for a gapless spec-
trum, i.e., for a power-law behavior of the specific heat
at low temperatures, and for a single maximum in c(T )
at about 25% of the exchange coupling.

The manuscript is organized as follows. We begin with
introducing the model (Sec. II) and the description of
the exploited methods (Sec. III). We report our findings
obtained by the FTLM (finite lattices) and by the HTE
and EM (infinite lattice) in Sec. IV. We summarize our
results in Sec. V.

II. MODEL

We consider the Heisenberg model on the pyrochlore
lattice (see Fig. 1) given by the Hamiltonian

H =
∑

〈mα,nβ〉

Smα · Snβ. (2.1)

We have set the antiferromagnetic nearest-neighbor cou-
pling to unity, J = 1, fixing the energy scale. The sum
in Eq. (2.1) runs over all nearest-neighbor bonds and
S

2
mα = 3/4.

The pyrochlore lattice consists of four interpenetrating
face-centered-cubic sublattices. The origins of these four
sublattices are located at r1 = (0, 0, 0), r2 = (0, 1/4, 1/4),
r3 = (1/4, 0, 1/4), and r4 = (1/4, 1/4, 0). The sites of
the face-centered-cubic lattice are determined by Rm =
m1e1+m2e2+m3e3, where m1, m2, m3 are integers and
e1 = (0, 1/2, 1/2), e2 = (1/2, 0, 1/2), e3 = (1/2, 1/2, 0).
As a result, the N pyrochlore lattice sites are labeled by
mα, Rmα = Rm + rα, where m = 1, . . . ,N , N = N/4
is the number of unit cells, and α = 1, 2, 3, 4 labels the
sites in the unit cell.

There are a few compounds with magnetic atoms re-
siding on pyrochlore-lattice sites with antiferromagnetic
nearest-neighbor exchange interactions, which can be
considered as experimental realizations of the quantum
PHAF. Besides the fluoride NaCaNi2F7 which provides
a good realization of the S = 1 PHAF [31, 32], we may
mention the molybdate Y2Mo2O7 [33–35], the chromites
ACr2O4 (A=Mg,Zn,Cd) [36–38], or FeF3 [39]. Unfortu-
nately, we are not aware of any solid-state realization of
the PHAF model with S = 1/2 given in Eq. (2.1).

III. METHODS

A. Entropy method (EM)

In accordance with M. Planck’s strategy to derive the
energy distribution of the black-body radiation [28, 40],
the EM is an interpolation scheme that combines pre-
sumed knowledge on high- and low-temperature proper-
ties and, in addition, exploits sum rules for the specific
heat c(T ) in a clever way. The EM as used in the present
paper was introduced in 2001 by B. Bernu and G. Mis-
guich [29]. The method has been afterwards used, modi-
fied, and extended in Refs. [30, 41–44]. Below we explain
briefly this procedure for self consistency.

Within the framework of the EM, we use the micro-
canonical ensemble working with the entropy per site s
as a function of the energy per site e, s(e), in the whole
(finite) range of energies. The temperature T and the
specific heat per site c are given by the formulas

T =
1

s′
, c = −

s′
2

s′′
, (3.1)

where the prime denotes the derivative with respect to e.
These equations form a parametric representation of the
dependence c(T ). Knowing the high-temperature series
for c(T ) up to nth order, c(T ) =

∑n
i=2 diβ

i + O(βn+1)
(d1 = 0), β = 1/T , we immediately get the series for s(e)
around the maximal energy e∞ = 0 up to the same order
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n,

s(e)|e→e∞=0 → ln 2 +

n
∑

i=2

aie
i, (3.2)

where the coefficients ai are known functions of the co-
efficients di, see Appendix A of Ref. [29]. The behavior
of s(e) as e approaches the (minimal) ground-state en-
ergy e0 (i.e., as the temperature approaches 0) is also
supposed to be known. It is,

s(e)|e→e0
∝ (e− e0)

α

1+α (3.3)

if c(T ) vanishes as Tα when T → 0 (gapless excitations)
and

s(e)|e→e0
∝ −

e− e0
∆

(ln [∆ (e− e0)]− 1) (3.4)

if c(T ) vanishes as T−α exp(−∆/T ), α = 2, when T → 0
(gapped excitations). Therefore we proceed differently
in the gapless case and in the gapped case. Here it is
assumed that e0 and α are known (gapless case) or e0 is
known and α = 2 (gapped case).

In the gapless case, we introduce the auxiliary function
[30]

G(e) =
(s(e))

1+α

α

e− e0
(3.5)

and approximate it as

Gapp(e) = G(0)[u, d](e), G(0) =
(ln 2)

1+α

α

−e0
. (3.6)

Here [u, d](e) = Pu(e)/Qd(e) is a Padé approximant,
where the coefficients of the polynomials Pu(e) and Qd(e)
(of order u and d, respectively, u + d ≤ n) are deter-
mined by the condition that the expansion of [u, d](e)
has to agree with the power series of G(e)/G(0) [which
follows from Eqs. (3.5) and (3.2)] up to order O(eu+d).
Of course, G(0) = Gapp(0). The approximate entropy
follows by inverting Eq. (3.5)

sapp(e) = [(e− e0)Gapp(e)]
α

1+α . (3.7)

The prefactor A in the power-law decay of the specific
heat c(T ) for T → 0, c(T ) → ATα, is given by

Aapp =
α1+α

(1 + α)
α [Gapp(e0)]

α . (3.8)

In the gapped case, we introduce the auxiliary function
[29]

G(e) = (e− e0)

(

s(e)

e− e0

)′

(3.9)

and approximate it as

Gapp(e) = G(0)[u, d](e), G(0) =
ln 2

e0
. (3.10)

Here [u, d](e) = Pu(e)/Qd(e) again is a Padé approx-
imant, where the coefficients of the polynomials Pu(e)
and Qd(e) (of order u and d, respectively, u + d ≤ n)
are determined by the condition that the expansion of
[u, d](e) has to agree with the power series of G(e)/G(0)
[which follows now from Eqs. (3.9) and (3.2)] up to order
O(eu+d). Of course, G(0) = Gapp(0). The approximate
entropy follows by inverting Eq. (3.9)

sapp(e)

e− e0
=

ln 2

−e0
−

0
∫

e0≤e≤0

dξ
Gapp(ξ)

ξ − e0
. (3.11)

From the technical point of view, before performing the
integration in the right-hand side of Eq. (3.11) one may
perform the partial fraction expansion of the integrand
which is obviously a rational function. The excitation
gap ∆ in the decay of the specific heat c(T ) for T → 0,
c(T ) ∝ T−2 exp(−∆/T ), is given by

∆app = −
1

Gapp(e0)
. (3.12)

Until now we considered the EM for zero magnetic field
h = 0. Of course, for non-zero h the thermodynamic
functions depend on h, i.e., the entropy is now s(e, h).
The magnetization per site m and the uniform suscepti-
bility per site χ are given by the formulas [44]

m =
1

(s(e, h))′
∂s(e, h)

∂h
, χ =

m

h
, (3.13)

where the last equation implies that h is infinitesimally
small. Clearly, the HTE coefficients for the specific heat
are also changed. Simple algebra yields

di → di +
(i− 1)i

2
ci−1h

2, i = 2, . . . , n; (3.14)

we use here the high-temperature series for the static
uniform susceptibility χ(T ) =

∑n
i=1 ciβ

i + O(βn+1),
β = 1/T . The expression (3.2) for the series of s is valid,
however, the coefficients ai are now known functions of
the coefficients di, ci, and h. For the gapless case all rea-
sonings in Eqs. (3.3), (3.5) to (3.8) hold with the only dif-
ference that the ground-state energy now is e0 −χ0h

2/2,
where χ0 ≡ χ(T = 0) is the ground-state susceptibility
which is assumed to be known. The approximate entropy
in Eq. (3.7) now also depends on h, i.e., sapp(e, h). For
the case of gapped magnetic excitations the ground-state
energy remains unchanged, because χ0 = 0, and therefore
all the equations (3.4), (3.9) to (3.12) are valid. Again,
the approximate entropy in Eq. (3.11) now also depends
on h, i.e., sapp(e, h).

In summary, knowing the high-temperature series of
c(T ) and χ(T ) together with (i) the ground-state energy
e0, the exponent α, and the ground-state susceptibility
χ0 for the gapless case or (ii) only the ground-state energy
e0 for the gapped case, we obtain c(T ) and χ(T ) at all
temperatures. For that, we use sapp(e, h) which yields
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the specific heat c(T ) by Eq. (3.1) and the susceptibility
χ(T ) by Eqs. (3.13) and (3.1).

Based on previous experience with the EM [29, 30, 41–
44], we use the following strategy: We discard those Padé
approximants in Gapp(e), Eqs. (3.6) and (3.10), which
give unphysical solutions; the remaining ones are called
“physical”. Moreover, we focus on those input parame-
ter sets for which interpolations based on different Padé
approximants lead to data sets for c(T ) and χ(T ) being
quite close to each other. For further details about the
EM in the context of the S = 1/2 PHAF see Sec. IVB.

B. Finite-temperature Lanczos method (FTLM)

The FTLM is an efficient and very accurate approxima-
tion to calculate thermodynamic quantities of quantum
spin systems on finite lattices of N sites at arbitrary tem-
peratures. It is an unbiased numerical approach, where
thermodynamic quantities such as the specific heat and
the susceptibility are determined using trace estimators
[45–53]. The key element is the approximation of the
partition function Z using a Monte-Carlo like represen-
tation of Z, i.e., the sum over a complete set of 2N basis
vectors present in Z is replaced by a much smaller sum
over R random vectors | ν 〉 for each subspace H(γ) of
the Hilbert space, where except the conservation of total
Sz we also use the lattice symmetries of the Hamiltonian
to decompose the full Hilbert space into mutually or-
thogonal subspaces labeled by γ. The exponential of the
Hamiltonian is then approximated by its spectral repre-
sentation in a Krylov space spanned by the NL Lanczos
vectors starting from the respective random vector | ν 〉.
The FTLM representation of the partition function fi-
nally reads

Z(T ) ≈
Γ
∑

γ=1

dim(H(γ))

R

R
∑

ν=1

NL
∑

n=1

exp

(

−
ǫ
(ν)
n

T

)

|〈n(ν) | ν 〉|2,

(3.15)

where |n(ν) 〉 is the nth eigenvector of H in the Krylov

space with the corresponding energy ǫ
(ν)
n . To perform

the symmetry-decomposed numerical Lanczos calcula-
tions we use J. Schulenburg’s spinpack code [54, 55].

C. High-temperature expansion (HTE)

The HTE is a universal approach to discuss the ther-
modynamics of spin systems [56]. In the present study
we use the Magdeburg HTE code developed mainly by
A. Lohmann [27, 57, 58] (which is freely available at
http://www.uni-magdeburg.de/jschulen/HTE/) in an
extended version up to 13th order, see Appendix B. With
this tool, we compute the series of the specific heat
c(T ) =

∑n
i=2 diβ

i + O(βn+1) (d1 = 0) and the static
uniform susceptibility χ(T ) =

∑n
i=1 ciβ

i+O(βn+1) with
respect to the inverse temperature β = 1/T .

To extend the region of validity of the “raw” HTE series
we may use Padé approximants [m,n] = Pm(β)/Qn(β),
where Pm(β) and Qn(β) are polynomials in β of order m
and n, respectively. The coefficients of the polynomials
Pm(β) and Qn(β) are determined by the condition that
the expansion of [m,n] has to agree with the initial power
series up to order O(βm+n).

IV. RESULTS

A. Finite lattices

In Ref. [24] finite lattices of N = 28 and N = 36
sites are used to discuss ground-state properties. These
lattices are built by stacked alternating triangular and
kagome layers imposing periodic boundary conditions
within the layers, but open boundary conditions perpen-
dicular to them. We have calculated the HTE series for
these finite lattices. We compare these finite-lattice se-
ries with the corresponding HTE series of the infinite
pyrochlore lattice to judge the finite lattices. We found
that for c(T ) all HTE coefficients are different. For the
susceptibility χ(T ) only the lowest-oder term coincides,
i.e., the agreement is only marginally better. This dras-
tic difference between the finite lattices and the infinite
pyrochlore lattice can be attributed to the edge spins
stemming from the imposed open boundary conditions.
Thus, we conclude that the finite lattices of N = 28 and
N = 36 used in Ref. [24] are not appropriate to discuss
the thermodynamics of the PHAF. However, we note that
they can be useful to discuss the ground-state properties,
e.g., spin-spin correlations when considering spins away
from the edge spins.

A more suitable finite lattice is the one with N = 32
sites imposing periodic boundary conditions in all di-
rections. This lattice contains eight face-centered-cubic
cells, i.e., the edge vectors go along the face-centered-
cubic basis vectors and have twice the length of these.
For this lattice the HTE series for c (χ) coincides up to
3rd (4th) order with that of the infinite lattice.

The FTLM is the adequate approach to study the fi-
nite S = 1/2 PHAF of N = 32 sites. In Fig. 2 we show
data for c(T ) (top) and χ(T ) (bottom) over a wide tem-
perature range using a logarithmic T scale. The specific
heat exhibits the typical main maximum at T = 0.53
and, in addition, two low-T maxima at T = 0.012 and
at T = 0.117. While the maximum at T = 0.012 is
certainly a finite-size effect, one can speculate that the
other low-T maximum at T = 0.117 signals an extra low-
energy scale set by low-lying singlets (see the density of
states shown in the inset of the middle panel of Fig. 3)
that might be also relevant for the infinite system. Such
a feature has been observed in low-dimensional highly
frustrated quantum magnets, e.g., the spin-half kagome
Heisenberg antiferromagnet (HAF), where the existence
of such an extra low-T peak is a subject of a long-standing
and ongoing debate [30, 52, 59–64]. However, in the
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Figure 2. FTLM data (R = 100) for the temperature depen-
dence (logarithmic scale) of (top) the specific heat per site
c(T ) and (bottom) the static uniform susceptibility per site
χ(T ) of the PHAF of N = 32 sites.

three-dimensional PHAF the finite-size effects are un-
doubtedly stronger than in the two-dimensional kagome
HAF. Thus, to conclude a double-peak structure in c(T )
from our FTLM data is inappropriate. For the static
uniform susceptibility χ(T ) the low-lying singlets are not
relevant and χ(T ) does not show extra-peaks except the
well-pronounced maximum that is typical for finite spin
systems with χ0 ≡ χ(T = 0) = 0. Again, this behav-
ior might be not representative for the infinite system,
particularly, in case that χ0 > 0 for N → ∞.

Figure 3. Comparison of FTLM data (R = 100) of the PHAF
of N = 32 sites with corresponding ones of the simple-cubic
HAF of N = 32 sites. (Top) Specific heat per site c(T ). (Mid-
dle) Entropy per site s(T ). (Bottom) Static uniform suscepti-
bility per site χ(T ). The inset in the middle panel shows the
histogram low-energy density of states (arbitrary units). Note
that for the simple-cubic HAF there are only three tiny bars
in the energy region shown here (their positions are indicated
by green labels “sc”).

To quantify the temperature region where the finite
N = 32 lattice may be representative for the infinite
lattice we compare in Figs. 4 and 5 several Padé approx-
imants of the HTE series of the finite and the infinite
lattices. Obviously, the data for N = 32 and N = ∞ co-
incide only down to T ∼ 0.7, thus, indicating that finite
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Figure 4. Several Padé approximants of the specific heat c(T )
of the PHAF: Comparison of the finite lattice of N = 32
(broken) with the infinite lattice (solid).

Figure 5. Several Padé approximants of the uniform suscep-
tibility χ(T ) of the PHAF: Comparison of the finite lattice of
N = 32 (broken) with the infinite lattice (solid).

pyrochlore lattices accessible by FTLM are not suitable
to discuss the thermodynamics of the spin-half PHAF
below this temperature.

Nevertheless, the finite-size data for the PHAF are
useful to demonstrate frustration effects. For that we
may compare the PHAF with the S = 1/2 HAF on
the simple-cubic lattice, because both have six nearest-
neighbors, i.e., a simple mean-field decoupling of the
Heisenberg Hamiltonian would yield identical thermo-
dynamics. However, the simple-cubic HAF exhibits a
finite-temperature phase transition to Néel order, but the
PHAF does not order. Thus, we compare both mod-
els on finite lattices of N = 32 sites, where the simple-
cubic finite-temperature phase transition is irrelevant, see
Fig. 3, where we compare FTLM data of the specific heat,
the entropy, and the susceptibility using a linear T scale
for N = 32. The tremendous influence of frustration is
visible at all temperature scales. In particular, the spec-
trum at low energies in the frustrated system is much
denser than that of the unfrustrated one [see the density

of states (histogram, ∆E = 0.02) in the inset in the mid-
dle panel of Fig. 3], thus leading to the drastic differences
at low T , see the upper and middle panels of Fig. 3. Re-
markably, the noticeable differences in all quantities are
present at pretty high temperatures. Only, beyond T & 3
the corresponding curves approach each other. A striking
effect of frustration is also the shift of the maximum in
χ(T ) to lower temperatures, see the lower panel of Fig. 3.

B. Infinite lattice

Let us now move to a detailed investigation of the in-
finite PHAF by using the EM interpolation scheme, see
Sec. III A. Using our Magdeburg HTE code [27, 57, 58]
we have created the HTE series for c(T ) and χ(T ) up
to order 13 (see Appendix B) that provides the high-
temperature input for the EM. Since the EM finally uses
Padé approximants of a power series of s(e) derived from
the initial HTE series, the HTE input determines the
highest order of the Padé approximants of the EM inter-
polation scheme.

As a low-temperature input for the EM we need the
ground-state energy e0. There is a large variety of re-
ported values for e0 of the spin-half PHAF ranging from
e0 = −0.57 to e0 = −0.45, namely, e0 = −0.572 [65],
−0.56 [15], −0.49 [12, 16], −0.482081 [24], −0.466971
[24], −0.459 [22], −0.457804 [13], −0.45093 [25], −0.4473
[23], i.e., accurate values for e0 are missing. We also
need the low-temperature law for c(T ), where we have
to distinguish between gapped and gapless behavior (cf.
Sec. III A). Finally, in case of gapless excitations the ex-
ponent α of the power law is an input parameter, and
for the susceptibility χ0 ≡ χ(T = 0) is required as input.
Fortunately, for gapped excitations the value of the gap
is not needed as an input, it is rather an output of the
EM. Moreover, we have χ0 ≡ χ(T = 0) = 0 in this case.

We begin with the specific heat c(T ) for which the EM
is better justified (two sum rules are exploited). Actu-
ally, the low-temperature law for c(T ) is not known for
the S = 1/2 PHAF. Advantageously, the previous am-
ple of experience with the EM [29, 30, 41–44] provides
valuable hints to overcome this difficulty. Thus, in case
that these input data are too far from the true (but pos-
sibly unknown) data one gets inconsistent or unphysical
results. Hence, to get physical (i.e., pole free) Padé ap-
proximants requires reasonable values for e0 and reason-
able assumptions on the low-T behavior of c(T ). More-
over, getting a large number nP of similar Padé approxi-
mants for a certain input data set indicates the physical
relevance of this set. On the other hand, the appear-
ance of significant differences between the various Padé
approximants is a criterion to discard the corresponding
input set. The successfulness of this strategy has been
demonstrated for several examples where excellent refer-
ence data are available, in particular, for the S = 1/2
XY , HAF, and Ising chains [29, 42], for the S = 1 HAF
(Haldane) chain [29], for the S = 1/2 square-lattice and
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Figure 6. EM for gapped spectrum: The gap ∆app as it follows
from Eq. (3.12) versus the ground-state energy e0 varied in
region −0.57 . . .− 0.45.

Figure 7. EM results for the specific heat; gapped spectrum,
e0 = −0.521 . . . − 0.516. The parameter nP in brackets be-
hind energy values denotes the number of (very similar) Padé
approximants shown here.

triangular-lattice Heisenberg ferro- and antiferromagnets
[29] or for the S = 1/2 kagome-lattice HAFs [30, 42, 44].

By combining different assumptions on the ground-
state energy and low-T behavior of c(T ) of the PHAF
we have generated a large set of temperature profiles for
the specific heat. In the next step, we use the guidelines
described above to evaluate the used input data, this
way obtaining definite conclusions on their relevance. In
sum, a crucial criterion is that a particular input data
set leads to a close bundle of temperature profiles ob-
tained by many physical Padé approximants. Since, the
high-temperature part is per se identical this criterion
concerns the temperature region T . 0.5. In what fol-
lows, we will present in the main text only data for the
most relevant input sets, whereas presentation of some
other illustrative results, only briefly mentioned in the
main text, are transferred to Appendix C.

As a first result, we found that the assumption of
gapped excitations is not favorable for the following rea-

Figure 8. EM for gapless spectrum: The prefactor Aapp as
it follows from Eq. (3.8) for α = 1, 3/2, 2, 5/2, 3 versus the
ground-state energy e0 varied in the region −0.53 . . .− 0.50.

sons. We varied e0 in the region −0.57 . . . − 0.45 and
calculated the gap given in Eq. (3.12) using different
Padé approximants, where we focused on nearly diag-
onal Padé approximants [u, d](e), u ∼ d, constructed
from HTE data of 10th, 11th, 12th, and 13th order, see
Fig. 6. We find that the gap ∆app, Eq. (3.12), is neg-
ative if the ground-state energy exceeds approximately
−0.515, thus providing evidence that a gapped spec-
trum together with e0 & −0.515 can be excluded. For
ground-state energies in the region −0.519 . . .− 0.517 we
obtain ∆app = 0.16 . . .0.18, see Fig. 6 (and Fig. 16 in
Appendix C), and there is a decent number nP of Padé
approximants yielding similar c(T ) profiles, see Fig. 7.
For e0 less than −0.521 the number of physical Padé ap-
proximants noticeably decreases. Although the results
for c(T ) do not entirely discard a gapped ground state,
further EM analysis of χ(T ) under this assumption leads
to disagreement with diagrammatic Monte Carlo simula-
tions of Ref. [26] at T < 0.7, see Fig. 13 below. We may
consider these findings for c(T ) and χ(T ) as an indica-
tion to favor a gapless ground state. We mention that the
Green’s function results indicate gapless magnetic exci-
tations [25], and, as mentioned already above, the data
for χ(T ) given in [26] down to T = J/6 seem also to be
in favor of gapless excitations.

We focus now on the gapless case with a power-law
decay of the specific heat c(T ) = ATα as T → 0. Since
we do not know the exponent α, we study different values
α = 1, 3/2, 2, 5/2, 3. As for the gapped case, we again
varied e0 in the region −0.57 . . . − 0.45. We observed
that only in a much smaller region around e0 = −0.52
reasonable results can be obtained (see also the discussion
of Fig. 8, below). Thus, in what follows we consider
preferably the region −0.53 . . .− 0.50 in more detail.

First we consider the prefactor Aapp that is given
within the EM by Eq. (3.8). According to above out-
lined criteria for physically relevant EM outcomes the
values of Aapp obtained by different Padé approximants
must be very close to each other. From Fig. 8 (see also
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Figure 9. EM for gapless spectrum: Position Tmax (top)
and height c(Tmax) (bottom) of the specific heat versus the
ground-state energy e0 varied in the region region −0.522 . . .−
0.515 for exponents α = 3/2 (green), α = 2 (red), and α = 5/2
(dark gray).

Fig. 17 in Appendix C for additional information) it is
evident that for each value of α there is a well-defined rel-
evant region of e0, namely, −0.515 . . .− 0.513 for α = 1,
−0.518 . . .−0.516 for α = 3/2, −0.521 . . .−0.518 for α =
2, −0.522 . . .− 0.520 for α = 5/2, −0.524 . . .− 0.522 for
α = 3. In all cases the ground-state energy is within the
interval e0 = −0.524 . . .− 0.513, which is much narrower
than the wide region reported in the literature ranging
from e0 = −0.57 to e0 = −0.45 [12, 13, 15, 16, 22–25, 65].

We consider the coincidence of A values for different
Padé approximants as a necessary criterion to figure out
regions of relevant values for e0 and α. Since A (to-
gether with α) determines the c(T ) profile at sufficiently
low T , we can get additional reliability by examining the
region around the main (“high”-temperature) maximum.
For that we compare the position Tmax and the height
c(Tmax) of this maximum obtained from different Padé
approximants in dependence on e0 within the regions
guided by the previous inspection of A for α = 3/2, 2, 5/2
in Fig. 9 (Fig. 18 in Appendix C reports such data for a
wider region of e0 including also α = 1 and 3). For each
α we find pretty small regions of e0 which yield almost
identical Tmax and c(Tmax), and, consistently, this region

fits well to the region obtained by inspection of A. For
example, for α = 2 all Padé approximants give almost
identical Tmax and c(Tmax), cf. Fig. 9 (red symbols), if
e0 is taken within the region −0.522 . . .− 0.519, which is
in excellent agreement with that obtained from the pref-
actor A, see above. Note, however, that for α = 1 and
3 the diversity of Tmax and c(Tmax) is noticeably larger
than for α = 3/2, 2, 5/2, cf. Fig. 18 in Appendix C, indi-
cating that the exponents α = 1 and 3 are less favorable.

Finally, after the specification of the ground-state en-
ergy values as outlined above, we present in Fig. 10 the
full c(T ) curves obtained by the EM for α = 3/2, 2, 5/2
and a few related optimal values of e0. [Correspond-
ing curves for α = 1 and α = 3 are shown in Fig. 19
in Appendix C. Moreover, Fig. 20 in Appendix C pro-
vides additional results of c(T ) comparing data for all
α = 1, 3/2, 2, 5/2, 3 for various values of e0.]

As can be seen in Fig. 10, there is a quite large number
of Padé approximants (see the parameter nP in brack-
ets behind energy values) yielding very similar temper-
ature profiles c(T ). Thus, for α = 2 we show in the
middle panel of Fig. 10 nP = 10 Padé approximants if
e0 = −0.519 and −0.518 and nP = 9 Padé approximants
if e0 = −0.521 and e0 = −0.520. Outside this region
of e0 values the number of physical Padé approximants
becomes noticeably smaller.

Without favoring any of the assumptions on the low-T
behavior of c(T ) and taking into account all (i.e., gapped
and gapless excitations) EM predictions for c(T ) col-
lected in Figs. 7 and 10 (see also Fig. 21 in Appendix C,
where we present a direct comparison of both cases), we
have clear evidence 1) for a quite narrow region of reason-
able e0 values and 2) for the absence of a double-peak pro-
file in c(T ). 3) Though, the position Tmax and the height
c(Tmax) of the maximum of the specific heat slightly de-
pend on the assumption about the ground-state energy
e0 and low-lying excitations, all cases yield Tmax around
≈ 0.25 and c(Tmax) around ≈ 0.2.

Finally, we compare our EM results for c(T ) with
data calculated by HTE (without subsequent EM inter-
polation) and by the Green’s function approach [25], cf.
Fig. 11. The Green’s function results deviate from the
EM results already below T ∼ 1, whereas the HTE data
deviate below T ∼ 0.7.

The EM straightforwardly also provides the tempera-
ture profile of the entropy s(T ), see Fig. 12. Since the
finite-temperature phase transition present in the simple-
cubic HAF does not influence s(T ) as much as c(T ), we
compare the data for the PHAF with corresponding ones
for the simple-cubic HAF taken from Ref. [66]. We also
show HTE data. Similar as already found for the finite
system, cf. the middle panel of Fig. 3, the frustration
leads to a much faster increase of s at low tempera-
tures for the PHAF. Thus, at T = 0.5 the entropy al-
ready amounts to more than 50% of its maximal value
ln 2 ≈ 0.69. (Note that in Fig. 22 in Appendix C we
present a direct comparison of the gapped and gapless
temperature profiles of s.)
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Figure 10. EM results for the specific heat; gapless spec-
trum. (Top) e0 = −0.518 . . .− 0.516, α = 3/2. (Middle) e0 =
−0.521 . . .− 0.518, α = 2. (Bottom) e0 = −0.522 . . .− 0.520,
α = 5/2. The parameter nP in brackets behind energy val-
ues denotes the number of (very similar) Padé approximants
shown here.

We consider now the static uniform susceptibility χ
calculated by the EM as described in Sec. III A. Accord-
ing to the results of the rotation-invariant Green’s func-
tion method, there is χ0 ≡ χ(T = 0) > 0. A non-zero
χ0 may be also expected from the diagrammatic Monte
Carlo simulations [26]. Nevertheless, we will not exclude
from the beginning χ0 = 0, i.e., a non-zero spin gap. Al-
though the above discussed EM data for c(T ) are in fa-

Figure 11. Specific heat c(T ) of the S = 1/2 PHAF: Com-
parison of our EM data (e0 = −0.522, α = 5/2; e0 = −0.520,
α = 2; e0 = −0.517, α = 3/2) with results obtained by the
rotation-invariant Green’s function method [25] (dashed blue)
and by the HTE (thin solid curves; we show the same HTE
data for N = ∞ as shown in Fig. 4).

Figure 12. EM data for the entropy for the gapless case with
e0 = −0.522, α = 5/2; e0 = −0.520, α = 2; e0 = −0.517,
α = 3/2. We also show quantum Monte-Carlo data for the
simple-cubic HAF [66] as well as HTE data (thin solid lines),
where we show the same Padé approximants as used in Fig. 4
for c(T ). (Note the the HTE data are very close to the EM
data.)

vor of a gapless spectrum, the specific heat profiles were
not fully conclusive to entirely reject the gapped spec-
trum. Moreover, one could have gapless singlet (i.e., non-
magnetic) excitations but gapped triplet (i.e., magnetic)
excitations. Thus we studied the case with exponential
decay of χ(T ) and c(T ) as T → 0 (i.e., gapped singlet and
triplet excitations), see Fig. 13, as well as the case with
exponential decay of χ(T ) and power-law decay of c(T )
as T → 0, (i.e., gapless singlet and gapped triplet exci-
tations), see Fig. 14, where we consider those values for
e0 and α which are previously used to get c(T ) (see also
Figs. 23 and 24 in Appendix C). From these figures, it is
obvious that the susceptibility profiles based on gapped
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Figure 13. EM results for the susceptibility; gapped spectrum,
e0 = −0.520 . . .− 0.517.

magnetic excitations are not compatible with the dia-
grammatic Monte Carlo data of Ref. [26] in the temper-
ature region below 0.7, thus providing further evidence
against a gapped spectrum. On the other hand, the EM
results for gapless excitations with α = 3/2, 2, 5/2 and
e0 = −0.522 . . .− 0.516 and with non-zero χ0 as shown
in Fig. 14 fit much better to the data of Ref. [26].

As for the specific heat, we finally compare our EM
results for χ(T ) with data calculated by HTE (without
subsequent EM interpolation), by the Green’s function
approach [25], cf. Fig. 15, where we also include the data
of the diagrammatic Monte Carlo simulations [26]. The
Green’s function results deviate already below T ∼ 1.5,
and the HTE coincides down to T ∼ 0.7, whereas χ(T )
profiles with χ0 = 0.1 are in excellent agreement with the
data of Ref. [26].

V. CONCLUSIONS AND SUMMARY

We have studied the specific heat c(T ), the entropy
s(T ), and the static uniform susceptibility χ(T ) of the
spin-half pyrochlore Heisenberg antiferromagnet (PHAF)
on a finite lattice of N = 32 sites using the finite-
temperature Lanczos method (FTLM) and on the infi-
nite lattice using the high-temperature expansion (HTE)
up to order 13 and a sophisticated interpolation between
the low- and high-temperature behavior of the thermody-
namic potential entropy s as a function of internal energy
e [the entropy method (EM)].

We found that finite lattices of such size are not appro-
priate to get reasonable results below T ∼ 0.7, but they
might be useful to get a general impression on the strong
frustration effects present in the PHAF by comparison of
the HAF on finite pyrochlore and simple-cubic lattices. A
similar limitation to temperatures above T ∼ 0.7 is valid
for the HTE even if the range of validity of the high-
temperature series is extended by Padé approximants.
Only the EM interpolation is suitable to overcome these

Figure 14. EM results for the susceptibility; gapless spec-
trum. (Top) e0 = −0.518 . . .− 0.516, α = 3/2. (Middle) e0 =
−0.521 . . .− 0.518, α = 2. (Bottom) e0 = −0.522 . . .− 0.520,
α = 5/2. χ0 = 0, 0.08, 0.1. Three values of nP in brackets
correspond to the assumed values χ0 = 0.1, χ0 = 0.08, and
χ0 = 0, consequently.

limitation and to provide sound data for the whole tem-
perature range.

Our main findings for the specific heat c(T ) are as fol-
lows. (i) Contrary to the two-dimensional kagome HAF,
we do not find hints neither for an extra low-T peak nor
an extra shoulder below the main maximum. However,
the absence of an extra low-T feature goes hand in hand
with a significant shift of the single maximum towards
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Figure 15. Susceptibility χ(T ) of the S = 1/2 PHAF: Com-
parison of our EM data (e0 = −0.522, α = 5/2; e0 = −0.520,
α = 2; e0 = −0.517, α = 3/2) with results obtained by
the rotation-invariant Green’s function method [25] (dashed
blue), by diagrammatic Monte Carlo [26], and by the HTE
(thin solid curves; we show the same HTE data for N = ∞

as shown in Fig. 5).

T ∼ 0.25, which is much lower than for the kagome
HAF, where the main maximum is at Tmax/J = 0.67
[44, 52]. This conclusion is robust, i.e., it is obtained
not only for gapless excitations for all reasonable expo-
nents α of the low-temperature power law of c(T ), but
holds also for gapped excitations. (ii) A gapless spectrum
is more favorable than a gapped one, i.e., most likely
there is power-law low-T behavior of c(T ). Although
best results are for an exponent α = 2, other exponents
(α = 1, 3/2, 5/2, 3) cannot be excluded. (iii) We predict
a ground-state energy e0 ≈ −0.52 [67].

Our EM data for the susceptibility χ(T ) in comparison
with data obtained by diagrammatic Monte Carlo [26]
provide further evidence for a gapless spectrum with a
ground-state energy e0 ≈ −0.52. The temperature profile
of χ most likely does not show a maximum, rather there is
a monotonous increase of χ upon decreasing of T reaching
a zero-temperature value of χ0 ≈ 0.1.

Recently, we have learned that R. Schäfer et al. [68]
also examined thermodynamics of the quantum PHAF,
however, using for that numerical linked-cluster expan-
sions.
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APPENDIX A: M. PLANCK’S DERIVATION OF
THE SPECIFIC HEAT c(T ) OF AN OSCILLATOR

In his revolutionary paper in 1900 [28] (see also the
Nobel Prize address [Notes 7, 12, and 13 at the end
of the Nobel Prize address “The origin and development
of the quantum theory” by Max Planck delivered before
the Royal Swedish Academy of Sciences at Stockholm, 2
June, 1920] [40]), M. Planck investigated the energy dis-
tribution of electromagnetic radiation emitted by a black
body in thermal equilibrium. For that he considered the
entropy of the equilibrium radiation S [69] in relation
with its energy U , or more accurately, the second deriva-
tive d2S/dU2. According to Wien’s law it is

d2S

dU2
= −

1

bU
. (A.1)

But in view of experiments for high temperatures one has
U = cT , i.e.,

d2S

dU2
= −

c

U2
. (A.2)

(M. Planck here refers to experiments by F. Kurlbaum.)
While Wien’s law (A.1) is valid for small energy values
(short wave length), Eq. (A.2) describes the high-energy
limit (long wave length, Rayleigh-Jeans law). To get
agreement with experimental data M. Planck suggested

d2S

dU2
= −

c

U (bc+ U)
−→

{

− 1
bU , U ≪ bc,

− c
U2 , U ≫ bc,

(A.3)

which interpolates between both limiting cases. By inte-
grating we get

1

T
=

dS

dU
=

1

b
ln

(

1 +
bc

U

)

, (A.4)

which yields Planck’s formula

U =
bc

eb/T − 1
. (A.5)

These arguments can be formulated within the setup
of the entropy method to find the specific heat c(T ) of
a (Bose) oscillator, which represents the electromagnetic
radiation with the frequency ν = 2πω. Now we know
that b = ~ω and c = 1. Taking into account the zero-
point energy we have to replace U → e = U+~ω/2. Then
the Planck’s interpolation formula (A.3) for the auxiliary
function G(e) = (s(e))′′ reads:

G(e) = −
1

(

e− ~ω
2

) (

e+ ~ω
2

) =
1

(

~ω
2

)2
− e2

−→

{

− 1

~ω(e− ~ω

2 )
, e ≪ ~ω,

− 1
e2 , e ≫ ~ω.

(A.6)
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The subscript app in the left-hand side of this equation is
omitted since the suggested expression for G(e) = (s(e))′′

(A.6) appears to be exact. By integrating we get

1

T
= s′(e) =

∞
∫

e

de
1

e2 −
(

~ω
2

)2 =
1
~ω
2

arccth
e
~ω
2

(A.7)

and then

c(e) = −
(s′(e))2

s′′(e)
=

e2 −
(

~ω
2

)2

(

~ω
2

)2 arccth2
e
~ω
2

(A.8)

and finally

c(T ) =

(

~ω
2T

sh~ω
2T

)2

. (A.9)

APPENDIX B: HTE FOR THE S = 1/2 PHAF

We report here the HTE coefficients for the spin-half
PHAF up to order 13 obtained by the Magdeburg HTE
code developed mainly by A. Lohmann [57]. Note that
the coefficients up to order 10 where presented previously
for arbitrary spin S in Refs. [27, 58].

For the specific heat (per site) we have

c(β) =
∑

i

diβ
i,

d1 = 0,
d2
J2

= +
9

16
,
d3
J3

= −
9

32
,
d4
J4

= −
207

256
,

d5
J5

= +
195

256
,
d6
J6

= +
3 549

4 096
,

d7
J7

= −
59 073

40 960
,
d8
J8

= −
34 535

65 536
,

d9
J9

= +
345 491

163 840
,
d10
J10

= −
9 385 203

36 700 160
,

d11
J11

= −
337 285 883

132 120 576
,
d12
J12

= +
39 036 781 051

26 424 115 200
,

d13
J13

= +
144 963 365 443

58 133 053 440
. (B.1)

For the static uniform susceptibility (per site) we have

χ(β) =
∑

i

ciβ
i,

c1 = +
1

4
,
c2
J

= −
3

8
,
c3
J2

= +
3

8
,
c4
J3

= −
17

64
,

c5
J4

= +
85

512
,
c6
J5

= −
97

640
,

c7
J6

= +
20 207

122 880
,
c8
J7

= −
210 989

1 720 320
,

c9
J8

= +
92 147

1 966 080
,
c10
J9

= −
4 936 709

247 726 080
,

c11
J10

= +
540 939 383

9 909 043 200
,
c12
J11

= −
5 315 724 257

72 666 316 800
,

c13
J12

= +
20 479 483 351

747 424 972 800
. (B.2)

Figure 16. The same as in Fig. 6, but for e0 values within a
narrower region −0.53 . . .− 0.50.

Figure 17. The same as in Fig. 8, but for α = 3/2, 2, 5/2 only
and a narrower region of e0 = −0.523 . . .− 0.515.

APPENDIX C: ADDITIONAL EM DATA FOR c, s,
AND χ OF THE S = 1/2 PHAF

In this appendix we collect more figures presenting EM
data for the specific heat, the entropy, and the suscepti-
bility which are briefly discussed but not shown as figures
in Sec. IVB.

In Fig. 16 we show some results related to Fig. 6 using
a smaller region of e0.

In Fig. 17 we show some results related to Fig. 8 using
a smaller region of e0. The region of e0 in which various
Padé approximants yield almost the same prefactor Aapp

(3.8) is different for α = 3/2, 2, 5/2. Clearly, the values of
α and A are linked. For example, after assuming α = 2
for e0 = −0.520 . . . − 0.519 the EM prediction for the
specific heat as T → 0 reads: c(T ) = AappT

2 with Aapp =
29 . . .31.

In Fig. 18 we show some results related to Fig. 9 using
a wider region of e0 and including exponents α = 1 and
α = 3. The position and the height of the maximum of
the specific heat, as they follow from raw HTE series ex-
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Figure 18. The same as in Fig. 9, but for wider region of
e0 = −0.53 . . .− 0.5 and all five values of α = 1, 3/2, 2, 5/2, 3.
Black straight lines correspond to the Padé approximant [6, 7]
of high-temperature series of c(T ) [Tmax ≈ 0.637, c(Tmax) ≈

0.182].

tended by the Padé approximant [6, 7], have the values
Tmax ≈ 0.637 and c(Tmax) ≈ 0.182. The EM predic-
tions for α = 2 and e0 = −0.520 . . .− 0.519 are different:
Tmax ≈ 0.25 . . .0.28 and c(Tmax) ≈ 0.205 . . .0.208.

Fig. 19 is supplementary to Fig. 10 of the main text.
It contains similar EM predictions for c(T ) under less
favorable assumptions α = 1 and α = 3.

Fig. 20 provides temperature profiles of the specific
heat which complement those shown in Fig. 10 and
Fig. 19: We show c(T ) for e0 = −0.521, e0 = −0.519,
e0 = −0.517, and e0 = −0.515 (from bottom to top) and
compare data for α = 1 (cyan), α = 3/2 (green), α = 2
(red), α = 5/2 (magenta), and α = 3 (blue). The shown
temperature profiles allow to estimate how close to each
other are the various EM data based on different Padé
approximants.

In Fig. 21 we collect the best (i.e., for such a value of

e0 which gives the largest number of almost coinciding
resulting curves) EM predictions for c(T ) for the gapped
and the gapless spectrum.

The best EM results for the temperature dependence
of the entropy are shown in Fig. 22. Note, all curves for
each color are indistinguishable in this figure.

Figure 19. Supplement to Fig. 10; EM results for the specific
heat; gapless spectrum. (Top) e0 = −0.515 . . .−0.513, α = 1.
(Bottom) e0 = −0.524 . . .− 0.522, α = 3.

Fig. 23 is supplementary to Fig. 14 of the main text. It
presents EM results for χ(T ) for less favorable exponents
α = 1 and α = 3.

In Fig. 24 we collect the best (i.e., for such a value of e0
which gives the largest number of almost coinciding re-
sulting curves) EM predictions for χ(T ) under the gapped
assumption and the gapless assumption with several val-
ues of α. Note, χ(T ) as it follows from the assumption
about gapless singlet excitations but χ0 = 0 (all colors
except light brown) deviates stronger from the diagram-
matic Monte Carlo result than χ(T ) as it follows from
the assumption about gapped excitations (light brown).
However, the agreement of different seven χ(T ) curves
for the latter case is rather poor.
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