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Motivated by a novel cyclic compound Fe10Gd10 with record ground state spin in

which the arrangement of magnetic ions with s = 5
2 and s = 7

2 corresponds to a saw-

tooth chain we investigate the thermodynamics of the delta-chain with competing

ferro- and antiferromagnetic interactions. We study both classical and quantum

versions of the model. The classical model is exactly solved and quantum effects

are studied using full diagonalization and a finite temperature Lanczos technique for

finite delta-chains as well as modified spin wave theory. It is shown that the main

features of the magnetic susceptibility of the quantum spin delta chain are correctly

described by the classical spin model, while quantum effects significantly change the

low-temperature behavior of the specific heat. The relation of the obtained results

to the Fe10Gd10 system is discussed.
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FIG. 1. The delta-chain model.

I. INTRODUCTION

Low-dimensional quantum magnets on geometrically frustrated lattices have attracted

much interest in last years [1–3]. An important class of such systems includes lattices

consisting of triangles. An interesting and typical example of these objects is the delta or

the sawtooth Heisenberg model consisting of a linear chain of triangles as shown in Fig. 1.

The Hamiltonian of this model has the form:

H = J1

N∑
i=1

σi · (Si + Si+1) + J2

N∑
i=1

Si · Si+1 (1)

The interaction J1 acts between the apical (σi) and the basal (Si) spins, while J2 is

the interaction between neighboring basal spins. A direct interaction between the apical

spins is absent. The quantum s = 1
2

delta-chain with antiferromagnetic (AF) exchange

interactions J1 and J2 (J1, J2 > 0) has been studied extensively and it exhibits a variety

of peculiar properties [4–8]. At the same time the s = 1
2

delta-chain with ferromagnetic

J2 and antiferromagnetic J1 interaction (F-AF delta-chain) is very interesting as well and

has unusual properties. In particular, the ground state of this model is ferromagnetic for

a = J2

|J1| <
1
2

and as it is believed [9] that it is ferrimagnetic for a > 1
2
. The critical point
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a = 1
2

is the transition point between these two ground state phases. The s = 1
2

F-AF

delta-chain at the critical point a = 1
2

has been studied in Ref. [10]. It is an example of

a quantum system with a flat excitation band [4, 11], that provides the possibility to find

several rigorous results for the quantum many-body system at hand. Thus, it was shown

[10] that the ground state at the critical point consists of localized multi-magnon complexes,

and it is macroscopically degenerate. An additional motivation for the study of this model

is the existence of real compounds, malonate-bridged copper complexes [9, 12–14], which

are described by this model.

The s = 1
2

F-AF model can be extended to the delta-chain composed of two types of

spins (σi,Si) characterized by the spin quantum numbers Sa and Sb of the apical and basal

spins, respectively. The ground state of this model is ferromagnetic for a = J2

|J1| <
Sa

2Sb
and

non-collinear ferrimagnetic for a > Sa

2Sb
. The critical point between these phases is ac = Sa

2Sb
.

The ground state at the critical point consists of exact multi-magnon states as well as for

the s = 1
2

model and has similar macroscopic degeneracy [10].

Recently a mixed 3d/4f cyclic coordination cluster

[Fe10Gd10(Me−tea)10(Me−teaH)10(NO3)10]20MeCN (i.e. Fe10Gd10) has been synthesized

and studied [15]. This cluster consists of 10 + 10 alternating gadolinium and iron ions and

its spin arrangement corresponds to the delta chain with Gd and Fe ions as the apical

and basal spins correspondingly. As it was established in Ref. [15] the exchange interaction

between Fe ions is antiferromagnetic (J2 = 0.65K) and the interaction between Fe and Gd

is ferromagnetic (J1 = −1.0K). The spin values of Fe and Gd ions are S = 5
2

for FeIII and

S = 7
2

for GdII . The ground state spin of this cluster is S = 60 which is one of the largest

spin of a single molecule. This molecule is a finite-size realization of the F-AF delta-chain

with Sa = 7
2

and Sb = 5
2
. Remarkably, according to the estimate of the values of J1 and J2

in Ref. [15] the frustration parameter is a = 0.65, i.e. it is very close to the critical value

of ac = 0.7. Therefore, this molecule, although it is not directly at the critical point and

located in the F phase, has properties which are strongly influenced by the nearby quantum

critical point. Because the spin quantum numbers for Fe and Gd ions are rather large it

seems that the classical approximation for (Sa, Sb) F-AF delta-chain is justified, except at

very low temperatures when quantum fluctuations can substantially change the properties

of the system.

To obtain the classical version of Hamiltonian (1) we set σi = Sa~ni and Si = Sb~ni, where
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~ni is the unit vector at the i-th site. Taking the limit of infinite Sa and Sb with a finite ratio

Sa

Sb
we arrive at the Hamiltonian of the classical delta chain

H = −
2N∑
i=1

~ni · ~ni+1 + α
N∑
i=1

~n2i−1 · ~n2i+1, (2)

where N is the number of triangles. In (2) we take the apical-basal interaction as −1 and

the basal-basal interaction α as

α =
J2Sb
|J1|Sa

= a
Sb
Sa

(3)

which is the frustration parameter of the model.

The ground state phase diagram of the classical model consists of a ferromagnetic phase

at a < Sa

2Sb
(α < 1

2
) and a ferrimagnetic one at a > Sa

2Sb
(α > 1

2
). Remarkably, the transition

between these phases occurs at the same frustration parameter (ac = Sa

2Sb
) as in the quantum

model. In terms of α the critical point between the ferromagnetic and ferrimagnetic phases

is at α = 1
2
.

One of the goals of this paper is the study of the thermodynamics of the classical version

of F-AF Heisenberg model (1), where we put special attention on the parameter region

corresponding to Fe10Gd10. In what follows we use the normalized temperature

t =
T

|J1|SaSb
(4)

and the corresponding inverse temperature β = 1/t to present the thermodynamic properties

of model (2). Since the classical ground state exhibits a non-trivial macroscopic degeneracy

for α > 1
2
, see Sec. II, we may expect unconventional low-temperature physics especially in

the ferromagnetic regime close to the critical point αc = 1
2
.

The effect of quantum fluctuations at low temperatures will be studied by a combination

of full exact diagonalization (ED) using J. Schulenburg’s spinpack code [16] and the finite

temperature Lanczos (FTL) technique [17, 18] as well as by the modified spin-wave theory

(MSWT) [25].

The paper is organized as follows. In Sec. II we describe the ground state of model

(2) in different regions of frustration parameter α. The partition function, the correlation

functions, the specific heat and magnetic susceptibility are calculated in Sec. III. In Sec. IV

explicit analytical results for the partition function, the spin correlation functions and the

magnetic susceptibility in the low-temperature limit are presented for different regions of
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the parameter α. In Sec. V the scaling law near the critical point α = 1
2

is established and

finite-size effects are estimated. In Sec. VI the quantum effects in the ferromagnetic phase

are studied with a particular focus on that value of the frustration parameter α which is

relevant for Fe10Gd10.

II. GROUND STATE

We start our study of model (2) from the determination of the ground state. For this

aim it is useful to represent Hamiltonian (2) as a sum over triangle Hamiltonians

H =
N∑
i=1

H∆(i), (5)

where the Hamiltonian of a triangle has the form

H∆(i) = −~n2i−1 · ~n2i − ~n2i · ~n2i+1 + α~n2i−1 · ~n2i+1. (6)

To determine the ground state of model (5) we need to find the spin configuration on each

triangle which minimizes the classical energy. It turns out that the lowest spin configuration

on a triangle is different in the regions α ≤ 1
2

and α > 1
2
. For α ≤ 1

2
the ground state is the

trivial ferromagnetic one with all spins on each triangle pointing in the same direction. The

global spin configuration of the whole system in this case is obviously ferromagnetic as well.

For α > 1
2

the lowest classical energy on each triangle is given by the ferrimagnetic

configuration, where all spins of triangle ~n1, ~n2, ~n3 lie in the same plane and the spin ~n2

forms an equal angle θ0 with spins ~n1 and ~n3:

~n1 · ~n2 = ~n2 · ~n3 = cos θ0

~n1 · ~n3 = cos (2θ0)

cos θ0 =
1

2α
. (7)

So, each triangle has the non-zero magnetization m∆ = 1/α + 1, the direction of which

coincides with the apical spin ~n2. The spins of the next triangle (~n3, ~n4, ~n5) also form the

ferrimagnetic configuration in the ground state. But in the general case the spins (~n3, ~n4, ~n5)

can lie in any plane, formed by the rotation of the first triangle plane around the spin ~n3

by an arbitrary angle [26]. So, the ground state of the second triangle is degenerate over

the angle between planes (~n1, ~n2, ~n3) and (~n3, ~n4, ~n5). Then the plane of the third triangle



6

1n


2n


0
0

3n


4n


5n


6n


7n


8n


9n


FIG. 2. Ground state spin configurations of model (2) for α > 1
2 as random walk on unit sphere.

(~n5, ~n6, ~n7) is rotated by an arbitrary angle around spin ~n5, and so on. Hence, the global

ground state of the whole system for α > 1
2

is macroscopically degenerate. Each ground

state spin configuration for α > 1
2

can be represented as a sequence of the points lying on

the unit sphere with an equal distance between the neighboring points as shown in Fig. 2.

III. PARTITION FUNCTION

The partition function Z of model (2) is

Z = (
2N∏
i=1

∫
dΩi) exp (−βH) , (8)

where dΩi is the differential of the solid angle for the i-th spin, dΩi = sin θidθidϕi/4π. Using

the dual transformation employed in Ref. [19] we choose a local coordinate system connected

with the i-th spin. The zi axis is parallel to ~ni and the yi axis is in the plane spanned by

~ni and ~ni+1. A new set of the angles (θi, ϕi) is introduced, where θi is the angle between

~ni+1 and ~ni and ϕi is the angle between the components of ~ni+1 and ~ni−1 projected onto the

(xi,yi) plane. In terms of these variables the Hamiltonian on the triangle (6) becomes

H∆(i) = − cos θ2i−1 − cos θ2i + α cos θ2i−1 cos θ2i + α sin θ2i−1 sin θ2i cosϕ2i. (9)

As follows from the latter equation, the total Hamiltonian (5) does not contain angles

ϕ1, ϕ3, ϕ5 . . ., on which the partition function can be integrated. As a result, the partition
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function reduces to the product of independent multipliers and takes the form

Z =
N∏
i=1

Zi = ZN
∆ , (10)

where Z∆ is ‘the partition function’ of an isolated triangle

Z∆ =
1

8π

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dϕ2e

−βH∆(1). (11)

The integral over the angle ϕ2 can be carried out analytically:

Z∆ =
1

4

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2e

−βH1I0 (βH2) , (12)

where

H1 = − cos θ1 − cos θ2 + α cos θ1 cos θ2

H2 = α sin θ1 sin θ2 (13)

and

I0 (x) =
1

2π

∫ 2π

0
ex cosϕdϕ (14)

is the Bessel function of imaginary argument.

Thus, the problem of the calculation of the partition function of model (2) is reduced

to the double integral (12). All thermodynamic quantities can be expressed through the

corresponding derivatives of the partition function.

A. Specific heat

The specific heat can be expressed through the second derivative of the partition func-

tion. However, in order to avoid loss of accuracy caused by the numerical derivatives it is

convenient to use the following equation for the calculation of the specific heat:

C = β2
〈
H2

∆

〉
− β2 〈H∆〉2 . (15)

Here 〈H∆〉 is the energy of each triangle (6), which is

〈H∆〉 = −2 〈~n1 · ~n2〉+ α 〈~n1 · ~n3〉 , (16)

where local correlators 〈~n1 · ~n2〉 and 〈~n1 · ~n3〉 on one triangle are given by

〈~n1 · ~n2〉 =
1

8πZ∆

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dϕ2e

−βH∆ cos θ1 (17)

〈~n1 · ~n3〉 =
1

8πZ∆

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dϕ2e

−βH∆ (cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ2) .
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FIG. 3. Specific heat as a function of the normalized temperature for the model (2) for several

values of α.

The expectation value 〈H2
∆〉 is

〈
H2

∆

〉
=

1

4Z∆

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2F (θ1, θ2) e−βH∆ , (18)

where

F (θ1, θ2) =
(
H2

1 +H2
2

)
I0 (βH2) +H2

(
2H1 + β−1

)
I1 (βH2) (19)

and H1, H2 are given by Eqs. (13).

In Fig. 3 we present the results for the specific heat per triangle as a function of the

normalized temperature t for different values of α. Note that α = 0.45 corresponds to the

situation in Fe10Gd10. As it is seen in Fig. 3 C(t) (in kB units) has different low temperature

limits for α < 1
2

and α ≥ 1
2
:

C(0) = 2, α <
1

2

C(0) =
3

2
, α ≥ 1

2
. (20)

C(t) approaches 2 in the ferromagnetic region α < 1
2

because the model is the classical one

with two degrees of freedom per spin (four degrees per triangle). But for α ≥ 1
2

the specific
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FIG. 4. Comparison of the specific heat calculated by 11th-order HTE and the corresponding Pade

approximant [6,5] with the exact classical result for α = 0.45.

heat tends to 3
2
. It means that only three degrees of freedom per triangle contribute to the

specific heat and there is one local rotational degree (ϕ3) of freedom which costs no energy

and gives no contribution to the thermodynamics.

The low temperature behavior of C(t) for α slightly lower the point 1
2

has the following

characteristic feature. C(t) sharply increases from C ' 3
2

to C = 2 when t tends to zero.

As will be shown in Sec. V this feature is consistent with the scaling dependence of physical

quantities in the vicinity of the critical point α = 1
2
. According to Eq. (61), see below, the

scaling variable is t/(α− 1
2
)2. Therefore, we can say that the system behaves as in the critical

point α = 1
2

for temperatures t > (α − 1
2
)2, and starts to feel the small deviation from the

critical point at very low temperatures t < (α− 1
2
)2.

For high temperatures we obtained an analytical expansion up to 11-th order in t−1 [20].

The leading terms of this high temperature expansion (HTE) are

C =
2 + α2

3t2
− 2α

3t3
+O(t−4). (21)

The results of HTE and the corresponding Pade approximant [6,5] are compared with the
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exact classical C(t) for α = 0.45 in Fig. 4. As it is seen in Fig. 4 the raw HTE series coincides

with exact result for t ≥ 0.9 and the Pade approximant [6,5] extends the confidence region

up to t ≥ 0.4.

B. Correlation functions

In this subsection we derive the expressions for the spin correlation function ~ni · ~nj and

the zero field susceptibility. Since we work with the local coordinate system directed so that

the spin vector on each site is directed along the z axis, to find the scalar product of spin

vectors ~nl ·~nl+r we need to express the vector ~nl+r in the local coordinate system located on

the site l. This can be represented as a chain of successive rotations [19]:

~nl · ~nl+r = (0, 0, 1) T̂2T̂3 . . . T̂r


0

0

1

 , (22)

where

T̂i = R̂x(θi−1)R̂z(ϕi) (23)

and the rotation operators over the axes x and z are

R̂x(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (24)

R̂z(ϕ) =


− cosϕ − sinϕ 0

sinϕ − cosϕ 0

0 0 1

 . (25)

Then, for the averages one has

〈~nl · ~nl+r〉 =
1

Zr
∆

r∏
i=1

1

4π

∫ π

0
sin θidθi

∫ 2π

0
dϕi+1e

−βH · (0, 0, 1)T2T3 . . . Tr


0

0

1

 . (26)
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Since total Hamiltonian (5) does not contain the angles ϕ1, ϕ3 . . ., integration over these

angles can be carried out explicitly, which results in

∫ 2π

0
R̂z(ϕ)

dϕ

2π
=


0 0 0

0 0 0

0 0 1

 =


0

0

1

 · (0, 0, 1) . (27)

This implies that the long-distance correlator splits into the product of correlators on all

intermediate triangles

〈
~n1(2) · ~n2r+1(0)

〉
=
〈
~n1(2) · ~n3

〉
〈~n3 · ~n5〉 〈~n5 · ~n7〉 . . .

〈
~n2r−1 · ~n2r+1(0)

〉
. (28)

Using the fact that all local correlators of type 〈~n2i−1 · ~n2i+1〉 are equal to 〈~n1 · ~n3〉 and

〈~n2 · ~n3〉 = 〈~n1 · ~n2〉 we obtain the expressions for the spin correlation functions:

〈~n2n+1 · ~n2m+1〉 = 〈~n1 · ~n3〉|m−n|

〈~n2n · ~n2m+1〉 = 〈~n1 · ~n2〉 〈~n1 · ~n3〉|m−n|

〈~n2n · ~n2m〉 = 〈~n1 · ~n2〉2 〈~n1 · ~n3〉|m−n|−1 . (29)

The local correlators 〈~n1 · ~n2〉 and 〈~n1 · ~n3〉 are given by Eqs. (17).

As follows from Eq. (29) the spin correlation functions decay exponentially with the

correlation length

ξ = − 1

ln |〈~n1 · ~n3〉|
. (30)

The analysis of the behavior of correlation functions (29) will be given in Sec. V.

Now we can calculate the zero-field magnetic susceptibility per spin

χ =
1

6TN

∑
i,j

〈
~Si · ~Sj

〉
. (31)

Using the obtained correlation functions (29) we arrive at the following expression for the

magnetic susceptibility:

χt =
(1 + x 〈~n1 · ~n2〉)2

3x(1− 〈~n1 · ~n3〉)
+
x2 − 1

6x
, (32)

where x = Sa/Sb.

The high temperature behavior of the susceptibility is obtained in the analytical form up

to 11-th order in t−1 [20]. The leading terms of HTE at x = 1 are

χ(t) =
1

3t
+

2− α
9t2

+
2− 4α + α2

27t3
+O(t−4) (33)
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FIG. 5. Comparison of the susceptibility calculated by 11th-order HTE and the corresponding

Pade approximant [6,5] with the exact classical result for α = 0.45.

The dependencies χ(t) obtained by HTE up to 11-th order and the corresponding Pade

approximant [6,5] for α = 0.45 are compared with the exact result in Fig. 5. As one can see

in Fig. 5 the raw HTE series separates from the exact result at t ∼ 0.5, whereas the Pade

approximant [6,5] coincides with the exact result up to t ∼ 0.2.

In the case of the ferromagnetic short-range order, when spins on one triangle ~n1, ~n2, ~n3

are almost parallel, the correlation length (30) is large and the susceptibility relates to the

correlation length as

χt =
(1 + x)2

3x
ξ. (34)

IV. LOW TEMPERATURE LIMIT

In general, Eq. (32) completely describes the behavior of the magnetic susceptibility as

a function of the temperature and the frustration parameter α. However, in this Section we

pay special attention to the low temperature limit, where the explicit analytical results will

help us to establish the scaling law near the critical point.
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At T → 0 the integration in Eq. (11) can be carried out using the saddle point method.

For this aim we need to expand the exponent in Eq. (11) near the ground state of the triangle

Hamiltonian (9). Since the ground state of H∆ is different in the regions α < 1
2

and α > 1
2

and at the transition point α = 1
2
, it is necessary to study these three cases separately.

A. The case α < 1
2

In the case α < 1
2

all spins pointing in the same direction (θi = 0) in the ground state of

H∆ and we expand the exponent in Eq. (11) near the energy minimum, so that the partition

function (11) takes the form

Z∆ =
1

8π
e(2−α)β

∫ ∞
0

θ1dθ1

∫ ∞
0

θ2dθ2

∫ 2π

0
dϕ2 exp

[
−1

2
β(1− α)(θ2

1 + θ2
2)− βαθ1θ2 cosϕ2

]
.

(35)

Performing the integration we obtain

Z∆ =
exp (2β − αβ)

4β2 (1− 2α)
. (36)

The correlator 〈~n1 · ~n2〉 = 〈cos θ1〉 in the low-temperature limit is

〈~n1 · ~n2〉 = 1− 1

2

〈
θ2

1

〉
. (37)

We omit technical details and give the expression for the expectation value 〈θ2
1〉:

〈
θ2

1

〉
= 2t

1− α
1− 2α

. (38)

The correlator 〈~n1 · ~n3〉 given by Eq. (17) is calculated in a similar way, which yields:

〈~n1 · ~n2〉 = 1− t 1− α
1− 2α

〈~n1 · ~n3〉 = 1− t 2

1− 2α
. (39)

Now, substituting Eqs. (39) into Eq. (32) we obtain the low-temperature limit for the sus-

ceptibility in the case α < 1
2

χt =
(1− 2α) (1 + x)2

6tx
. (40)
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B. The case α = 1
2

In the case α = 1
2

the ground state of H∆ is ferromagnetic as well as for the case α <

1
2
. However, the denominator (1− 2α) presented in Eqs. (36), (38), (39) indicates that the

case α = 1
2

is special and it is necessary to keep more terms in the expansion of the energy

near the minimum:

H∆ = −3

2
+

1

4
(θ1 − θ2)2 − 1

48
(θ1 − θ2)4 +

1

4
θ2

1θ
2
2 +

1

2
θ1θ2(1 + cosϕ2). (41)

The form of Hamiltonian (41) suggests to change variables as

θ1 = ut1/4 + vt1/2

θ2 = ut1/4 − vt1/2. (42)

Then to the lowest power in t Hamiltonian (41) becomes:

βH∆ = −3β

2
+ v2 +

1

4
u4 +

√
β

1 + cosϕ2

2
u2. (43)

Substituting Eq. (43) into the partition function (11) and integrating it over ϕ2 we get

Z∆ =
1

2
e

3
2
ββ−5/4

∫ ∞
0

u2du
∫ ∞

0
dv exp

(
−v2 − 1

4
u4 − 1

2

√
βu2

)
I0

(
1

2

√
βu2

)
. (44)

Now we notice that the argument of the Bessel function in Eq. (44) tends to infinity at t→ 0

and we can use the asymptotic form of the Bessel function

I0 (x→∞) =
ex√
2πx

. (45)

Then the partition function can be integrated which yields

Z∆ =

√
π

8
β−3/2 exp

(
3

2
β
)
. (46)

The mean value of θ2
1 in this case is〈

θ2
1

〉
= β−1/2

〈
u2
〉

=
2√
πβ

(47)

which results in the following expressions for the correlators:

〈~n1 · ~n2〉 = 1− 1√
πβ

〈~n1 · ~n3〉 = 1− 4√
πβ

. (48)

Then, the leading term for susceptibility (32) in the low-temperature limit in the critical

point α = 1
2

is

χt =

√
π (1 + x)2

12xt1/2
. (49)
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C. The case α > 1
2

As was discussed in Sec. II the ground state of one triangle in the region α > 1
2

is

a ferrimagnetic one. Therefore, in this case we expand the Hamiltonian (9) around the

ferrimagnetic classical spin configuration:

H∆ = − 1

2α
− α + (α− 1

2α
)xy +

α

2
(x2 + y2) + (2α− 1

2α
)z2, (50)

where variables x, y, z describe the deviations around the ground state

θ1 = θ0 + x

θ2 = θ0 + y

ϕ2 = π + 2z. (51)

The partition function in this case can be written in the form

Z∆ =
sin2 θ0

8π

∫ ∞
−∞

e−βH∆dxdydz (52)

and after integration one obtains

Z∆ = β−3/2

√
π

32α
exp

(
β

2α
+ βα

)
. (53)

Spin correlators 〈~n1 · ~n2〉 and 〈~n1 · ~n3〉 are given by the ground state configuration (7), ther-

mal fluctuations in the region α > 1
2

are irrelevant for the calculation of the leading term in

the susceptibility:

χt =
(2αx+ 1)2

6x(4α2 − 1)
. (54)

Summarizing our findings for the susceptibility χ(t) we may conclude that the power-law

divergence as t→ 0 is different in all three regimes α < 1
2
, α = 1

2
, α > 1

2
, see Eqs. (40), (49),

and (54).

V. SCALING NEAR THE CRITICAL POINT AND FINITE SIZE EFFECT

In this section we analyze the obtained analytical results for low temperatures and esti-

mate the finite-size effect. As follows from Eqs. (39) and (48) the correlation length (30)
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has different low-temperature behavior in different regions:

ξ =
1− 2α

2t
, α <

1

2
(55)

ξ =
1

4

√
π

t
, α =

1

2
(56)

ξ =

[
ln

∣∣∣∣∣ 2α2

1− 2α2

∣∣∣∣∣
]−1

, α >
1

2
. (57)

For α < 1
2

the correlation length diverges in the low-temperature limit as ξ ∼ 1/t similar to

the classical ferromagnetic chain (α = 0). In the critical point α = 1
2

the correlation length

diverges as well, but by another law ξ ∼ t−1/2. In the region α > 1
2

the correlation length

remains finite at t = 0. This fact is directly related to the macroscopic degeneracy of the

ground state discussed in Sec. II, which causes the rapid decay of the correlation between

spins even at zero temperature.

As follows from Eq. (57), there are two special cases α = 1/2 and α = 1/
√

2 where the

correlation length is zero. The case α = 1/2 correspond to the critical point, and we will

analyze the behavior of the system near the critical point later.

The case α = 1/
√

2 is special, because according to Eq. (7) the angle θ0 = π/4, so that

adjacent basal spins in the ground state are orthogonal, ~n1 · ~n3 = 0. This leads to the fact

that all correlators in Eqs. (29) become zero. However, this does not mean that all spins at

this point become independent. Instead this is the point where the ferromagnetic type of

correlations of basal spins 〈~n1 · ~n2m+1〉 ∼ exp(−m/ξ) turns into the AF type: 〈~n1 · ~n2m+1〉 ∼

(−1)m exp(−m/ξ) for α > 1/
√

2. So, this is not a transition point and thermodynamic

quantities have no singularity at α = 1/
√

2.

Now let us analyze the correlation function in the ferrimagnetic region α > 1
2

at T = 0.

In absence of thermal fluctuations the system is in the ground state and the angle between

nearest basal spins is fixed and equal to 2θ0 according to Eq. (7). However, as was noted

in Sec. II the spins in each triangle can lie in any plane, which leads to the degeneracy of

the ground state. Each ground state spin configuration can be represented as a sequence

of points lying on the unit sphere with an equal distance between neighboring points in the

sequence as shown in Fig. 2. Thus, the problem of the spin correlations at zero temperature

is equivalent to the problem of a random walk with fixed finite step length 2θ0 on a unit

sphere. Eq. (29) gives the exact solution of this problem

cos(2θm) = cosm(2θ0) , (58)
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where the angle θm is defined by the relation: cos(2θm) = 〈~n1 · ~n2m+1〉. Eq. (58) is valid

for any value of the step length. In particular, when the step of the random walk is small

2θ0 � 1 (α is close to the critical point) and the number of steps is not very large, θm <∼ 1,

one can expand both sides of Eq. (58) and reproduce the common diffusion law:

θm =
√
mθ0 . (59)

Returning to the language of the correlation function, we note that the condition of the

validity of Eq. (59), θm <∼ 1, provides an estimate of the correlation length ξ = m as

ξ ∼ θ−2
0 , which is in accord with Eq. (57) for α close to 1

2
.

The analysis of Eqs. (55), (56), (57) in the vicinity of the point α = 1
2

allows us to write

the correlation length in the scaling form:

ξ(α, t) =
1

4
√
t
f (y) , (60)

where the scaling parameter

y =
2α− 1√

t
, (61)

and the scaling function f(y) has the following asymptotic:

f(y) ∼ −2y, y → −∞

f(y) ∼ 1/y, y →∞ (62)

and f(0) =
√
π. The scaling function calculated for different α and T is shown in Fig. 6.

Next we note that in the vicinity of the critical point the correlation length is large, which

allows us to use the relation between the susceptibility and the correlation length (34):

tχ(α, t) =
(1 + x)2

12x
√
t
f(y) . (63)

Eq. (63) describes the scaling form of the susceptibility in the vicinity of the critical point

and correctly reproduces Eqs. (40), (49), (54) in the corresponding limits.

In order to estimate the finite size effect one needs to compare the chain length with

the correlation length, so that another scaling parameter N/ξ appears. All above results

correspond to the thermodynamic limit when N � ξ. However, for a finite chain and

low enough temperatures, when N < ξ, another regime takes place. For example, the

susceptibility per site in the short chain case N < ξ as follows from Eq. (31) is

tχ =
(1 + x)2

6x
N . (64)
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FIG. 6. Scaling function f(y) for the correlation length and the susceptibility in the vicinity of

the critical point α = 1
2 calculated for different values of α and t. All data lie on one curve, which

confirms the scaling law.

This behavior is obviously a non-thermodynamic one. Here we notice that Eq. (63) reduces

to Eq. (34) with substitution ξ = N/2. This allows us to write the scaling form for the

susceptibility in the vicinity of the point α = 1
2

tχ(α, t,N) =
(1 + x)2

3x
ξ(α, t)F

(
2ξ(α, t)

N

)
(65)

with ξ(α, t) given by Eq. (60). The scaling function F (z) describes the finite-size effect

and has the limits F (0) = 1 and F (y) = 1/z at z → ∞, smoothly switching between

Eqs. (34) and (64). As follows from Eq. (65) the finite-size effects become important for

low temperatures and α ≤ 1
2
, when the correlation length is large. In the region α > 1

2
the

correlation length ξ is finite even at zero temperature and, therefore, the thermodynamics

converges rapidly with N .
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VI. QUANTUM EFFECTS

In this section we ascertain a relation of the thermodynamic properties of the classical

model (2) with those of the quantum delta chain (1). We are mainly interested in the role

of quantum effects in the ferromagnetic phase (α < 1
2
) and especially for the frustration

parameter of the Fe10Gd10 system, i.e. α = 0.464 (a = 0.65). The classical approximation

corresponds to the spin quantum numbers S →∞. It is known that even for a system with

relatively large values of spins quantum effects become essential at low temperatures. The

analysis of thermodynamic properties of the quantum model is performed by a combination

of high temperature series expansion (HTE) [20], exact diagonalization (ED) [16] and finite-

temperature Lanczos (FTL) technique [17, 18] (where ED and FTL work only for finite

delta chains) as well as by the modified spin-wave theory (MSWT) [25]. For simplicity we

consider next, if not mentioned otherwise, the delta chain model with Sa = Sb = S.

We start our analysis with the estimate of the quantum corrections to the classical results

for high temperatures. For this aim we use HTE for the quantum delta chain in powers of

T−1. Such expansion has been calculated up to 11th order using the code of Ref. [20]. The

first three terms of HTE for the specific heat are

C(S, T ) =
X2(2 + α2)

3T 2
− 4X3α−X2(2 + α3)

6T 3

−(3X4 + 8X3 − 3X2)(2 + α4) + 5X3(2α + 5α2)

45T 4
+O(T−5) , (66)

where X = S(S + 1). The HTE for the susceptibility has a similar structure:

χ(S, T ) =
X

3T
+
X2(2− α)

9T 2
+
X3(2− 4α + α2)− 3

4
X2(2 + α2)

27T 3
. (67)

As follows from Eqs. (66) and (67) each HTE term proportional to ∼ T−m contains a factor

which is a polynomial of the order m in S(S + 1). The leading terms of these polynomials

are described by the classical approximation (21). Moreover, it turns out that the first

term of the HTE series (66) is exactly reproduced by the classical expansion (21) after the

substitution t = T/S(S + 1). Therefore, the leading term of the difference between the

classical and the quantum expansions is of the order of T−3:

C(S, T )− Cclass(T ) =
X2(2 + α3)

6T 3
+O(T−4) (68)

and, similar,

χ(S, T )− χclass(T ) = −X
2(2 + α2)

36T 3
+O(T−4) . (69)
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FIG. 7. Specific heat as a function of the normalized temperature for the quantum spin model (1) for

α = 0.45 calculated by ED and FTL for finite N = 6 chain. The curves with spin S = 1
2 , 1,

3
2 , 2,

5
2 , 3

are arranged in order from bottom to top. Specific heat for classical model is shown by dashed

line.

The temperature range where HTE gives reliable results is of the order of T/S(S+1) ∼ 1,

see also Ref. [20]. For the analysis of the thermodynamic properties of the quantum model

at low temperatures T/S(S + 1) < 1 we carried out numerical ED and FTL calculations

for finite delta chains. In Fig. 7 we present the temperature dependence of the specific heat

for a delta chain of N = 6 unit cells for different spin values from S = 1
2

to S = 3, where

we consider the frustration parameter α = 0.45 which is close to the critical point αc = 1
2

and is related to the situation in Fe10Gd10. As shown in Fig. 7 all curves with different spin

coincide with the classical C(T ) for T ≥ S(S + 1) and deviate from the classical curve and

from each other at T ∼ S(S + 1), in accord with the prediction of HTE (68). It is also seen

in Fig. 7 that for S = 1
2
, 1, 3

2
the specific heat exhibits a two-peak structure with maxima at

low and intermediate temperatures. With increasing S the height of the second maximum

increases and its position along the T/S(S + 1)-axis shifts to the left. The low-temperature

maximum transforms to a shoulder for S ≥ 2. In particular, such shoulder exists (as shown
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FIG. 8. Specific heat as a function of temperature for the Fe10Gd10 parameter set (a = 0.65,

Sa = 7
2 , Sb = 5

2) calculated by the FTL method for N = 6 (solid line), in classical approximation

(dashed line) and in MSWT approach (dotted line).

in Fig. 8) in the delta-chain with N = 6 and Sa = 7
2
, Sb = 5

2
(a = 0.65) modeling the

fictitious ‘magnetic molecule’ Fe6Gd6.

Unfortunately, the ED and FTL calculations have the following limitation: the higher the

spin value the shorter the chain that can be calculated, so that for S > 3 calculations even

for N = 6 are impossible because the Hilbert space dimension becomes too large. Besides,

because of the finite-size energy gaps in the spectrum the finite chain calculations cannot

correctly describe the low temperature behavior of the system in the thermodynamic limit

N → ∞. Therefore, a complementary approach is needed to overcome these shortcomings

of finite-chain calculations. We use an approximate method based on the modified spin

wave theory [25]. In this method the spin operators are replaced by bosonic operators as

in the standard spin-wave theory and the constraint of zero total magnetization at finite

temperature is imposed. This approach has been successfully applied to low-dimensional

Heisenberg models [25, 27, 28]. Retaining only the lowest order in the spin-bosonic trans-

formation terms we obtain a bilinear bosonic Hamiltonian, which after the diagonalization
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takes a form

Ĥ =
∑

εA(k)A†kAk + εB(k)B†kBk , (70)

where two magnon branches εA,B(k) are

εA,B(k) = 2S(1− α sin2 k

2
)± 2S

√
(1− α sin2 k

2
)2 − (1− 2α) sin2 k

2
. (71)

The energy is

E =
∑

[εA(k)nA(k) + εB(k)nB(k)] . (72)

Here the mean values of the occupations nA(k) =
〈
A†kAk

〉
and nB(k) =

〈
B†kBk

〉
are given

by the Bose-Einstein distribution:

nA,B(k) =

[
exp

(
εA,B(k)− µ

T

)
− 1

]−1

(73)

and the chemical potential µ is defined by the condition of zero total magnetization:

1

N

∑
[nA(k) + nB(k)] = 2S . (74)

The results of the MSWT calculations of the specific heat for α = 0.45 are presented in

Fig. 9. As can be seen from Fig. 9 the specific heat for S = 1 exhibits a double-peak structure

similar to that in Fig. 7. Such a structure is related to the fact that the lower εA and the

higher εB magnon branches give distinct contributions to C(T ) at low and intermediate

temperatures because these branches are well separated for α close to 1
2
. In this case the

gap between the branches is ∆E = 4Sα. At low temperatures C(T ) is determined by the

lower branch which behaves at k → 0 as

εA(k) =
S(1− 2α)

4
k2 . (75)

The lower branch sets the low-energy scale leading to a low-temperature peak in the specific

heat. The low-temperature maximum exists even for S = 10 contrary to the results of the

ED and the FTL calculations and this maximum transforms to the shoulder for S ∼ 100

only. This means that the MSWT approximation overestimates the value of C(T ) at low

temperature. The second maximum increases with growing S and tends to the classical

value C = 2 as S →∞. Its position shifts to the left of the T/S(S+ 1)-axis with increasing

S, which is in agreement with ED and FTL results. Such behavior is a consequence of

the fact that in the MSWT approximation the temperature T and the spin value S form a
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FIG. 9. Specific heat as a function of the normalized temperature for the quantum spin model (1)

for α = 0.45 in MSWT approach for S = 1, 10, 100, 1000. In the inset the same curves are plotted

vs. T/S.

scaling variable T/S at low temperatures (because εA,B ∼ S and µ ∼ T 2/S3 give negligible

contributions at low T ). Therefore, the low temperature behavior of the delta chain with

high value of S is a function of T/S and, therefore, the shoulder and the maximum in the

specific heat are located at T ∼ S as illustrated in the inset of Fig. 9.

The specific heat of the quantum model tends to zero in the limit T → 0. It is believed

that the spin-wave approach gives the true leading term in this limit:

C(T ) =
3ζ(3

2
)

4
√
π

√
T

(1− 2α)S
. (76)

This result is related to the infinite delta-chain. For finite systems such as Fe10Gd10 the

specific heat vanishes exponentially in 1/T at T → 0. In contrast to the quantum case, the

classical specific heat is finite at T = 0. Therefore, the behavior of the specific heat at low

temperatures of the classical and the quantum delta chain is essentially different. However,

in some cases the low-temperature properties of the quantum and the classical models are

very similar. For example, both classical and quantum ferromagnetic chains have the same
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FIG. 10. Susceptibility as a function of the normalized temperature for the quantum spin model

(1) for α = 0.45 calculated by ED and FTL for finite N = 6 chain. The curves with spin S =

1
2 , 1,

3
2 , 2,

5
2 , 3 are arranged in order from bottom to top. The susceptibility for the classical model

is shown by dashed line.

universal magnetic low-temperature behavior [21–23]. Similarly, such universality holds

for the F-AF chain as well [24]. In analogy to these models we can expect that the low-

temperature behavior of the zero-field susceptibility χ(T ) of the classical and the quantum

delta-chain in the ferromagnetic phase are also the same. The dependencies of the product

χT of the classical delta chain and the quantum model with N = 6 and different S are

shown in Fig. 10 for α = 0.45. With increasing S the quantum curves approach the classical

one. The low-temperature susceptibility in the MSWT approximation is

χ =
4(1− 2α)S4

3T 2
−

2ζ(1
2
)(1− 2α)1/2S5/2

π1/2T 3/2
+ . . . . (77)

The comparison of Eqs. (77) and (40) shows that the leading terms of the classical and the

quantum susceptibility at T → 0 coincide. We note also that the leading low-temperature

term for the correlation length in quantum model coincides with the classical result (55),

ξ = (1
2
− α)S2/T . According to Eq.(77) the susceptibility χ(T ) for infinite system diverges



25

1

10

100

1000

0.01 0.1 1 10 100 1000

c
T 

T 

FTL N=6

classical

MSWT

FIG. 11. Susceptibility as a function of temperature for the Fe10Gd10 parameter set (a = 0.65,

Sa = 7
2 , Sb = 5

2) calculated by the FTL method for N = 6 (solid line), in classical approximation

(dashed line) and in MSWT approach (dotted line).

as T−2. However, for finite systems and very low temperatures, when (1
2
− α)S2 > NT ,

χ(T ) diverges as T−1. It is due to the fact that according to Eq. (55) the correlation length

at T → 0 exceeds the system size and the product χT at T = 0 is

χT =
4

3
N2S2

χT =
4

3
N2S2(1 +

1

2NS
) (78)

for the classical and the quantum model, respectively. The term in parenthesis in Eq. (78)

is the quantum correction to the classical result.

According to Eq. (78) χT tends to finite value at T = 0 for finite systems including real

compound containing molecules Fe10Gd10 and such behavior is visualized in Fig. 10 and

Fig. 11.
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VII. SUMMARY

In this paper we have studied the delta-chain with competing ferro- and antiferromagnetic

interactions. This model finds its finite-size material realization in the recently synthesized

cyclic compound Fe10Gd10 [15]. In dependence on the frustration parameter α it exhibits

ferromagnetic and ferrimagnetic ground-state phases separated by a critical point at α = 1/2,

where the ground state of the quantum model at this point exhibits a massive degeneracy.

For the classical version of this model, which seems to provide a reasonable description

Fe10Gd10 down to moderate temperatures, we obtain exact results for the partition function

and the thermodynamics. The explicit analytical expansion of thermodynamic quantities

is provided for high temperatures. The low temperature behavior of the specific heat and

the susceptibility of the classical model is different in various phases. In the ferromagnetic

phase (α < 1
2
) C(T ) = 2 at T = 0, while C(0) = 3

2
in the ferrimagnetic phase (α > 1

2
). The

zero-field susceptibility diverges as T−2 and T−1 for α < 1
2

and α > 1
2
, respectively. In the

critical point α = 1
2

the susceptibility behaves as χ ∼ T−3/2.

The classical model corresponds to the limit S →∞. Quantum corrections to the classical

results for large but finite S are small at high temperature (T > S2). However, the quantum

effects become essential at low temperature. In particular, the classical specific heat is finite

at T = 0, while C(T ) ∼
√
T/S(1− 2α) in the infinite quantum model for α < 1

2
and it is

exponentially small at T → 0 for finite delta-chain such as Fe10Gd10 magnetic molecule.

On the other hand, the leading term of the susceptibility of the classical and the quantum

models coincide for both small and large temperatures at α < 1
2
. The product χT diverges

as T−1 at T → 0 for α < 1
2

in the infinite chain and it is proportional to N2 for finite

systems. Such behavior of χT takes place, in particular, in the Fe10Gd10 molecule.

The C(T ) dependence in the ferromagnetic phase is characterized by the existence of

a two-peak structure for S < 2. For S ≥ 2 the low-temperature maximum transforms to

the shoulder. Such a C(T ) profile with a shoulder and a maximum was observed for the

magnetic part of C(T ) of Fe10Gd10 [15]. The shoulder and the maximum shift towards

higher temperature as S increases and Tmax ∼ S.
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