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We consider a spin s subjected to both a static and an orthogonally applied oscillating, circularly
polarized magnetic field while being coupled to a heat bath, and analytically determine the quasi-
stationary distribution of its Floquet-state occupation probabilities for arbitrarily strong driving.
This distribution is shown to be Boltzmannian with a quasitemperature which is different from the
temperature of the bath, and independent of the spin quantum number. We discover a remarkable
formal analogy between the quasithermal magnetism of the nonequilibrium steady state of a driven
ideal paramagnetic material, and the usual thermal paramagnetism. Nonetheless, the response
of such a material to the combined fields is predicted to show several unexpected features, even
allowing one to turn a paramagnet into a diamagnet under strong driving. Thus, we argue that
experimental measurements of this response may provide key paradigms for the emerging field of
periodic thermodynamics.

I. INTRODUCTION

A quantum system governed by an explicitly time-
dependent Hamiltonian H(t) which depends periodically
on time t, such that

H(t) = H(t+ T ) , (1)

possesses a complete set of Floquet states , that is, of solu-
tions to the time-dependent Schrödinger equation having
the particular form

|ψn(t)〉 = |un(t)〉 exp(−iεnt) . (2)

The Floquet functions |un(t)〉 share the T -periodic time
dependence of their Hamiltonian,

|un(t)〉 = |un(t+ T )〉 ; (3)

the quantities εn, which accompany their time evolu-
tion in the same manner as energy eigenvalues accom-
pany the evolution of unperturbed energy eigenstates,
are known as quasienergies [1–3]. Here we assume that
the quasienergies constitute a pure point spectrum, asso-
ciated with square-integrable Floquet states in the sys-
tem’s Hilbert space HS ; we also adopt a system of units
such that both the Planck constant ~ and the Boltzmann
constant kB are set to one.
Evidently the factorization of a Floquet state (2) into

a Floquet function and an exponential of a phase which
grows linearly in time is not unique: Defining ω = 2π/T ,
and taking an arbitrary, positive or negative integer ν,
one has

|un(t)〉 exp(−iεnt) = |un(t)eiνωt〉 exp
(
−i[εn+νω]t

)
, (4)

where |un(t)eiνωt〉 again is a T -periodic Floquet function,
representing the same Floquet state as |un(t)〉. There-
fore, a quasienergy is not to be regarded as just a sin-
gle number equipped with the dimension of energy, but
rather as an infinite set of equivalent representatives,

εn ≡ {εn + νω | ν ∈ Z} , (5)

where the choice of the “canonical representative” distin-
guished by setting ν = 0 is a matter of convention.
The significance of these Floquet states (2) rests in the

fact that, as long as the Hamiltonian depends on time in
a strictly T -periodic manner, every solution |ψ(t)〉 to the
time-dependent Schrödinger equation can be expanded
with respect to the Floquet basis,

|ψ(t)〉 =
∑

n

cn |un(t)〉 exp(−iεnt) , (6)

where the coefficients cn do not depend on time. Hence,
the Floquet states propagate with constant occupation
probabilities |cn|2, despite the presence of a time-periodic
drive. Under conditions of perfectly coherent time evo-
lution these coefficients cn would be determined solely
by the system’s state at the moment the periodic drive
is turned on. However, if the periodically driven sys-
tem is interacting with an environment, as it happens in
many cases of experimental interest [4–9], that environ-
ment may continuously induce transitions among the sys-
tem’s Floquet states, to the effect that a quasistationary
distribution {pn} of Floquet-state occupation probabil-
ities establishes itself which contains no memory of the
initial state, and the question emerges how to quantify
this distribution.
In a short programmatic note entitled “Periodic Ther-

modynamics”, Kohn has drawn attention to such quasi-
stationary Floquet-state distributions {pn}, emphasizing
that they should be less universal than usual distribu-
tions characterizing thermal equilibrium, depending on
the very form of the system’s interaction with its envi-
ronment [10]. In an earlier pioneering study, Breuer et
al. had already calculated these distributions for time-
periodically forced oscillators coupled to a thermal os-
cillator bath [11]. For the particular case of a linearly
forced harmonic oscillator these authors have shown that
the Floquet-state distribution remains a Boltzmann dis-
tribution with the temperature of the heat bath, whereas
it becomes rather more complicated in the case of forced
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anharmonic oscillators. These investigations have been
extended later by Ketzmerick and Wustmann, who have
demonstrated that structures found in the phase space of
classical forced anharmonic oscillators leave their distinct
traces in the quasistationary Floquet-state distributions
of their quantum counterparts [12]. To date, a great va-
riety of different individual aspects of the “periodic ther-
modynamics” envisioned by Kohn has been discussed in
the literature [13–23], but a coherent overall picture is
still lacking.

In this situation it seems advisable to resort to mod-
els which are sufficiently simple to admit analytical so-
lutions and thus to unravel salient features on the one
hand, and which actually open up meaningful perspec-
tives for new laboratory experiments on the other. To
this end, in the present work we consider a spin s ex-
posed to both a static magnetic field and an oscillating,
circularly polarized magnetic field applied perpendicu-
lar to the static one, as in the classic Rabi set-up [24],
and coupled to a thermal bath of harmonic oscillators.
The experimental measurement of the thermal paramag-
netism resulting from magnetic moments subjected to a
static field alone has a long and successful history [25, 26],
having become a standard topic in textbooks on Statis-
tical Physics [27, 28]. We argue that a future generation
of such experiments, including both a static and a strong
oscillating field, may set further cornerstones towards the
development of full-fledged periodic thermodynamics.

We proceed as follows: In Sec. II we collect the nec-
essary technical tools, starting with a brief summary of
the golden-rule approach to time-periodically driven open
quantum systems in the form developed by Breuer et
al. [11], thereby establishing our notation. We also sketch
a technique which enables one to “lift” a solution to the
Schrödinger equation for a spin s = 1

2 in a time-varying
magnetic field to general s. In Sec. III we discuss the
Floquet states for spins in a circularly polarized driving
field, obtaining the states for general s from those for
s = 1

2 with the help of the lifting procedure. In Sec. IV
we compute the quasistationary Floquet-state distribu-
tion for driven spins under the assumption that the spec-
tral density of the heat bath be constant, and show that
this distribution is Boltzmannian with a quasitempera-
ture which is different from the actual bath temperature;
the dependence of this quasitemperature on the system
parameters is discussed in some detail. In Sec. V we
determine the magnetization of a spin system which is
subjected to both a static and an orthogonally applied,
circularly polarized magnetic field while being coupled
to a heat bath. To this end, we first establish a general
formula for the ensuing magnetization by means of an-
other systematic use of the lifting technique, and then
show that the resulting expression can be interpreted as
a derivative of a partition function based on both the
quasitemperature and the system’s quasienergies, in per-
fect formal analogy to the textbook treatment of para-
magnetism in the absence of time-periodic driving; these
insights are exploited for elucidating the response of an

ideal paramagnet to a circularly polarized driving field.
In Sec. VI we consider the rate of energy dissipated by
the driven spins into the bath, thus generalizing results
derived previously for s = 1

2 in Ref. [29]. In Sec. VII we
summarize and discuss our main findings, emphasizing
the possible knowledge gain to be derived from future
measurements of paramagnetic response to strong time-
periodic forcing, carried out along the lines drawn in the
present work.

II. TECHNICAL TOOLS

A. Golden-rule approach to open driven systems

Let us consider a quantum system evolving according
to a T -periodic Hamiltonian H(t) on a Hilbert space HS

which is perturbed by a time-independent operator V .
Then the transition matrix element connecting an initial
Floquet function |ui(t)〉 to a final Floquet function |uf(t)〉
can be expanded into a Fourier series,

〈uf(t)|V |ui(t)〉 =
∑

ℓ∈Z

V
(ℓ)
fi exp(iℓωt) , (7)

and consequently the “golden rule” for the rate of tran-
sitions Γfi from a Floquet state labeled i to a Floquet
state f is written as [29]

Γfi = 2π
∑

ℓ∈Z

|V (ℓ)
fi |2 δ(ω(ℓ)

fi ) , (8)

where

ω
(ℓ)
fi = εf − εi + ℓω . (9)

Thus, a transition among Floquet states is not associated
with only one single frequency, but rather with a set of
frequencies spaced by integer multiples of the driving fre-
quency ω, reflecting the ladder-like nature of the system’s
quasienergies (5); this is one of the sources of the pecu-
liarities which distinguish periodic thermodynamics from
usual equilibrium thermodynamics [10, 11].
Let us now assume that, instead of merely being per-

turbed by V , the periodically driven system is coupled
to a heat bath, described by a Hamiltonian Hbath acting
on a Hilbert space HB, so that the total Hamiltonian on
the composite Hilbert space HS ⊗HB takes the form

Htotal(t) = H(t)⊗ 1+ 1⊗Hbath +Hint . (10)

Stipulating further that the interaction Hamiltonian Hint

factorizes according to

Hint = V ⊗W , (11)

the golden rule can be applied to joint transitions from
Floquet states i to Floquet states f of the system ac-
companied by transitions from bath eigenstates n with
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energy En to other bath eigenstates m with energy Em,
acquiring the form

Γmn
fi = 2π

∑

ℓ∈Z

|V (ℓ)
fi |2 |Wmn|2 δ(Em − En + ω

(ℓ)
fi ) . (12)

Moreover, following Breuer et al. [11], let us consider a
bath consisting of thermally occupied harmonic oscilla-
tors, and an interaction of the prototypical form

W =
∑

ω̃

(
bω̃ + b†ω̃

)
, (13)

where bω̃ (b†ω̃) is the annihilation (creation) operator per-
taining to a bath oscillator of frequency ω̃. We now have
to distinguish two cases: If En − Em = ω̃ > 0, so that
the bath is de-excited and transfers energy to the system,
the required annihilation-operator matrix element reads

Wmn =
√
n(ω̃) , (14)

where n(ω̃) is the occupation number of a bath oscilla-
tor with frequency ω̃, and the square |Wmn|2 entering
the golden rule (12) has to be replaced by the thermal
avarage

N(ω̃) ≡ 〈n(ω̃)〉 = 1

exp(βω̃)− 1
, (15)

with β denoting the inverse bath temperature. Con-
versely, if En − Em = ω̃ < 0 so that the system loses
energy to the bath and a bath phonon is created, one
has

Wmn =
√
n(−ω̃) + 1 , (16)

giving

N(ω̃) ≡ 〈n(−ω̃)〉 + 1 =
1

1− exp(βω̃)
. (17)

Finally, let J(ω̃) be the spectral density of the bath. Then
the total rate Γfi of bath-induced transitions among the
Floquet states i and f of the driven system is expressed
as a sum of partial rates,

Γfi =
∑

ℓ∈Z

Γ
(ℓ)
fi , (18)

where

Γ
(ℓ)
fi = 2π |V (ℓ)

fi |2N(ω
(ℓ)
fi )J(|ω

(ℓ)
fi |) . (19)

These total rates (18) now determine the desired quasi-
stationary distribution {pn} as a solution to the equa-
tion [11]

∑

m

(
Γnmpm − Γmnpn

)
= 0 . (20)

It deserves to be emphasized again that the very details
of the system-bath coupling enter here, so that the pre-
cise form of the respective distribution {pn} may depend
strongly on such details [10].

B. The lift from s = 1

2
to general s

We will make heavy use of a procedure which allows
one to transfer a solution to the Schrödinger equation
for a spin with spin quantum number s = 1

2 in a time-
dependent external field to a solution of the correspond-
ing Schrödinger equation for general s, see also Ref. [30].
This procedure does not appear to be widely known, but
has been applied already in 1987 to the coherent evolu-
tion of a laser-drivenN -level system possessing an SU(2)
dynamic symmetry [31], and more recently to the spin-s
Landau-Zener problem [32]. Here we briefly sketch this
method.
Let t 7→ Ψ(t) ∈ SU(2) be a smooth curve such that

Ψ(0) = 1, as given by a 2× 2-matrix of the form

Ψ(t) =

(
z1(t) z2(t)

−z∗2(t) z∗1(t)

)
(21)

with complex functions z1(t), z2(t) obeying |z1(t)|2 +
|z2(t)|2 = 1 for all times t. One then has

(
d

dt
Ψ(t)

)
Ψ(t)−1 ≡ −iH(t) ∈ su(2) , (22)

where su(2) denotes the Lie algebra of SU(2), i.e., the
space of anti-Hermitean, traceless 2 × 2-matrices which
is closed under commutation [33]. Hence the columns
|ψ1(t)〉, |ψ2(t)〉 of Ψ(t) are linearly independent solutions
of the Schrödinger equation

i
d

dt
|ψj(t)〉 = H(t) |ψj(t)〉 , j = 1, 2 . (23)

Next we consider the well-known irreducible Lie algebra
representation of su(2),

r(s) : su(2) −→ su(2s+ 1) , (24)

which is parametrized by a spin quantum number s such
that 2s ∈ N, together with the corresponding irreducible
group representation (“irrep” for brevity)

R(s) : SU(2) −→ SU(2s+ 1) . (25)

It follows that

r(s)(isj) = iSj , j = x, y, z , (26)

where sj = 1
2σj denote the three s = 1

2 spin operators
given by the Pauli matrices σj , and the Sj denote the
corresponding spin operators for general s. Recall the
standard matrices

(Sz)m,n = n δmn , (27)

(Sx)m,n =

{
1
2

√
s(s+ 1)− n(n± 1) : m = n± 1 ,

0 : else ,

(Sy)m,n =

{
± 1

2i

√
s(s+ 1)− n(n± 1) : m = n± 1 ,

0 : else ,
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where m,n = s, s− 1, . . . ,−s, and

S± ≡ Sx ± iSy . (28)

It follows from the general theory of representations [33]
that r(s) and R(s) may be applied to Eq. (22) and yield

(
d

dt
R(s) Ψ(t)

) (
R(s) Ψ(t)

)−1

= r(s)
(
− iH(t)

)
. (29)

Since H(t) can always be written in the form of a Zeeman
term with a time-dependent magnetic field b(t), namely,

H(t) = b(t) · s =
3∑

j=1

bj(t) sj , (30)

Eq. (26) implies that

r(s)
(
iH(t)

)
= ib(t) · S = i

3∑

j=1

bj(t)Sj . (31)

In (30) we have chosen the + sign convention adapted to
electrons for which the magnetic moment is opposite to
their spin s. Hence, the “lifted” matrix

Ψ(s)(t) ≡ R(s)
(
Ψ(t)

)
(32)

will be a matrix solution of the lifted Schrödinger equa-
tion

i
d

dt
Ψ(s)(t) = b(t) · SΨ(s)(t) . (33)

Note that the matrix Ψ(s)(t) is unitary, and hence its
columns span the general (2s + 1)-dimensional solution
space of the lifted Schrödinger equation (33).

III. FLOQUET FORMULATION OF THE RABI

PROBLEM

A. Floquet decomposition for s = 1/2

A spin 1
2 subjected to both a constant magnetic field

applied in the z-direction and an orthogonal, circularly
polarized time-periodic field, as constituting the classic
Rabi problem [24], is described by the Hamiltonian

H(t) =
ω0

2
σz +

F

2
(σx cosωt+ σy sinωt) . (34)

Here ω0 denotes the transition frequency pertaining to
the spin states in the static field alone, while F denotes
the frequency associated with the amplitude of the peri-
odic drive. This is a special form of the Zeeman Hamil-
tonian (30) with the particular choices

bx(t) = F cosωt

by(t) = F sinωt

bz(t) = ω0 . (35)

The Floquet states (2) brought about by this Hamilto-
nian (34) are given by [34]

|ψ±(t)〉 =
e∓iΩt/2

√
2Ω

(
±
√
Ω± δ e−iωt/2

√
Ω∓ δ e+iωt/2

)
, (36)

where

δ = ω0 − ω (37)

denotes the detuning of the transition frequency ω0 from
the driving frequency ω, and Ω is the Rabi frequency,

Ω =
√
δ2 + F 2 . (38)

The 2×2-matrix Ψ(t) constructed from these states does
not satisfy Ψ(0) = 1. This is of no concern, since Ψ(t)

could be replaced by Ψ(t)
(
Ψ(0)

)−1
. The distinct advan-

tage of these Floquet solutions (36) lies in the fact that
they yield a particularly convenient starting point for the
lifting procedure outlined in Sec. II B: One has

Ψ(t) =
1√
2Ω

( √
Ω+ δ −

√
Ω− δ

eiωt
√
Ω− δ eiωt

√
Ω+ δ

)

×
(

e−i(ω+Ω)t/2 0
0 e−i(ω−Ω)t/2

)

≡ P (t) e−iωt/2 exp(−iΩt sz) . (39)

This decomposition possesses the general Floquet form

Ψ(t) = P (t) exp(−iGt) , (40)

where the unitary matrix P (t) = P (t + T ) again is
T -periodic, and the eigenvalues of the “Floquet ma-
trix” G, to be obtained from the matrix logarithm

of Ψ(T )
(
Ψ(0)

)−1
= exp(−iGT ), provide the system’s

quasienergies [35–38]. Since G already is diagonal in this
representation (39), the quasienergies of a spin 1

2 driven
by a circularly polarized field according to the Hamilto-
nian (34) can be read off immediately:

ε± =
ω ± Ω

2
mod ω , (41)

satisfying ε+ + ε− = 0 mod ω. For later application we
express the periodic part P (t) of the decomposition (39)
in the following way:

P (t) = eiωt/2

(
e−iωt/2 0

0 e+iωt/2

)

× 1√
2Ω

( √
Ω+ δ −

√
Ω− δ√

Ω− δ
√
Ω+ δ

)

≡ eiωt/2 exp(−iωt sz) Ξ . (42)

The time-independent matrix Ξ = Ψ(0) introduced here
can be written as

Ξ = exp (−iλ sy) =

(
cos(λ/2) − sin(λ/2)
sin(λ/2) cos(λ/2)

)
(43)
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with

λ/2 = arccos

(√
δ + Ω

2Ω

)
. (44)

Hence, one has the identities

Ξ†sxΞ =
δ

Ω
sx +

√
Ω2 − δ2

Ω
sz

Ξ†syΞ = sy ,

Ξ†szΞ =
δ

Ω
sz −

√
Ω2 − δ2

Ω
sx , (45)

which may be easily verified.

B. Floquet decomposition for general s

Replacing the spin- 12 operators sj =
σj

2 in the Hamil-
tonian (34) by their conterparts Sj for general spin quan-
tum number s, one obtains

H(s)(t) = b(t) · S
= ω0 Sz + F (Sx cosωt+ Sy sinωt) . (46)

According to Sec. II B the general matrix solution to the
corresponding Schrödinger equation (33) now is obtained
as the lift (32) of the 2×2-matrix (39). Invoking Eqs. (42)
and (43), and applying the irrep R(s) to this decomposi-
tion yields

Ψ(s)(t) = R(s)
(
exp(−iωt sz) exp (−iλ sy) exp(−iΩt sz)

)

= exp(−iωt Sz) exp (−iλSy) exp(−iΩt Sz) . (47)

In order to bring this factorization into the standard Flo-
quet form analogous to Eq. (40),

Ψ(s)(t) = P (s)(t) exp
(
− iG(s)t

)
(48)

with a T -periodic matrix P (s)(t) = P (s)(t+ T ), we have
to distinguish two cases:
(i) For integer s we may set

P (s)(t) = exp(−iωt Sz) exp (−iλSy) ,

G(s) = ΩSz , (49)

obtaining the quasienergies

εm = mΩ mod ω (50)

with integer m = −s, . . . , s.
(ii) For half-integer s the requirement that P (s)(t)

be T -periodic demands insertion of additional factors
e±iωt/2, in analogy to the representation (42) for s = 1

2 .
This gives

P (s)(t) = eiωt/2 exp(−iωt Sz) exp (−iλSy) ,

G(s) =
ω

2
1

(s) +ΩSz , (51)

where 1(s) denotes the unit matrix in C2s+1. Therefore,
the quasienergies now read

εm =
ω

2
+mΩ mod ω (52)

for half-integer m = −s, . . . , s.
Denoting the eigenstates of Sz by |m〉, in both cases (i)

and (ii) the Floquet states can now be written as

Ψ(s)(t) |m〉 = P (s)(t) |m〉 exp(−iεmt)

≡ |um(t)〉 exp(−iεmt) , (53)

thereby introducing the T -periodic Floquet functions

|um(t)〉 = P (s)(t) |m〉 . (54)

Since Ω → |ω0 − ω| when F → 0, the quasienergies (50)
and (52) properly connect to the respective eigenvalues of
ω0Sz for vanishing driving amplitude. There is, however,
an important further distinction to be observed at this
point: In either case (i) and (ii) one finds

εm → mω0 mod ω if ω < ω0 , (55)

whereas

εm → −mω0 mod ω if ω > ω0 . (56)

That is, if the driving frequency ω is detuned to the blue
side of the transition frequency ω0, the labeling of the
quasienergy representatives (50) and (52) differs from
that of the eigenvalues of Sz by a minus sign, effectively
reversing their order. This feature needs to be kept in
mind for correctly assessing the following results.
We also note that in the adiabatic limit, when the spin

is exposed to an arbitrarily slowly varying magnetic field
enabling adiabatic following to the instantaneous energy
eigenstates, the quasienergies should be given by the one-
cyle averages of the instantaneous energy eigenvalues. In-
deed, in this limit the Rabi frequency (38) reduces to

Ω =
√
ω2
0 + F 2, while the time-independent instanta-

neous energy levels are Em = mΩ, yielding the expected
identity.

IV. THE QUASISTATIONARY DISTRIBUTION

Now we stipulate that the periodically driven spin be
coupled to a thermal bath of harmonic oscillators, as
sketched in Sec. II A, taking the coupling operator to be
of the natural form [39]

V = γ Sx . (57)

In order to calculate the Fourier decompositions (7) of
the Floquet matrix elements of V , and referring to the
above representation (54) of the Floquet functions, we
thus need to consider the operator

P (s)†(t)Sx P
(s)(t)

= exp (iλSy) exp (iωt Sz) Sx exp (−iωt Sz) exp (−iλSy)

≡
∑

ℓ∈Z

V (ℓ) exp(iℓωt) ; (58)
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note that the additional phase factor eiωt/2 contained in
the expression (51) for P (s)(t) with half-integer s cancels
here. Using the su(2) commutation relations and their
counterparts for general s, we deduce

exp (iωt Sz) Sx exp (−iωt Sz)

=
1

2

(
eiωt S+ + e−iωt S−

)
. (59)

Hence, as in the case s = 1
2 studied in Ref. [29], the only

non-vanishing Fourier components V (ℓ) occur for ℓ = ±1:

V (±1) =
γ

2
exp (iλSy)S± exp (−iλSy) . (60)

Applying R(s) to Eqs. (45), this yields

V (±1) =
γ

2

(
δ

Ω
Sx +

√
Ω2 − δ2

Ω
Sz ± iSy

)
. (61)

Thus, V (±1) is a tridiagonal matrix. For computing the
partial transition rates (19) we therefore have to con-

sider only frequencies ω
(±1)
mn of pseudotransitions [29], for

which m = n, and of transitions between neighboring
Floquet states, m = n± 1. In view of the definition (9),
and taking the quasienergies given by Eqs. (50) and (52)
without “mod ω” as the canonical representatives of their
respective quasienergy classes (5), one has

ω(±1)
mn =






±ω : m = n ,
Ω± ω : m = n+ 1 ,

−Ω± ω : m = n− 1 .
(62)

According to the Pauli master equation (20), the quasi-
stationary distribution {pm}m=s,...,−s which establishes
itself under the combined influence of time-periodic driv-
ing and the thermal oscillator bath is the eigenvector of

a tridiagonal matrix Γ̃ corresponding to the eigenvalue 0,

where Γ̃ is obtained from Γ ≡ Γ(1)+Γ(−1) by subtracting
from the diagonal elements the respective column sums,
i.e.,

Γ̃mn = Γmn − δmn

s∑

k=−s

Γkn . (63)

Since Γ̃ is tridiagonal with non-vanishing secondary di-
agonal elements, this eigenvector is unique up to nor-
malization. Moreover, it is evident that we only need
the matrix elements of Γ in the secondary diagonals for
calculating the quasistationary distribution, whereas the
diagonal elements will be required for computing the dis-
sipation rate [29].
The very fact that V (±1), and hence Γ, merely is a

tridiagonal matrix has a conceptually important conse-
quence: It enforces detailed balance, meaning that each
term of the sum (20) vanishes individually. With Γ being
tridiagonal, this sum reduces to

(Γn,n−1 pn−1 − Γn−1,n pn)

+ (Γn,n+1 pn+1 − Γn+1,n pn) = 0 (64)

for all n = −s+ 1, . . . , s− 1, since the term with m = n
in Eq. (20) cancels. In the border cases n = −s or n = s
this identity still holds, but only one bracket survives.
Upon setting the first bracket in this Eq. (64) to zero,
one obtains

pn
pn−1

=
Γn,n−1

Γn−1,n
(65)

for n = −s+1, . . . , s−1. Together with the normalization
requirement, this relation already determines the entire
distribution {pm}. In particular, it entails

pn+1

pn
=

Γn+1,n

Γn,n+1
, (66)

thus ensuring that also the second bracket in Eq. (64)
vanishes, confirming detailed balance.
A further factor of substantial importance is the spec-

tral density J(ω̃), which may allow one to manipulate the
quasistationary distribution to a considerable extent. For
the sake of simplicity and transparent discussion, here we
assume that J(ω̃) ≡ J0 is constant. The distinction be-
tween the physically different positive and negative tran-
sition frequencies, which lead to the two different expres-
sions (15) and (17) entering the transition rates (19), now
prompts us to treat the cases 0 < ω < Ω and 0 < Ω < ω
separately, while the resonant case ω = Ω can be dealt
with by means of limit procedures.

A. Low-frequency case 0 < ω < Ω

In order to utilize the above Eq. (66) for determining
the distribution {pm} recursively we only need to eval-

uate the partial rates Γ
(±1)
m,m+1 and Γ

(±1)
m+1,m according to

the general prescription (19). In the low-frequency case
0 < ω < Ω this leads to the expressions

Γ
(±1)
m,m+1 =

s(s+ 1)−m(m+ 1)

16
(
1− e−β(Ω∓ω)

)
(
Ω∓ δ

Ω

)2

Γ
(±1)
m+1,m =

s(s+ 1)−m(m+ 1)

16
(
eβ(Ω±ω) − 1

)
(
Ω± δ

Ω

)2

(67)

which have been scaled by Γ0 = 2πγ2J0, and have thus
been made dimensionless. Evidently, these representa-
tions imply that the desired ratio

Γm+1,m

Γm,m+1
≡ qL (68)

is independent of both s and m; a tedious but straight-
forward calculation readily yields

qL =
2δΩ sinh(βω) +

(
δ2 +Ω2

) (
e−βΩ − cosh(βω)

)

2δΩ sinh(βω)− (δ2 +Ω2) (eβΩ − cosh(βω))
.

(69)
Therefore, not only does one find detailed balance here,
but the occupation probabilities even generate a finite
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geometric sequence: By construction, the geometric se-
quence

qL ≡ (q2sL , q
2s−1
L , . . . , qL, 1) (70)

is an eigenvector of the matrix Γ̃ introduced in Eq. (63)
with eigenvalue 0, and hence yields the desired quasista-
tionary Floquet-state occupation probabilites {pm} after
normalization.

B. High-frequency case 0 < Ω < ω

Analogously, in the high-frequency case 0 < Ω < ω we
require the dimensionless partial rates

Γ
(±1)
m,m+1 = ±s(s+ 1)−m(m+ 1)

16
(
eβ(±ω−Ω) − 1

)
(
Ω∓ δ

Ω

)2

Γ
(±1)
m+1,m = ±s(s+ 1)−m(m+ 1)

16
(
eβ(Ω±ω) − 1

)
(
Ω± δ

Ω

)2

(71)

for constructing the matrix Γ = Γ(1)+Γ(−1). Once more,
the ratio

Γm+1,m

Γm,m+1
≡ qH (72)

does depend neither on s nor on m, so that the occupa-
tion probabilities again form a geometric sequence; after
some juggling, one finds

qH =

(
δ2 +Ω2

)
sinh(βω) + 2δΩ

(
e−βΩ − cosh(βω)

)

(δ2 +Ω2) sinh(βω)− 2δΩ (eβΩ − cosh(βω))
.

(73)
This quantity determines the solution vector

qH ≡ (q2sH , q
2s−1
H , . . . , qH , 1) (74)

to the equation Γ̃qH = 0 in the high-frequency regime,
providing the corresponding quasistationary Floquet dis-
tribution upon normalization.

C. The quasitemperature

For ease of notation, let us define

q ≡
{
qL : 0 < ω < Ω
qH : 0 < Ω < ω .

(75)

Recalling Ω → |ω0 − ω| in the limit F → 0 of vanishing
driving amplitude, one then finds

q →
{

e−βω0 : ω < ω0

e+βω0 : ω > ω0 .
(76)

Hence, in the absence of the time-periodic driving field
the above solutions (70) and (74) correctly lead to a

Boltzmann distribution with the inverse bath temper-
ature β, thereby indicating thermal equilibrium of the
spin system; the unfamiliar “plus”-sign appearing in this
limit (76) in the case of blue detuning merely reflects the
reversed labeling (56).
More importantly, in both cases 0 < ω < Ω and

0 < Ω < ω the occupation probabilities {pm} of the Flo-
quet states constitute a geometric sequence even under
arbitrarily strong driving, when the system is far remote
from usual thermal equilibrium. Since the quasiener-
gies (50) and (52) are equidistant, the quasistationary
distribution can therefore still be regarded as a Boltz-
mann distribution, but now being parametrized by an
effective quasitemperature:

pm =
1

Z1
qs+m =

1

Z2
e−ϑεm =

1

Zq
e−ϑΩm (77)

with m = s, . . . ,−s for both integer and half-integer s,
where the factors Z1, Z2, and Zq are adjusted to ensure
the normalization

∑s
m=−s pm = 1, and

ϑ ≡ − ln q

Ω
(78)

is the inverse quasitemperature of the periodically driven
spin system coupled to an oscillator bath with inverse
regular temperature β. When defining the quasitemper-
ature in this analytically convenient manner (78) we do
not distinguish between the cases (76) of red and blue
detuning, so that our quasitemperature will be negative
under weak driving with blue detuning. In accordance
with the distinction (75) we will also designate the inverse
quasitemperature as ϑL and ϑH , respectively. Note that
the parametrization of the geometric distribution (77)
in terms of the system’s quasienergies and a quasitem-
perature, in formal analogy to the canonical distribu-
tion of equilibrium thermodynamics [28], requires that
the “modulo ω-indeterminacy” of the quasienergies has
been resolved in some way, so that the quasienergies en-
tering this distribution refer to particular, well defined
representatives of their classes (5); here we have selected
the representatives given by Eqs. (50) and (52) without
“mod ω”. This implies that the definition of the quasi-
temperature still contains a certain degree of arbitrari-
ness. Notwithstanding this remark, the very distribution
{pm} itself, governing the observable physics, is defined
uniquely.
The dimensionless inverse quasitemperature ω0ϑ ulti-

mately depends on the scaled driving amplitude F/ω0,
the scaled driving frequency ω/ω0, and the dimension-
less inverse actual temperature ω0β of the heat bath, but
not on the spin quantum number s. In contrast, the par-
tition function Zq depends on s:

Zq =

s∑

m=−s

exp(−ϑΩm) =

sinh

(
2s+ 1

2
ϑΩ

)

sinh

(
ϑΩ

2

) . (79)
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FIG. 1: Dimensionless inverse quasitemperature ω0ϑ of the
spin system under the influence of a circularly polarized
monochromatic driving force with amplitude F and fre-
quency ω, being coupled to a harmonic-oscillator bath of in-
verse actual temperature ω0β = 1. The blue part of the graph
corresponds to the high-frequency regime 0 < Ω < ω, the red
part to the low-frequency regime 0 < ω < Ω. Along the line
segment ω = ω0 with F < ω0 and along the parabola ω = ωc

given by Eq. (80), both marked by blue dashes, the inverse
quasitemperature vanishes. A few functions ϑ(ω) for con-
stant F are highlighted, showing a kink at ω = ωc according
to Eqs. (82). The limit ω0ϑ = ω0β for ω/ω0 → 0 is indicated
by the green line.

The inverse quasitemperature ϑ vanishes —meaning that
the periodically driven system effectively becomes in-
finitely hot, so that all its Floquet states are populated
equally — regardless of the bath temperature, if either
ω = ω0 while 0 < F < ω0, or if

ω = ωc ≡
1

2ω0

(
F 2 + ω2

0

)
, (80)

where the latter equation defines the boundary ω = Ω be-
tween the low- and the high-frequency regime, see Fig. 1.
At this boundary there is a continuous change from ϑL
to ϑH , since

lim
ω↑ωc

ϑL = lim
ω↓ωc

ϑH = 0 . (81)

However, the two functions ϑL and ϑH do not join
smoothly at ω = ωc, since their derivatives with respect
to ω adopt limits with opposite signs:

lim
ω↑ωc

∂ϑL
∂ω

= −4βω3
0

(
F 4 + ω4

0

)

F 4 (F 2 + ω2
0)

2 ,

lim
ω↓ωc

∂ϑH
∂ω

=
4βω3

0

(
F 4 + ω4

0

)

F 4 (F 2 + ω2
0)

2 . (82)

We will now investigate the behavior of the function
ω0ϑ(ω0β, ω/ω0, F/ω0) in the limits corresponding to the
four sideways faces of the box bounding the plot dis-
played in Fig. 1:
(i) As already noted at the end of Sec. III B, in the low-

frequency limit ω/ω0 → 0 the canonical representatives
of the quasienergies (50) and (52) approach the actual

energies Em = m
√
ω2
0 + F 2 (with m = s, . . . ,−s) of a

spin exposed to a slowly varying drive. Hence, in this
limit the “periodic thermodynamics” investigated here
must reduce to the usual thermodynamics described by
a canonical ensemble; in particular, the inverse quasi-
temperature ϑ must approach the true inverse bath tem-
perature β. This expectation is borne out by the leading
term of the low-frequency expansion

ω0ϑL = ω0β +
2ω0β(ω/ω0)

(F/ω0)2 + 2

+
ω0β(ω/ω0)

2

2
(
(F/ω0)2 + 2

)2


8− 4(F/ω0)

2 −
(F/ω0)

4 ω0β coth
(

ω0β
2

√
(F/ω0)2 + 1

)

√
(F/ω0)2 + 1


+O(ω/ω0)

3 . (83)

(ii) Next we consider the ultrahigh-frequency limit
ω/ω0 → ∞, keeping both ω0β and F/ω0 fixed. Inspecting
qH as defined by Eq. (73), and observing that asymptot-

ically Ω =
√
(ω0 − ω)2 + F 2 ∼ ω for ω/ω0 → ∞, one

finds qH → 1, and hence

lim
ω/ω0→∞

ω0ϑH = 0 ; (84)

as shown by Fig. 1, this limit is approached with negative
quasitemperatures. This means that for high driving fre-

quencies all Floquet states are populated almost equally,
independent of both the driving amplitude and the bath
temperature.
(iii) The static limit of vanishing driving amplitude,

F/ω0 → 0, yields

lim
F/ω0→0

ω0ϑL = lim
F/ω0→0

ω0ϑH =
ω0β

1− ω/ω0
. (85)

Once again, this apparently strange expression, exhibit-
ing a pole at ω = ω0 which is prominently visible in Fig. 1,
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F

ω0

2
F

ω0

ω ω0

ω0 β

2

β
ω0 ϑ

FIG. 2: Inverse dimensionless quasitemperature ω0ϑ for
ω0β = 1 and F/ω0 = 100 as a function of ω/ω0 in the regime
0 < ω/ω0 < 2F/ω0. We show the exact values of ω0ϑL (red
line), as well as the asymptotic form (86) (green dashes).

is fully in agreement with the expectation that the “peri-
odic thermodynamics” should reduce to ordinary thermo-
dynamics when the time-periodic driving force vanishes.
Namely, for F/ω0 → 0 the system possesses the energy
eigenvalues Em = mω0, whereas the quasienergies (50)
or (52) reduce to εm = m|ω0−ω| or εm = ω/2+m|ω0−ω|
with m = s, . . . ,−s, while the Floquet states approach
the energy eigenstates. Since the parametrization of their
occupation probabilities in terms of either the distribu-
tion (77) or the standard canonical distribution then
must lead to identical values, one obtains the require-
ment βω0 = ϑ(ω0−ω) for 0 < ω < ω0, which immediatly
furnishes the above limit. In the case of blue detuning,
for 0 < ω0 < ω, the formal inversion of the quasienergy
levels expressed by Eq. (56) yields an an additional “mi-
nus” sign, again leading to the limit (85).

(iv) In the converse strong-driving limit F/ω0 → ∞ we
first focus on the regime ω ∼ F where ϑ = ϑL > 0. After
some transformations we obtain the asymptotic form

ω0ϑL ∼ ω0β − ωβ√
(F/ω0)2 + (ω/ω0)2

(86)

in this regime, so that the inverse quasitemperature de-
creases monotonically with increasing driving amplitude,
as exemplified by Fig. 2.

In contrast, for ω > ωc as given by Eq. (80) we have
ϑ = ϑH < 0. Asymptotically, here we find

ω0ϑH ∼ − ω0β

ω/ω0
+

ω0β

2(ω/ω0)2
(F/ω0)

2 . (87)

This asymptotic function exhibits a pronounced mini-
mum at ω/ω0 = (F/ω0)

2 of depth ω0ϑH ∼ −ω3
0β/(2F

2),
depicted in Fig. 3.

F
2

ω0
2

5
F
2

ω0
2

10
F
2

ω0
2

ω/ω0

-
ω0

3 β

2 F
2

0

ω0
3 β

2 F
2

ω0 ϑ

FIG. 3: Inverse dimensionless quasitemperature ω0ϑ for
ω0β = 1 and F/ω0 = 100 as a function of ω/ω0 in the
regime ω/ω0 > (F/ω0)

2/2. We show the exact values of ω0ϑL

(red line) and ω0ϑH (blue line), together with the asymptotic
form (87) (green dashes).

V. APPLICATION: PERIODICALLY DRIVEN

PARAMAGNETS

A. Calculation of quasithermal expectation values

Starting from the proposition that the Floquet states of
a periodically driven spin system be populated according
to the distribution (77) we introduce the quasithermal
average of the spin component in the direction of the
static field,

〈Sz〉q ≡ 1

Z2

s∑

m=−s

〈um(t)|Sz|um(t)〉 exp(−ϑεm) . (88)

In order to evaluate this expression we utilize the repre-
sentation (54) of the Floquet functions, giving

Z2〈Sz〉q =

s∑

m=−s

〈m|P (s)† Sz P
(s)|m〉 exp(−ϑεm)

= Tr
(
P (s)† Sz P

(s) exp
(
− ϑG(s)

))
. (89)

Next, we resort once more to the lifting technique: For
s = 1

2 , the decomposition (42) readily yields

P †szP = Ξ†szΞ

(45)
=

δ

Ω
sz −

√
Ω2 − δ2

Ω
sx . (90)

Applying the irrep r(s), we deduce

P (s)† Sz P
(s) = r(s)

(
P †szP

)

=
δ

Ω
Sz −

√
Ω2 − δ2

Ω
Sx . (91)

Inserting this into the above identity (89), and calcu-
lating the trace in the eigenbasis of Sz, we obtain the
important result

〈Sz〉q =
1

Zq

ω0 − ω

Ω

m∑

m=−s

m e−ϑΩm , (92)
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valid for both integer and half-integer s. Although
the unusual-looking prefactor (ω0 − ω)/Ω indeed implies
that the z-component of the magnetization vanishes for
ω = ω0, it does not imply that the magnetization re-
verses its direction when ω is varied across ω0, since the
reversal of the prefector’s sign can be compensated by
a simultaneous change of the sign of the quasitempera-
ture, as it happens for low driving amplitudes according
to Eq. (85).

B. Response of paramagnetic materials to

circularly polarized driving fields

As an experimentally accessible example of the above
considerations, and thus as a possible laboratory appli-
cation of periodic thermodynamics, we consider the mag-
netization of an ideal paramagnetic substance under the
influence of both a static magnetic field applied in the z-
direction, and a circularly polarized oscillating magnetic
field applied in the x-y-plane. In order to facilitate com-
parison with the literature, here we re-install the Planck
constant ~ and the Boltzmann constant kB.
We assume that the magnetic atoms of the substance

have an electron shell with total angular momentum J ,
resulting from the coupling of orbital angular momentum
and spin, giving the magnetic moment µ = −gJµBJ .
Here µB denotes the Bohr magneton, and gJ > 0 is the
Landé g-factor. In the presence of a constant magnetic
field B0 this moment gives rise to the energy levels

Em = mgJµBB0 ≡ m ~ω0 , (93)

where m = −J . . . , J is the magnetic quantum number,
with the “plus”-sign accounting for the fact that the mag-
netic moment tends to align parallel to the applied mag-
netic field, favoring m = −J .
Let us briefly recall the usual textbook treatment of

the ensuing thermal paramagnetism within the canonical
ensemble [27, 28], assuming the substance to possess a
temperature T . Then the canonical partition function

Z0 =

J∑

m=−J

exp

(
− Em

kBT

)
=

J∑

m=−J

exp

(
−m ~ω0

kBT

)

=

sinh

(
2J + 1

2J
y0

)

sinh
( y0
2J

) (94)

which depends on the dimensionless quantity

y0 ≡ gJµBB0

kBT
J =

~ω0

kBT
J (95)

serves as moment-generating function, in the sense that
the thermal expectation value of the magnetization M
is obtained by taking the appropriate derivative of its

logarithm, namely,

〈M〉 =
N

V
〈µ〉 = −N

V
gJµB〈m〉

=
N

V

∂

∂B0
kBT lnZ0 . (96)

Here N
V denotes the density of contributing atoms.

Working out this prescription, one finds the magnetiza-
tion [27, 28]

〈M〉 =M0BJ (y0) , (97)

where

M0 =
N

V
gJµBJ (98)

denotes the saturation magnetization, and

BJ (y) ≡
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
(99)

is the so-called Brillouin function of order J [25]; this
theoretical prediction (97) has been beautifully confirmed
in low-temperature experiments with paramagnetic ions
by Henry [26] already in 1952. In the weak-field limit
µBB0 ≪ kBT one may use to approximation

BJ(y) ≈
J + 1

J

y

3
for 0 < y ≪ 1 , (100)

giving

〈M〉 ≈ N

V

(gJµB)
2J(J + 1)

3kBT
B0 . (101)

Returning to periodic thermodynamics, let us add the
circularly polarized field B1(cosωt, sinωt, 0) perpendicu-
lar to the constant one. Then the Rabi frequency (38)
can be written as

Ω =
√
(ω0 − ω)2 + (gJµBB1/~)2 , (102)

where

ω0 =
gJµBB0

~
(103)

measures the strength of the static field in accordance
with Eq. (93). Also note that the sign of the time-
independent contribution ω0Sz to the Hamiltonian (46)
now has to be inverted, in order to account for the proper
ordering of the energy eigenvalues (93). Assuming that
the spins’ environment is correctly described by a ther-
mal oscillator bath with constant spectral density J0, so
that the distribution (77) governs the Floquet-state occu-
pation probabilities, we can invoke the above result (92)
to write the observable magnetization in the form

〈M〉q = −N
V
gJµB〈Sz〉q (104)

= −N
V

gJµB

Zq

ω0 − ω

Ω

J∑

m=−J

m exp

(
−m ~Ω

kBτ

)
,



11

where τ = 1/(kBϑ) is the quasitemperature, and

Zq =

J∑

m=−J

exp

(
−m ~Ω

kBτ

)
(105)

is the corresponding partition function (79). Quite re-
markably, this expression (104) is a perfect formal analog
of the previous Eq. (96), since we have

〈M〉q =
N

V

∂

∂B0
kBτ lnZq , (106)

taking into account the nonlinear dependence of the
Rabi frequency (102) on the static field strength B0.
Hence, the resulting quasithermal magnetization can be
expressed in a manner analogous to Eq. (97), namely,

〈M〉q =M1BJ(y1) , (107)

with modified saturation magnetization

M1 =
ω0 − ω

Ω
M0 , (108)

and the argument of the Brillouin function now depend-
ing on the quasitemperature,

y1 =
~Ω

kBτ
J . (109)

For consistency, this prediction (107) must reduce to the
usual weak-field magnetiziation (101) when both B1 → 0
and µBB0 ≪ kBT . This is ensured by the limit (85): For
sufficiently small B1, the quasitemperature τ is related
to the actual bath temperature T through

1

kBτ
≈ ω0

ω0 − ω

1

kBT
. (110)

Inserting this into Eq. (107), one can employ the approx-
imation (100) for frequencies ω not too close to ω0. In
this way one recovers the expected expression (101) un-
less ω ≈ ω0, in which case one has 〈M〉q ≈ 0.
As is evident from the above discussion, under typical

ESR conditions with weak driving amplitudes, such that
B1/B0 is on the order of 10−2 or less [40], the difference
between the quasithermal magnetization 〈M〉q and the
customary thermal magnetization 〈M〉 is more or less
negligible, except for driving frequencies close to reso-
nance. This is illustrated in Fig. 4 for gJµBB1/(~ω) =
0.01, where we have chosen the bath temperature accord-
ing to the fixed driving frequency, kBT = ~ω. The van-
ishing of the magnetization at ω0 = ω is due to the pref-
actor ω0 − ω in (108). The second sharp dip at ω0 ≈ 2ω
can be explained by the vanishing of the inverse qua-
sitemperature ϑ, see (80). Other measurable effects have
to be expected in the strong-driving regime.
A particularly striking observation can be made in

Fig. 5, where kBT = ~ω0 and J = 1: Under strong driv-
ing, there the ratio 〈M〉q/〈M〉 actually becomes negative

0.5 1.0 1.5 2.0 2.5 3.0
ω0/ω

0.2

0.4

0.6

0.8

1.0

〈M〉/〈M〉sat

FIG. 4: Magnetization 〈M〉 divided by the saturation mag-
netization (98) as a function of ω0/ω. The blue curve rep-
resents the ordinary thermal magnetization (97), the red
one the quasithermal magnetization (107) for weak driving,
gJµBB1/(~ω) = 0.01. Here we have set kBT = ~ω and
J = 7/2.

FIG. 5: Ratio 〈M〉q/〈M〉 of the quasithermal magnetiza-
tion (107) and the customary magnetization (97) as func-
tion of ω/ω0 and F/ω0, with F = gJµBB1/~. Parameters
chosen here are kBT = ~ω0 and J = 1. Along the green
line ω = ω0 and along the green parabola ω = ωc given by
Eq. (80) the quasithermal magnetization vanishes, so that
〈M〉q/〈M〉 becomes negative for strong driving with frequen-
cies ω0 < ω < ωc.

for frequencies ω0 < ω < ωc, implying that the param-
agnetic material effectively becomes a diamagnetic one.
The possibility of turning a paramagnet into a diamagnet
through the application of strong time-periodic forcing is
a “hard” prediction of periodic thermodynamics which
now awaits its experimental verification.

VI. DISSIPATION

Since a bath-induced transition from a Floquet state n
to a Floquet state m is accompanied by all frequencies
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ω
(ℓ)
mn as introduced in Eq. (9), the rate of energy dissi-

pated in the quasistationary state is given by [29]

R = −
∑

mnℓ

~ω(ℓ)
mn Γ

(ℓ)
mn pn . (111)

This expression can now be evaluated for all spin quan-
tum numbers s. In addition to the partial transition
rates (19) for neigboring Floquet states m = n± 1 listed
in Secs. IVA and IVB, Eq. (111) also requires the rates
for pseudotransitions with m = n. Again dividing by
Γ0 = 2πγ2J0, we obtain the dimensionless diagonal tran-
sition rates

Γ(±1)
mm = ± (2m)2F 2

16 (e±βω − 1)Ω2
(112)

for m = s, . . . ,−s, valid for both cases 0 < ω < Ω and
0 < Ω < ω. In order to represent R in a condensed
fashion we define the polynomials

Ps(q) ≡ −2

2s∑

m=0

(m− s)2qm

Qs(q) ≡ 1

2

2s−1∑

m=0

(m+ 1)(2s−m)qm

zs(q) ≡
2s∑

m=0

qm , (113)

together with the expression

A±(q) ≡
(
eβ(±ω+Ω)q − 1

)
(δ ± Ω)2(ω ± Ω)

eβ(±ω+Ω) − 1
. (114)

Dividing by ω0Γ0, one obtains a dimensionless dissipation
rate which can now be written in the form

R =
Ps(q)ω F

2 +Qs(q)
(
A+(q)∓A−(q)

)

8 zs(q)Ω2
, (115)

where one has to insert either qL or qH for q, in accor-
dance with the case distinction (75), and the “∓”-sign
in the numerator becomes “minus” for 0 < ω < Ω, but
“plus” for 0 < Ω < ω.
After resolving all symbols R will be a function of five

arguments, R = R(s, β, ω, ω0, F ), which makes the dis-
cussion more difficult than in the case of s = 1

2 that has
been considered in Ref. [29]. Thus, here we mention only
the most perspicuous aspects of the dissipation function.
Generally, we observe that the dissipation rate is always
non-negative, R ≥ 0, but a proof of this is beyond the
scope of the present article and will be published else-
where.
Recall that for both ω = ω0 with 0 < F < ω0 and

ω = ωc =
(
F 2 + ω2

0

)
/(2ω0) we have q = 1, and hence

ϑ = 0. It turns out that along these two curves in the
(ω, F )–plane the dimensionless rate R takes on the value

R0 =
1

6
s(s+ 1) , (116)

FIG. 6: The dimensionless dissipation rate R for s = 1 and
ω0β = 1 as a function of ω/ω0 and F/ω0. The blue part of the
graph corresponds to the high-frequency regime 0 < Ω < ω,
the red one to the low-frequency regime 0 < ω < Ω. Along
the line ω = ω0 with 0 < F < ω0 and along the parabola
ω = ωc given by Eq. (80) the dissipation rate takes on the
constant value s(s+ 1)/6 = 1/3 (green lines).

FIG. 7: As Fig. 6, but for s = 10. Along the line ω =
ω0 with 0 < F < ω0 and along the parabola ω = ωc given
by Eq. (80) the dissipation rate takes on the constant value
s(s+1)/6 = 55/3 (green lines). The blue curve with F/ω0 ≈ 0
possesses two unresolved sharp maxima close to an equally
sharp minimum at ω≈ω0.

as visualized in Figs. 6 and 7 for s = 1 and s = 10,
respectively. For 1

2 ≤ s ≤ 7
2 this value constitutes a

smooth maximum for ω = ω0 and small F/ω0 which be-
comes increasingly sharp for F/ω0 → 0. However, for
s > 7

2 the previous maximum turns into a local mini-
mum, the sharpness of which increases for s → ∞. In
contrast, along the line ω = ωc this value R0 remains a
local maximum of R for all s, as long as F < ω0.
For s → ∞ the scaled dissipation rate r ≡ R/(s2 + s)

tends to the limit

r∞(ω/ω0, F/ω0) ≡
ω

4ω0

F 2

F 2 + (ω − ω0)2
(117)
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FIG. 8: The scaled dissipation rate r = R/(s2 + s) for s = 1

2
,

5, 10, 20, 50, 200, with bath temperature ω0β = 1 and driving
amplitude F/ω0 = 1/4, as a function of ω/ω0. The six curves
increase with s for ω > ωc. They all meet at the two points
with coordinates (ωc/ω0, 1/6) and (1, 1/6). The asymptotic
envelope (117) is given by the red curve, with its maximum
(ωm/ω0, rm) being determined by Eqs. (118) and (119).

FIG. 9: The asymptotic limit r∞(ω/ω0, F/ω0) of the scaled
dissipation rate R/(s2+ s) for s → ∞ according to Eq. (117).
The particular curve with F/ω0 = 1/4 considered in Fig. 8
is shown in red color. The maximum values of the func-
tions r∞(ω/ω0, F/ω0) with constant F according to Eqs. (118)
and (119) are indicated by a black curve.

which is independent of the heat-bath temperature. As
illustrated by Fig. 8 the convergence proceeds pointwise
except for ω = ωc and ω = ω0 when F < ω0, where
r = 1/6 for all s. For fixed F the asymptotic function
r∞(ω/ω0, F/ω0) has a global maximum at

ωm/ω0 =
√
(F/ω0)2 + 1 , (118)

adopting the value

rm =
1

8

(
1 +

√
(F/ω0)2 + 1

)
, (119)

as depicted in Figs. 8 and 9.

VII. DISCUSSION

A simple harmonic oscillator which is permanently
driven by an external time-periodic force while kept
in contact with a thermal oscillator bath represents a
nonequilibrium system, but nonetheless adopts a steady
state and develops a quasistationary distribution of
Floquet-state occupation probabilities which equals the
Boltzmann distribution of the equilibrium model ob-
tained in the absence of the driving force, being char-
acterized by precisely the same temperature as that of
the bath it is coupled to [11, 29].
The system considered in the present work, a spin with

arbitrary spin quantum number s exposed to a circu-
larly polarized driving field while interacting with a bath
of thermally occupied harmonic oscillators, may be re-
garded as the next basic model in a hierarchy of analyti-
cally solvable models on Periodic Thermodynamics. Ex-
actly as in the case of the linearly forced harmonic oscil-
lator, the system-bath interaction here induces nearest-
neighbor coupling among the Floquet states of the time-
periodically driven system, so that the model’s transi-
tion matrix (18) is tridiagonal, thus enforcing detailed
balance. Again, the resulting quasistationary Floquet
distribution turns out to be Boltzmannian, but now with
a quasitemperature which differs from the physical tem-
perature of the bath. Already the mere fact that a time-
periodically driven quantum system in its steady state
may exhibit a quasitemperature which is different from
the actual temperature of its environment, and which
can be actively controlled by adjusting, e.g., the ampli-
tude or frequency of the driving force, in itself constitutes
a noteworthy observation, suggesting that periodic ther-
modynamics generally may be far more subtle than usual
equilibium thermodynamics based on some effective Flo-
quet Hamiltonian.
Importantly, our model system not only is of basic the-

oretical interest, but also leads to novel predictions con-
cerning future experiments with paramagnetic materials
in strong circularly polarized fields. The very existence of
a quasistationary Floquet distribution which is different
from the distribution characterizing thermal equilibrium
implies that the magnetic response of such a periodically
driven material can be quite different from that of the un-
driven one; as we have demonstrated in Sec. VB, a strong
circularly polarized driving field effectively may turn a
paramagnetic material into a diamagnetic one. While we
are not in a position to ascertain whether the correspond-
ing parameter regime can be reached with already exist-
ing experimental set-ups [41], it might be worthwhile to
design specifically targeted measurements for confirming
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this particularly striking prediction of periodic thermo-
dynamics.
Yet, there is still more at stake here. When Bril-

louin published his now-famous treatise [25] on thermal
paramagnetism in 1927, this was essentially a blueprint
for an experimental demonstration of the quantization
of angular momentum, whereas the further thermody-
namical input into the theory was not to be questioned,
being backed by the overwhelming generality of equilib-
rium thermodynamics [27, 28]. At the advent of peri-
odic thermodynamics more than 90 years later, one faces
an inverted situation: With the quantization of angular
momentum being firmly established, it is nonequilibrium
physics in the guise of periodic thermodynamics which
is to be examined in measurements of paramagnetism
under time-periodic driving. As has been stressed al-
ready by Kohn [10] and clarified by Breuer et al. [11],
quasistationary Floquet distributions are not universal,
depending on the very form of the system-bath interac-
tion. Here we have assumed an interaction of the natural-
appearing type (11) with coupling (57) proportional to
the spin operator Sx on the system’s side and simple cre-

ation and annihilation operators (13) on the side of the
bath, combined with the assumption of a constant spec-
tral density of the bath, but there are other possibilities.
Measurements of magnetism under strong driving will
be sensitive to such issues; two materials which exhibit
precisely the same paramagnetic response in the absence
of time-periodic forcing may react differently to a static
magnetic field once an additional time-periodic field has
been added. Thus, despite the formal similarity of our
key results (106) and (107) to their historical anteces-
sors (96) and (97), these former equations may have the
potential to open up an altogether new line of research.
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