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We present numerical evidence for the crystallization of magnons below the saturation field at
non-zero temperatures for the highly frustrated spin-half kagomé Heisenberg antiferromagnet. This
phenomenon can be traced back to the existence of independent localized magnons or equivalently
flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a
phase diagram of this transition, thus providing information for which magnetic fields and tempera-
tures magnon crystallization can be observed experimentally. The emergence of a finite-temperature
continuous transition to a magnon-crystal is expected to be generic for spin models in dimension
D > 1 where flat-band multi-magnon ground states break translational symmetry.

Introduction.—Strongly correlated electronic spin sys-
tems may possess unusual and thus attractive properties
such as magnetization curves characterized by sequences
of magnetization plateaus with possible crystallization of
magnons as reported for Cd-kapellasite recently [1]. This
is of course a consequence of the intricate nature of their
many-body eigenstates [2–5], which, however, for, e.g.,
Hubbard as well as Heisenberg models under special cir-
cumstances can express itself as destructive interference
that “can lead to a disorder-free localization of particles”
[6]. For translationally invariant systems this automati-
cally yields flat bands in the single-particle energy spec-
trum, i.e., in one-magnon space in the case of spin Hamil-
tonians [7–14]. Today, flat-band physics is investigated
in several areas of physics, and many interesting phenom-
ena that are related to flat bands have been found, see,
e.g., Refs. [15–20]. Flat-band systems can also be created
using, e.g., cold atoms in optical lattices [21, 22] or by
employing photonic lattices [23–25].

Among the flat-band systems, the highly frustrated
quantum antiferromagnets (AFMs) play a particular role
as possible solid-state realizations. There is a large vari-
ety of one-, two-, and three-dimensional lattices, where at
high magnetic fields the lowest band of one-magnon ex-
citations above the ferromagnetic vacuum is completely
flat [26, 27]. These flat-band antiferromagnets exhibit
several exotic features near saturation, such as a macro-
scopic magnetization jump at the saturation field [10], a
magnetic-field driven spin-Peierls instability [28], a finite
residual entropy at the saturation field [13, 14, 29], a very
strong magnetocaloric effect [14, 26, 30], and an addi-
tional low-temperature maximum of the specific heat sig-
naling the appearance of an additional low-energy scale
[26].

The focus of the present Letter is on a prominent ex-
ample of a flat-band spin system, the spin-half kagomé

Figure 1. Sketch of the crystal of localized magnons (of min-
imal size) on the kagomé lattice antiferromagnet. These lo-
calized magnons (red discs) are superpositions of spin flips of
spins residing at the vertices of the confining basic hexagons
of the kagomé lattice.

Heisenberg antiferromagnet (KHAF), that is a celebrated
paradigm of highly frustrated quantum magnetism [2–5].
The corresponding Hamiltonian is given by

H∼ = J
∑

{i<j}
~s∼i · ~s∼j + gµB B

∑

i

s∼
z
i , J > 0 , (1)

where the first term models the Heisenberg exchange be-
tween spins at nearest neighbor sites i and j and the sec-
ond term provides the Zeeman splitting in an external
magnetic field.

In addition to the widely debated character of the
spin-liquid ground state (GS), the intriguing magneti-
zation process of the KHAF has attracted much atten-
tion [1, 10, 13, 14, 26, 28, 29, 31–40]. The magnetiza-
tion exhibits plateaus at certain fractions of the satura-
tion magnetization, namely at M/Msat = 3/9 = 1/3,
5/9, 7/9 and likely also at M/Msat = 1/9 [34, 35].
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In contrast to the semiclassical M/Msat = 1/3 plateau
in the triangular-lattice Heisenberg antiferromagnet, see,
e.g., [41–43], the kagomé plateau states are quantum
valence-bond states [13, 14, 28, 33–35]. Moreover, around
the M/Msat = 7/9–plateau the flat lowest one-magnon
band [10] dominates the low-temperature physics and
leads to the exotic properties mentioned above. Inter-
estingly, the M/Msat = 7/9 plateau state just below
the jump to saturation is a magnon crystal that is the
magnetic counterpart of the Wigner crystal of interacting
electrons in two dimensions. Since the magnon crystal
spontaneously breaks translational symmetry, a finite-
temperature phase transition is possible. The challenge
is to find appropriate theoretical tools to describe such a
transition for the quantum many-body system at hand.

Remarkably, the very existence of a flat band allows
a semi-rigorous analysis of the low-temperature physics,
e.g., for most of the one-dimensional flat-band quantum
spin systems including the sawtooth chain [14, 29, 30]
and also for a few two-dimensional systems, such as the
frustrated bilayer [6, 44, 45] as well as the Tasaki lattice
[46]. Such a semi-rigorous analysis builds on the exis-
tence of compact localized many-magnon states, which
form either a massively degenerate GS manifold at the
saturation field Bsat or a huge set of low-lying excitations
for B . Bsat and B & Bsat. For the KHAF, the com-
pact localized many-magnon states live on non-touching
hexagons [10], which can be mapped to hard hexagons
on a triangular lattice [13, 14, 26, 29]. This situation is
depicted in Fig. 1.

On the experimental side the growing number of
kagomé compounds is promising with respect to possible
solid-state realizations of the kagomé flat-band physics
[47–55]. Very recently the magnetization process in high
field was reported for Cd-kapellasite [1]. The authors in-
terpret the observed plateau states “as crystallizations
of emergent magnons localized on the hexagon of the
kagomé lattice”. We will address the relation to our in-
vestigations in the discussion below.

Reliable predictions of the field–temperature regions
where the magnon-crystal phase exists are useful to stim-
ulate specific experiments. However, the semi-rigorous
analysis of the flat-band properties of the KHAF based
on compact localized many-magnon states, i.e., the hard-
hexagon approximation (HHA) is limited because of the
existence of a macroscopic number of additional non-
compact localized many-magnon states [27]. A complete
description can be given in terms of a loop gas (LG) that
we elaborate in the Supplemental Material [56]. More-
over, at non-zero temperature also non-localized eigen-
states influence the thermodynamics of the KHAF.

Numerical method.—To investigate the KHAF near
the saturation field we present large-scale finite-
temperature Lanczos (FTL) studies for finite lattices of
N = 27, . . . 72 sites, where we have selected only lattices
exhibiting the magnon-crystal plateau at M/Msat =

Figure 2. Magnetization M/Msat: Region of the 7/9 plateau
for various finite-size realizations of the KHAF.

7/9, which excludes N = 42 discussed in [37]. FTL is an
unbiased numerical approach by which thermodynamic
quantities are very accurately approximated by means of
trace estimators [57–62]. Moreover, the consideration of
six different lattices up to N = 72 allows to estimate
finite-size effects. For used lattices and technical details
see [56]. The kagomé lattices of N sites correspond to
triangular lattices of Ntrian = N/3 sites. On symme-
try grounds, triangular lattices of Ntrian = 9, 12, 21, i.e.,
N = 27, 36, 63 sites seem to be most appropriate for our
investigation [56, 63].

Results.—The magnetization curve around the 7/9–
plateau and the jump to saturation are shown in Fig. 2.
The size-independence of the height of the jump is ob-
vious. The width of the plateau, i.e., the field region
where the magnon-crystal phase can exist, is about 4%
of the saturation field and its finite-size dependence is
weak, cf. Ref. [35]. The finite-temperature transition to
the magnon-crystal phase can be driven either by tem-
perature when fixing B in the plateau region or by the
magnetic field when fixing T below the critical temper-
ature Tc. C(B, T ) is an appropriate quantity to detect
the transition. For finite lattices the specific heat will not
exhibit a true singularity, rather we may expect a well-
pronounced peak in C that indicates the critical point.
Furthermore, the peak has to become sharper with in-
creasing N .

First, we study the temperature profile C(T ) for a mag-
netic field slightly below saturation, B = 0.99Bsat (see
Fig. 3). While the influence of N on the peak position
Tmax is rather weak, the increase of the height Cmax with
growing N is significant and the peaks are sharpest for
N = 63 and N = 72.

Figure 4 presents a closer look at the results of Fig. 3 in
terms of some characteristic quantities where we include
the HHA [13, 14] and the LG description [56] for com-
parison. In panel (a) we first present a comparison of the
total ground-state entropy per site. Since hard hexagons
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Figure 3. Specific heat for B = 0.99Bsat for various finite-size
realizations of the KHAF. For N = 45, 54, 63, 72, where too
large Hilbert subspaces had to be neglected, only the low-
temperature part of the specific heat is displayed; it is virtu-
ally correct for all system sizes.

are a subset of the loop configurations that in turn are
a subset of the KHA ground states, the values of S in-
crease correspondingly for a fixed N . For the HHA, the
result for the thermodynamic limit is known [13, 14, 64]
and shown by the horizontal blue line. We note that the
result for N = 63 within the HHA approximation is very
close to this N = ∞ limit. Since the finite-size effects
of the LG and the KHA are very similar to that of the
HHA, we assume that also for these models a system size
of N ≥ 63 is at least necessary to arrive at trustworthy
results. It is thus a major achievement that by means of
FTL such sizes are accessible.

We observe furthermore that nested loop configura-
tions do indeed give rise to another macroscopic contri-
bution to the ground states [27], and while this is ap-
proaching the ED result for the KHA, there is yet another
contribution to the ground-state manifold that does not
come from localized magnons and thus cannot be cap-
tured by the LG either.

Figure 4(b) displays the size dependence of the posi-
tion of the maximum Tmax of the specific heat in all three
approximations. The thermodynamic limit of the HHA
is again known [13, 14, 65] and again shown by the hori-
zontal blue line. The positions for N & 45 scatter around
this value, and since the finite-size effects of all three ap-
proaches are again similar, we assume the same to be
true for the LG and the KHA. Thus, we conclude that
the critical temperature is lowered by the higher ground-
state degeneracy of the LG and the KHA by up to 50%
as compared to the HHA even for a field as close to the
saturation field as B = 0.99Bsat.

Finally, Fig. 4(c) shows the size dependence of
Cmax/N . The range of accessible system sizes and lattice
geometries is too small to reliably extract critical expo-
nents, but one does observe a trend of Cmax/N to grow

Figure 4. System-size dependence of several characteristic
quantities at B = 0.99Bsat for HH, LG, and ED: (a) entropy
per site S/N associated to the total ground-state degeneracy,
(b) position of the maximum of the specific heat Tmax, and (c)
value of the maximum of the specific heat per site Cmax/N .
The horizontal blue lines in panels (a) and (b) show the known
thermodynamic limit for hard hexagons [13, 14, 64, 65].

Figure 5. Specific heat vs. B at T/J = 0.01 for the KHAF,
HH, and LG with N = 63 (solid curves) and the thermody-
namic limit of hard hexagons [13, 14, 65] (dashed curve).

with increasing system size N . To be more precise, the
transition is expected to belong to the universality class
of the classical two-dimensional Potts model [13, 14] for
all three cases. Thus, the asymptotic behavior of Cmax/N
for large N should be given by Cmax/N ∝ N (α/2ν)[66]
with critical indices α = 1/3 and ν = 5/6 [67, 68].

Next, we consider the field dependence of the specific
heat for a representative low temperature T/J = 0.01,
see Fig. 5, where we present data for N = 63 (solid
curves). For the HHA, we include the result for the ther-
modynamic limit N = ∞ [13, 14, 65] (dashed curve).
We note that both the HHA and the LG scale with
(B − Bsat)/T [13, 14, 26]. There are two peaks left and
right of the minimum in C(B) at B = Bsat which are
related to the ground states of Fig. 4(a). The curves for
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Figure 6. Phase diagram: (a) Position Tmax and (b) height
Cmax of the low-T maximum (cf. Fig. 3) in dependence on B
for N = 63 and N = 72 for fields where the maximum can be
unambiguously detected. The vertical dashed lines mark the
repective edges of the magnetization plateau.

N = 63 and ∞ of the HHA for the peak of B > Bsat are
indistinguishable, showing that this is not a phase tran-
sition. The peaks of the LG and and ED for B > Bsat

are at almost the same position but higher than for the
HHA, and they do not signal a phase transition either.
Remarkably, the LG is very close to the ED result for
B > Bsat, a fact that can be attributed to the LG repro-
ducing the exact ground-state degeneracy of the highest
sectors of total magnetic quantum number for the KHAF,
see also [56].

Turning to the region B < Bsat of Fig. 5, here the HHA
is known to exhibit a phase transition [13, 14, 65] whose
location is given by the divergence of the N = ∞ curve
(dashed). The peaks in the ED and LG curves just below
0.99Bsat should correspond to the same crystallization
transition, they are just rounded off by the finite size
and pushed to lower B compared to the HHA by the
larger number of states involved. In this region, the ED
peak is higher than that of the LG. This difference is not
only due to the KHAF having ground states that have no
LG description [56], but also due to low-lying excitations.
The latter give rise to a second peak at 0.97Bsat that is
present only in the ED data.

To derive a tentative phase diagram, we show in
Fig. 6(a) the position Tmax of the low-T peak of C(T )
vs B for N = 63 and N = 72. We also show the HHA
result Tc = 0.928(1 − B/Bsat) for N = ∞ [13, 14] and
the LG curves for N = 63 and 72 (straight lines). The
LG curves are very close to tangential to the correspond-
ing ED results just below the saturation field, while the
HHA yields a higher transition temperature, as already

noticed in the context of Fig. 4(b). As B decreases, the
ED curves bend down, and when approaching the lower
endpoint Bend of the plateau (depicted by the vertical
lines in Fig. 6) Tmax decreases and we may expect that
it vanishes near Bend, where the magnon-crystal ground
state disappears. For finite systems, as approaching Bend

the relevant peak in C(T ) merges with low-T finite-size
peaks appearing just below Bend, this way masking the
true behavior expected for N →∞.

We mention that the general shape of the transi-
tion curve in Fig. 6(a) resembles the phase diagram of
the magnon crystallization of the fully frustrated bilayer
AFM [6, 44, 45]. Therefore, we may argue that the shape
of this curve is generic for two-dimensional spin models
possessing flat-band multi-magnon ground states.

The height of the maximum Cmax of C(T ) (supposed
to become a power-law singularity for N →∞) is shown
in Fig. 6(b) vs B for N = 63 and N = 72. The shape
of these curves is dome-like with a maximum near the
midpoint of the plateau. The unusual behavior at B =
Bsat is discussed in Ref. [26].

Discussion.—Our FTL data confirm the very existence
of a low-temperature magnon-crystal phase just below
the saturation field as conjectured by the HHA [13, 14].
However, the B–T region where this phase exists is not
properly described by the HHA. Instead we elaborated
a LG description that complements our FTL investiga-
tions. It is very accurate for B > Bsat and still yields
a good description just below Bsat. Our investigations
therefore provide guidance in which range of field and
temperature a magnon-crystal phase is to be expected.

Coming back to the “magnon crystallization” reported
in the experimental paper [1]: Here the authors interpret
the observed plateau states “as crystallizations of emer-
gent magnons localized on the hexagon of the kagomé
lattice”. This concept coincides with the present study
for the 7/9–plateau, but may differ for plateaus at smaller
magnetization, e.g., at 1/3 and 5/9. Although these lower
plateaus can be understood as magnon crystals formed at
T = 0, it still has to be investigated whether the physical
behavior for T > 0 differs from the scenario discussed in
this Letter, since the huge set of flat-band multi-magnon
states determining the low-T thermodynamics near Bsat

is missing for these plateaus.
As already discussed by the authors of [1] a real com-

pound always differs from the idealized theoretical case
for instance due to long-range dipolar or Dzyaloshinskii-
Moriya interactions. In the case of Cd-kapellasite these
seem to stabilize a phase at 10/12 of the saturation mag-
netization. However, the structure of this phase appears
to be rather similar to that at 7/9, it therefore served
as a strong motivation to investigate the possibility of a
magnon crystallization phase transition on very general
grounds (and with an idealized Hamiltonian). The effect
of certain anisotropic Hamiltonians on magnon crystal
phases confined to kagomé stripes is extensively discussed
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in e.g. [40].
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O. Derzhko, J. Strečka, and M. E. Zhitomirsky for valu-
able discussions.

∗ jschnack@uni-bielefeld.de
† andreas.honecker@cyu.fr
‡ Johannes.Richter@physik.uni-magdeburg.de

[1] R. Okuma, D. Nakamura, T. Okubo, A. Miyake,
A. Matsuo, K. Kindo, M. Tokunaga, N. Kawashima,
S. Takeyama, and Z. Hiroi, “A series of magnon crystals
appearing under ultrahigh magnetic fields in a kagomé
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Nöthnitzer Straße 38, D-01187 Dresden, Germany

(Dated: June 11, 2020)

I. LATTICES

Figure 1 shows the lattices employed in the present
work. The green lines indicate periodic boundary condi-
tions. Firstly, we note that the lattices with N = 27, 36,
and 63 share the six-fold rotational symmetry of the in-
finite lattice around the center of a hexagon. Indeed, the
kagomé lattice can be considered as a triangular lattice
of Ntrian = N/3 sites, decorated by a basis of triangles,
and the corresponding effective triangular lattices with
Ntrian = 9, 12, and 21 are known to be favorable from a
symmetry point of view [1].

Secondly, we note that the N = 27, 45, and 54 lattices
have loops of length 6 wrapping around the boundaries.

II. MAGNETIC QUANTUM NUMBERS

The eigenstates of the model are characterized by
the magnetic quantum number M belonging to the z-

component s∼
z of the total spin and the ~k-vector of the

translational symmetry. While for N = 27 and N = 36
we can take into account all sectors of |M |, for N > 36
we are restricted to sectors of larger |M |: |M | > 9/2 for
N = 45, |M | > 17 for N = 54, |M | > 43/2 for N = 63,
and |M | > 26 for N = 72, respectively. This restriction
is not severe, since close to the saturation field the eigen-
states with small |M | become excited states with higher
energy. Nevertheless, for N > 36 we are restricted to low
enough temperatures to avoid substantial contributions
of states with small |M | to the partition function.

III. ED SIZE SCALING

Here would like to provide an additional figure, com-
plementing Fig. 5 of the main text, that shows the
field dependence of the specific heat at low temperatures
T/J = 0.005, 0.01, 0.02, see Fig. 2, where we present ED
data for N = 36 (dashed) and N = 63 (solid curves).
There are two peaks left and right of the minimum in
C(B) at B = Bsat which are related to the huge set of
low-lying excitations. The peaks are sharp at very low

T/J = 0.005 and become broader with increasing T . The
height of the maximum above Bsat is almost identical for
N = 36 and N = 63; it does not correspond to a phase
transition [2, 3], see also the main text.

IV. LOOP-GAS DESCRIPTION

One can map the localized magnons states in the high-
field regime of the kagomé lattice to a geometric problem
of loop configurations [3–7].

Let |↑ . . . ↑〉 be the ferromagnetically polarized state
of the spin-1/2 Heisenberg antiferromagnet on a kagomé
lattice with N sites. Then one can construct exact eigen-
states in the sector Sz = N/2− n` using n` closed loops
and

| {`i}〉 =

n∏̀

i=1

(∑

xi∈`i
(−1)xi s∼

−
xi

)
|↑ . . . ↑〉 . (1)

Here (−1)xi stands symbolically for an alternating sign
along the loop `i. For illustration, Fig. 3 shows three
configurations consisting of two loops on the N = 36
lattice. The top panel shows a configuration consisting
of two loops of minimal length, i.e., compact localized
magnons, corresponding to a configuration with two hard
hexagons.

A. Properties of loop configurations

In order for the states Eq. (1) to be exact eigenstates,
the loop configurations must satisfy the following condi-
tions:

1. The length |`i| of the loop `i must be even in order
to accommodate the alternating sign of the wave
function along it.

2. A “loop” of length 2 turning back on its tail is not
allowed since it would leave a single flipped spin in
two triangles and thus not lead to an exact eigen-
state.

ar
X

iv
:1

91
0.

10
44

8v
3 

 [
co

nd
-m

at
.s

tr
-e

l]
  9

 J
un

 2
02

0



2

0

1 2

3

4 5

6

7 8

9

10 11

12

13 14

15

16 17

18

19 20

21

22 23

24

25 26

1

0

10

19

63

0

1 2

3

4 5

6

7 8

9

10

11

12

13 14

15

16 17

18

19 20

21

22 23

24

25 26

27

28

29

30

31 32

33

34

35

6

13

10

9

10

1111

6

9

34

23

0

23

2525

2424

26

24

31

28

27

28

2929

24

32

9

34

35

33

35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3233

34

35

36

37

3839

40

41

42

43

44

4

3

4

5

12

37

14

12

14

16

15

16

17

24

43

26

37

3333

35

43

3939

4242

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

5

22

17

40

19

1818

5

19

20

3333 35

52

37

3636

17

37

38

4545

48

52

50

48

49

50

5151

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

5960

61

62

1

0

1

2

2

52

5

55

16

1515

32

16

17

30

34

32 45

49

47

34

48

251

554

58

54

59

57

58

59

62

60

61

62

62

49

0

12

3

4 5

6

7 8

9

10 11

12

13 14

15

16 17

18

1920

21

22 23

24

25 26

27

28 29

30

31 32

33

34 35

36

3738

39

40 41

42

43 44

45

46 47

48

49 50

51

52 53

54

5556

57

58 59

60

61 62

63

64 65

66

67 68

69

70 71

1

0

1 22

33

0

33

6 9 1215

19

18

19 2020

51

33

4

37

36

37 3838

69

51

22

55

54

55 56

15 0 6 9 12

69

40

Figure 1. Finite kagomé lattices with N = 27, 36, 45, 54, 63, and N = 72 sites from top left to bottom right.

3. In each triangle, at most two sites are allowed to
be occupied. This is required in order to ensure
destructive interference when a spin flip wants to
propagate outside a loop. This condition implies
not only that a loop `i cannot approach itself too
closely when turning back on itself, but also that

two loops `i and `j must be separated at least by
one free site.

Actually, in order to ensure the exact eigenstate property
of Eq. (1), exactly zero or two sites in each triangle must
be occupied by a loop. Indeed, this is already ensured
by the above rules. We further note that, at least for a
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Figure 2. Specific heat vs. B at various low temperatures for
the KHAF with N = 63 (solid curves) and N = 36 (dashed
curves, same color for same temperature).

sufficiently big lattice, the shortest loops on the kagomé
lattice have length |`i| = 6. These include the loops
winding around a hexagon, i.e., the compact localized
magnon states or “hard-hexagon” states. In addition, as
mentioned in Sec. I, one may also have loops of length 6
winding around a periodic boundary.

The above rules can be implemented on a computer,
thus allowing computer enumeration of the loop configu-
rations for a finite lattice with N sites.

B. Linear relations

The wave functions Eq. (1) are not all linearly inde-
pendent. For example, if the configurations {`i} and
{`′i} differ by a loop `′i − `i only in their ith factor and
(`1, . . . , `i−1, `′i − `i, `i+1, . . . , `n`

) is also valid loop con-
figuration, then | {`i}〉, | {`′i}〉, and | `1, . . . , `i−1, `′i −
`i, `i+1, . . . , `n`

〉 are linearly dependent such that we may
eliminate, e.g., | {`′i}〉 from the spanning set.

For convenience, we recall what is known about the
degeneracies of the ground-state manifold on an N -site
kagomé lattice [3]:

• The degeneracy is known to be N/3 + 1 in the
n` = 1 sector. This is evident, e.g., from a band pic-
ture. An equivalent counting is N/3 hard hexagons,
subject to one linear relation plus two winding
states.

• In the sector corresponding to n` = 2, the degen-
eracy is (N − 3) (N − 6)/18. Ref. [3] gave the fol-
lowing interpretation of this number: firstly, there
are N/6 (N/3 − 7) configurations with two hard
hexagons. Secondly, there are 2N/3 independent
configurations composed of one hard hexagon and
a winding state. Thirdly, there is one further lin-
early independent state composed of two winding
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Figure 3. Top: Configuration with two minimal localized
magnons (minimal loops) on the N = 36 kagomé lattice. Cen-
ter and bottom: Two configurations with two loops winding
around the boundary. The sites belonging to the two loops
are shown by the filled red and magenta circles, respectively.

states.

The latter statement indicates that a purely geometric
picture will be insufficient. To illustrate this point, we
show in the center and bottom panel of Fig. 3 two double-
winding configurations on an N = 36 kagomé lattice.
Since the winding number is conserved by local moves,
it is not possible to deform these two configurations into
each other by local moves, or to reduce them to hard
hexagons, neither to one hard hexagon and one winding
configuration. Therefore, it will in general be necessary
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to investigate the linear relations between the vectors
Eq. (1).

The hard-hexagon configurations can still be consid-
ered to be linearly independent. On the torus created by
the periodic boundary conditions, this is not strictly true,
but the resulting linear relation can be compensated by
adding a winding state.

In general, we determine the linear relations as follows.
First, we note that the scalar product of two vectors of
the type Eq. (1) can be computed within the loop rep-
resentation. It is therefore not necessary to work in the
possibly high-dimensional vector space of spin configura-
tions with Sz = N/2 − n`, but one can in fact perform
a Gram-Schmidt orthogonalization in the abstract space
of the states Eq. (1) and in this manner determine the
dimension of the vector space spanned by them.

C. Results of computer enumeration

Tables I–VI summarize results obtained by computer
enumeration and subsequent Gram-Schmidt orthogonal-
ization for the lattices shown in Fig. 1. These ta-
bles include results for the Heisenberg model and hard
hexagons, where for the convenience of the reader we also
reproduce some data from Refs. [3, 8] in Tables II–V. The
column quoting the total number of loop configurations is
not very relevant for our present purposes, but it demon-
strates the large number of allowed loop configurations,
in particular in the single-loop sector (n` = 1).

Firstly, for N = 27, N = 45, and 54 there are N/9
more 6-loop configurations than hard hexagons in the
sector n` = 1. Indeed, as already stated in Sec. I, one
can see in Fig. 1 that there are loops of length 6 winding
around the boundary. This implies also the existence of
a fourth “magnon crystal” in the sector with n` = N/9
consisting of these loops winding around the boundary,
thus explaining why the degeneracy of the Heisenberg
model in the sector with Sz = 35/2 and 21 respectively
is found to be 4 on the N = 45 and 54 lattices, and not
just 3 as expected from hard hexagons, see Tables III and
IV.

Secondly, for most sectors with n` ≥ 3 the number of
linearly independent loop configurations is smaller than
the degeneracy of the corresponding sector of the Heisen-
berg model. This includes the sector Sz = 14 on the
N = 36 lattice where the degeneracy is 8 while there
are only 3 configurations consisting of 4 loops (see Table
II). Consequently, some ground states of the Heisenberg
model are evidently not captured by the loop picture;
the biggest difference that we have observed is 648 non-
loop ground states of the Heisenberg model in the sector
Sz = 31, n` = 5 on the N = 72 lattice, see Table VI.
However, there are significantly more linearly indepen-
dent loop configurations than simple hard-hexagon con-
figurations such that the present picture amounts to an
improved description of the ground-state manifold of the
Heisenberg model.

There is a third intriguing observation pointing to-
wards a significant difference between the N = 63 and
N = 72 lattices. For N = 63 and in the sector
n` = N/3 − 1 = 6, there are exactly as many loop as
hard-hexagon configurations, leaving no room for linear
relations, see Table V. On the other hand, Table VI shows
that in the corresponding case n` = N/3 − 1 = 7 for
N = 72, there are more than 3 times as many linearly
independent loop as hard-hexagon configurations.

Figure 4(a) of the main manuscript characterizes the
total ground-state degeneracy in terms of the associated
entropy per site. We should mention that the N = 72
‘ED’ data point in this figure is only a lower bound since
we were so far not able to compute the ground-state de-
generacy of the Heisenberg model in the sectors with
Sz ≤ 30, as specified by the missing entries in Table VI,
such that in these cases we have used the number of lin-
early independent loop configurations as a lower bound.

D. Specific heat

From the multiplicities in Tables I–VI it is straightfor-
ward to compute thermodynamic properties such as the
specific heat. We note that both for hard hexagons and
the loop gas, the results depend only on (Bsat − B)/T
which plays the role of a chemical potential [2, 5, 7].
Nevertheless, for comparison with exact diagonalization
(ED), we take a value of the magnetic field close to the
saturation field, B = 0.99Bsat. The results for the spe-
cific heat per site C/N are shown in Fig. 4 (here we set
kB = 1). This figure also includes the exact diagonal-
ization results for the Heisenberg model from the main
text. Although the behavior is somewhat irregular as a
function of system size N , the loop-gas description is evi-
dently in better agreement with the full Heisenberg model
than the simpler hard-hexagon model. This concerns in
particular the position of the low-temperature maximum
where the loop gas and the Heisenberg model yield almost
identical positions for N = 54 and 72. In order to empha-
size this point even more, we show in the N = 27, . . . , 63
panels in green the specific heat that is obtained when
we take into account just the ground-state degeneracy of
the Heisenberg model according to Tables I–V. Firstly,
we see that the low-temperature peak of the specific heat
is indeed dominated by the ground-state manifold, and
that the loop gas yields in turn a rather accurate account
of these. Nevertheless, one observes also that the full ED
result for the low-temperature peak of the specific heat
is clearly higher even than just the ground-state contri-
bution. This can be understood from the gap ∆ to the
first excited state that is also included Tables I–VI. In-
deed, this gap is so small, at least in some sectors, that
even at a temperature as low as T ≈ J/100 the contribu-
tion from thermally excited states to the specific heat is
quantitatively relevant.

Generally, the maximum value of the specific heat re-
mains smaller in the loop gas than in the full Heisenberg
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Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.

25/2 10 0.63397 1 783 10 9
23/2 28 0.20165 2 234 28 9
21/2 13 0.04379 3 6 6 3

Table I. Data for the N = 27 lattice. For the Heisenberg model, we quote the gap to the lowest excited state above the
degenerate ground-state manifold in the corresponding sector of Sz.

Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.
17 13 0.5 1 5442 13 12
16 55 0.18159 2 2616 55 30
15 71 0.05548 3 130 70 16
14 8 0.03363 4 3 3 3

Table II. Data for the N = 36 lattice. For the S = 1/2 Heisenberg model and the number of hard-hexagon configurations
compare Ref. [3].

Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.

43/2 16 0.25139 1 37221 16 15
41/2 91 0.12257 2 23530 91 60
39/2 201 0.03478 3 4520 190 60
37/2 110 0.01055 4 260 60 15
35/2 4 0.01176 5 4 4 3

Table III. Data for the N = 45 lattice. For the S = 1/2 Heisenberg model and the number of hard-hexagon configurations
compare Ref. [3].

Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.
26 19 0.17712 1 255696 19 18
25 136 0.09119 2 195975 136 99
24 430 0.02458 3 63036 413 180
23 513 0.00901 4 9192 396 99
22 119 0.00295 5 384 90 18
21 4 0.01237 6 4 4 3

Table IV. Data for the N = 54 lattice. For the S = 1/2 Heisenberg model and the number of hard-hexagon configurations
compare Ref. [3].

Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.

61/2 22 0.29675 1 1927644 22 21
59/2 190 0.12841 2 1743441 190 147
57/2 785 0.05004 3 481509 784 406
55/2 1436 0.02395 4 40656 1288 399
53/2 617 0.00629 5 1029 294 105
51/2 21 0.01132 6 21 21 21
49/2 3 0.04807 7 3 3 3

Table V. Data for the N = 63 lattice. For the S = 1/2 Heisenberg model in the sectors with Sz ≥ 57/2 and the number of
hard-hexagon configurations compare Ref. [3], for the degeneracy of the Heisenberg model in the Sz = 49/2 sector, compare
Ref. [8].

model on the kagomé lattice (see also Fig. 4(c) of the
main text). This is consistent with the number of lin-
early independent loop-gas states being lower than the
number of independent ground states, see Tables I–VI
and Fig. 4(a) of the main text. The exceptions to this

general rule are the cases N = 27 and 36. The latter can
be traced back to a difference of the number of ground
states that for the case N = 36 are in the sector Sz = 14,
n` = 4: for the full Heisenberg model, this degeneracy
is 8 while there are only 3 linearly independent loop-gas
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Heisenberg model loop gas hard hexagons
Sz degeneracy gap ∆/J n` # confs. # lin. indep. # confs.
35 25 0.13397 1 12611908 25 24
34 253 0.07558 2 13519854 253 204
33 1293 0.02521 3 5961328 1293 752
32 3303 0.01013 4 1321624 3207 1218
31 3512 0.00462 5 133700 2864 816
30 0.00333 6 5894 954 212
29 7 120 84 24
28 8 3 3 3

Table VI. Data for the N = 72 lattice.

and hard-hexagon configurations, see Table II. A similar
difference appears for N = 27, namely 13 versus 6, re-
spectively 3 in the sector Sz = 21/2, n` = 3, see Table I.
Consequently, the leading term of the low-temperature
expansion of the partition function Z is very different,
thus giving rise to the significant differences in the low-
temperature specific heat C/N that one observes in the
panels for N = 27 and 36 of Fig. 4.

Figure 5 regroups this data for the specific heat ac-
cording to method in order to expose the finite-size be-
havior more clearly (another presentation of the ED re-
sults is given in Fig. 3 of the main text). One sees in
Fig. 5 that the hard-hexagon description yields a maxi-
mum that increases monotonically with increasing N (see

also Fig. 4(c) of the main text). Here, the thermody-
namic limit is known [5, 7, 9] such that we can include
this result in the hard-hexagon panel. By contrast, both
the loop-gas description and ED yield significantly less
regular behavior. However, the changes as a function of
N are very similar for the latter two methods, in par-
ticular when one goes from N = 63 to 72, the notable
exceptions being again the cases N = 27, 36.

Overall, we conclude that the loop-gas description
yields not only a substantial improvement over hard
hexagons, but also that the N = 63 and 72 lattices
are more representative of the generic behavior than the
smaller lattices, thus underlining again also the impor-
tance of being able to access such big system sizes by
FTL.
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of Néel order in exact spectra of quantum antiferromag-
nets on finite lattices,” Phys. Rev. Lett. 69, 2590 (1992).

[2] Oleg Derzhko and Johannes Richter, “Universal low-
temperature behavior of frustrated quantum antiferro-
magnets in the vicinity of the saturation field,” Eur. Phys.
J. B 52, 23–36 (2006).

[3] O. Derzhko, J. Richter, A. Honecker, and H.-J. Schmidt,
“Universal properties of highly frustrated quantum mag-
nets in strong magnetic fields,” Low Temp. Phys. 33, 745–
756 (2007).

[4] Jörg Schulenburg, Andreas Honecker, Jürgen Schnack, Jo-
hannes Richter, and Heinz-Jürgen Schmidt, “Macroscopic
magnetization jumps due to independent magnons in frus-
trated quantum spin lattices,” Phys. Rev. Lett. 88, 167207
(2002).

[5] M. E. Zhitomirsky and Hirokazu Tsunetsugu, “Exact low-

temperature behavior of a kagomé antiferromagnet at high
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Figure 4. Specific heat per site C/N for the N = 27, 36, 45, 54, 63, and 72 lattices at B = 0.99Bsat. The green lines in the
N = 27, . . . , 63 panels correspond to just taking the ground states of the Heisenberg model into account whose numbers are
given in Tables I–V.
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Figure 5. Same data as in Fig. 4, but grouped according to method rather than size N . The hard-hexagon panel includes also
the result for the thermodynamic limit [5, 7, 9].


