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We study a Kondo impurity model with additional uniaxial anisotropy D in a non-zero mag-
netic field B using the Numerical Renormalization Group (NRG). The ratio ge/gS of electron and
impurity g-factor is regarded as a free parameter and, in particular, the special cases of a “local”
(ge = 0) and “bulk” (ge = gS) field are considered. For a bulk field, the relationship between the
impurity magnetizationM and the impurity contribution to the magnetization Mimp is investigated.
Furthermore, we study how the value of ge affects the impurity magnetization curves. In case of
an isotropic impurity with ge = gS , it is demonstrated that at zero temperature M(B), unlike
Mimp(B), does not display universal behavior. With additional “easy axis” anisotropy, the impurity
magnetization is well described by a shifted and rescaled Brillouin function on energy scales that
are small compared to |D|. In case of “hard axis” anisotropy, the magnetization curves can feature
steps which are due to field-induced pseudo-spin-1/2 Kondo effects. For large anisotropy and a
local field, these screening effects are described by an anisotropic spin-1/2 Kondo model with an
additional scattering term that is spin-dependent (in contrast to ordinary potential scattering). Our
study is motivated by the question how the magnetic properties of a deposited magnetic molecule
are modified by the interaction with a non-magnetic metallic surface.

PACS numbers: 73.20.Hb, 75.30.Cr, 75.30.Gw, 75.50.Xx, 75.60.Ej

I. INTRODUCTION

Magnetic molecules offer the prospect of encoding and
storing information in their magnetic state. The lat-
ter point applies, in particular, to bistable molecules
such as single molecule magnets (SMMs). The possi-
bility to store, e.g., one bit of information in the state
of a single molecule would constitute an enormous de-
gree of miniaturization and could lead to data storage
technologies with significantly increased areal density.1

However, to make a (potentially elusive) technological
application feasible, the molecules need to be individually
addressable so that their magnetic state can be probed
and manipulated on a molecule-by-molecule basis. In
the last years, there has been an increasing interest in
the question whether this functionality can be achieved
by a controlled deposition of magnetic molecules on suit-
able substrates.1–4 While such an approach might solve
the problem of addressability, it can introduce new com-
plications due to interactions between the molecules and
the surface. Depending on details such as the molecule’s
ligands, the presence of an additional decoupling layer,
and, of course, the characteristics of the surface, the in-
teraction with the substrate might alter the magnetic
properties of the molecule in an important (and possi-
bly adverse) way. Thus, even if the magnetic response
of the isolated molecule is well understood (e.g., through
a description by a suitable spin model5), its magnetic
properties in contact with the surface have to be reinves-
tigated.

In this article, we study a single-channel Kondo impu-
rity model with non-zero magnetic field and additional
uniaxial anisotropy D(S∼

z)2 for the impurity spin oper-

ator S∼. Such an anisotropy term (along with trans-

verse anisotropy E[(S∼
x)2− (S∼

y)2]) is a common part of a

pure spin model for the description of isolated magnetic
molecules (in particular, for representing SMMs).5 The
quantum impurity model is intended to serve as a min-
imal representation of an anisotropic magnetic molecule
on a non-magnetic metallic substrate and, with trans-
verse anisotropy E, has already been used to describe
SMMs interacting with metallic electrodes.6–8 Further-
more, it has been found that the above uniaxial and
transverse anisotropy terms are also appropriate to model
the surface-induced anisotropy of a single magnetic atom
on a metallic substrate with a decoupling layer.9–11 To
investigate how the interaction with the electrons affects
the magnetic properties of the impurity, we carry out
Numerical Renormalization Group12–14 (NRG) calcula-
tions and focus on the magnetic field dependence of the
impurity magnetization.

Regarding the experimental situation, the magnetic
moment of deposited molecules (or atoms)11 can be mea-
sured using methods such as X-ray magnetic circular
dichroism (XMCD).3,15–23 XMCD is an element-specific
technique of high sensitivity based on the absorption of
circularly polarized X-rays and can be used to obtain
an ensemble-averaged result for the magnetic field de-
pendent molecule magnetization. In principle, it is also
possible to extract information about different contribu-
tions to the observed magnetic moment (such as the or-
bital and spin contribution) from the XMCD data using,
e.g., sum rules.3,17,18,20,23 In the last years, magnetization
curves of magnetic atoms on non-magnetic metallic sur-
faces could also be recorded using spin-polarized scanning
tunneling spectroscopy (SP-STS).11,24–28 In contrast to
XMCD, this method provides a time-average of the field-
dependent magnetic moment of a single atom. It has
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been demonstrated that SP-STS can also be applied to
(suitable) deposited magnetic molecules.29–31

The static magnetization of Kondo impurity models
(including related models such as the single-impurity An-
derson model) has been investigated by a number of tech-
niques. Among these are Green’s-function methods,32,33

the Bethe Ansatz,34–45 and NRG46–48 (including density
matrix based extensions). By now, there are also several
studies of the time dependence of the magnetization in
non-equilibrium situations (e.g., after a quantum quench
or with a non-zero voltage bias).49–53 In particular, non-
equilibrium spin dynamics of impurity models can be in-
vestigated by using a generalization of NRG called time-
dependent NRG (TD-NRG).8,54,55

The present article extends existing NRG results for
the Kondo model with uniaxial anisotropy56 to the case
of non-zero magnetic field. The system with non-zero
field (with a focus on the properties of spectral functions)
has been previously studied in Refs. 57 and 58. Further-
more, magnetization curves for isotropic and anisotropic
Kondo impurities have been calculated in Ref. 48. We
would like to stress, however, that our investigation
places emphasis on different aspects of the problem and
is thus complementary to Ref. 48.

The remainder of this article is organized as follows.
In Sec. II, the quantum impurity model is introduced
and transformed to a representation that is suitable for
further numerical treatment. Sec. III provides infor-
mation about our use of the NRG method and contains
definitions of the considered observables. In Sec. IV, we
study the relationship between the impurity magnetiza-
tion and the impurity contribution to the magnetization
for an isotropic system (D = 0). After an investigation of
the Kondo model with additional “easy axis” anisotropy
(D < 0) in Sec. V, the case of “hard axis” anisotropy
(D > 0) is considered in Sec. VI. There, we also clar-
ify how a non-zero magnetic coupling of the conduction
electrons affects the impurity magnetization. Further-
more, an effective model is derived in order to describe
the field-induced pseudo-spin-1/2 Kondo effects that are
observed in the magnetization curves for large D. We
conclude this article with a summary of the results in
Sec. VII and a brief description of the technical details
of an NRG calculation with non-zero magnetic coupling
of the conduction electrons in App. A.

II. MODEL

A. Hamiltonian

In this work, we study a Hamilton operator H∼ consist-

ing of three parts:

H∼ = H∼ electrons +H∼ coupling +H∼ impurity . (1)

The first term, H∼ electrons, represents non-interacting

tight-binding electrons whose hopping between different

sites i and j of a periodic lattice with L sites is described
by the corresponding hopping parameter tij :

H∼ electrons =
∑

i 6=j, σ
tijd∼

†
iσd∼jσ + geµBBS∼

z . (2)

Here, d∼
(†)
iσ is a destruction (creation) operator for an elec-

tron with spin projection σ = ±1/2 =̂ ↑ / ↓ at lat-
tice site i. The effect of an external magnetic field B
is taken into account by a Zeeman term with electron
g-factor ge, Bohr magneton µB , and the z-component
of the total spin of the electrons S∼

z = 1
2

∑
i (n∼i↑ − n∼i↓)

with n∼iσ = d∼
†
iσd∼iσ. Using a discrete Fourier transforma-

tion, c∼
†
kσ = (1/

√
L)
∑
j e
ik·Rj d∼

†
jσ, Hamiltonian (2) can

be equivalently written in the more common form

H∼ electrons =
∑

k,σ

(εk + σgeµBB)︸ ︷︷ ︸
= εkσ(B)

c∼
†
kσ c∼kσ , (3)

with a dispersion relation εkσ(B), assigning an energy
ε to a wavevector k, that now depends on spin projec-
tion and magnetic field. In general, the spin-independent
dispersion relation εk is anisotropic in k-space.

For the interaction term in Eq. (1), we use a standard
isotropic Kondo coupling,

H∼ coupling = JS∼ · s∼0 , (4)

and assume that the impurity spin S∼ couples antiferro-

magnetically (J > 0) to the electronic spin at the origin,

which is given by s∼0 = (1/2L)
∑

k,k′,µ,ν c∼
†
kµσµν c∼k′ν with

the vector of Pauli matrices σ.
Finally, the impurity part of Hamiltonian (1) repre-

sents a localized spin with quantum number S which
couples to the external magnetic field with g-factor gS
and possesses an additional uniaxial anisotropy D:

H∼ impurity = D(S∼
z)2 + gSµBBS∼

z . (5)

With the chosen convention, the impurity spin has
an “easy axis” for D < 0 and a “hard axis” or
an “easy plane” for D > 0. A further transverse
anisotropy E[(S∼

x)2 − (S∼
y)2] is not considered in this ar-

ticle. H∼ impurity can be seen as a minimal representation

of a magnetic molecule with a single magnetic center or
as a “giant spin approximation” for an SMM.5,59

Hamiltonian (1) corresponds to an anisotropic single-
channel Kondo impurity model in an external magnetic
field. The special choices ge = 0 and ge = gS for the
electron g-factor are referred to as a “local” and “bulk”
magnetic field, respectively. Regarding the modeling of
a deposited magnetic molecule, it has to be emphasized
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that the Hamiltonian suffers from a number of simplifica-
tions. For example, there is no orbital contribution to the
magnetism, and no charge fluctuations between molecule
and surface are possible. In this article, we only con-
sider the effect of the Kondo coupling on the magnetic
properties of the impurity spin.

B. Transformation to an energy representation

In order to treat Hamiltonian (1) using NRG, H∼ electrons

and H∼ coupling are expressed via a continuous energy rep-

resentation for the electronic degrees of freedom. To
this end, we first take a standard continuum limit in
k-space (i.e., we consider a lattice of dimension d with
L � 1).13 By adapting the corresponding expression
for the two-impurity Kondo model from Ref. 60 to the
single-impurity case (see also Ref. 61), we then define
those states with energy ε to which the localized spin
directly couples:

a∼εµ =
1√

(2π)dρ(ε− µh)

∫
dk δ(ε− εµ(k, B)) c∼kµ , (6)

where we have introduced the abbreviation h = geµBB
and the normalized density of states (DOS) per spin pro-
jection and lattice site ρ(ε) = (1/L)

∑
k δ(ε− εk). De-

noting the half-width of the conduction band by W , the
allowed energies ε for spin projection µ span the interval
[−W + µh, W + µh]. The new operator a∼εµ is properly

normalized because of the pre-factor involving the DOS.

If we are only interested in impurity properties, then
all other electronic states different from those defined in
Eq. (6) can be safely dropped without introducing any
approximation.13 This leads to the desired continuous
energy representation of Hamiltonian (1):

H∼ →
∑

µ

∫ W+µh

−W+µh

dε ε a∼
†
εµa∼εµ

+ JS∼ ·
∑

µ,ν

(∫ W+µh

−W+µh

dε
√
ρ(ε− µh) a∼

†
εµ

)
σµν

2
×

(∫ W+νh

−W+νh

dε′
√
ρ(ε′ − νh) a∼ε′ν

)
+H∼ impurity . (7)

For h = 0, i.e., for B = 0 or ge = 0, Eq. (7) reduces to
the well-known expression for the energy representation
of the Kondo model.62 In the following, we consider the
case of a constant DOS: ρ(ε) = 1/2W = ρ.

III. METHOD AND OBSERVABLES

A. Method: NRG

Approximate eigenvalues and eigenvectors of Hamil-
tonian (7) for the calculation of impurity properties
can be obtained using the Numerical Renormalization
Group12–14 (NRG). However, the procedure leading to
the parameters of the Wilson chain has to be slightly
modified if h 6= 0 (see App. A for a brief discussion of
the required changes).

A non-zero magnetic field breaks the full SU(2)-
symmetry in spin space of Hamiltonian (1). For this
reason, we label eigenstates of H∼ only with the charge

quantum number Q and the magnetic quantum number
Sztotal of the z-component of the total spin. Except for
one example in Sec. VI, all NRG calculations are carried
out using the discretization scheme proposed by Žitko
and Pruschke63,64 with averaging over 4 z-values that are
equidistantly spaced on the interval (0, 1]. Observables
are computed using only states that are kept after trun-
cation and results are averaged over even and odd sites of
the Wilson chain according to the prescription of Ref. 14.
We use a discretization parameter Λ = 3, a dimensionless
inverse temperature β̄ = 0.7, and a fixed number of kept
states of the order of N = 5000 to achieve convergence
for all considered observables within the resolution of the
presented plots. Nevertheless, at Λ > 1 there might still
be slight systematic deviations for non-zero temperature,
which can for example be demonstrated by setting J = 0
and comparing the NRG results with the analytical solu-
tion for a free spin. It is necessary to perform a separate
NRG calculation for each value of the magnetic field. If
curves are shown in a plot, they are thus the result of
a spline interpolation through the numerically obtained
data points.

B. Observables

In our calculations we focus on the impurity magneti-
zation which is defined as the expectation value of the im-
purity magnetization operator with respect to the eigen-
states of the total Hamiltonian (1):

M(T,B) = −
〈
∂H∼ impurity

∂B

〉

total

= −gSµB〈S∼
z〉total .

(8)

Furthermore, we consider the impurity contribution to
the entropy, magnetization, and magnetic susceptibility.
The impurity contribution to some quantity O is defined
in the usual way:14

Oimp = Owith impurity
total −Ow/o impurity

total . (9)
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The observable Ow/o impurity
total for the system without im-

purity is also calculated using NRG by removing the
impurity part from the Wilson chain. For the en-
tropy S(T,B), the magnetization M(T,B), and the
susceptibility χ(T,B), we use the standard definitions
S(T,B) = −∂Ω(T,B)/∂T , M(T,B) = −∂Ω(T,B)/∂B,
and χ(T,B) = ∂M(T,B)/∂B, with Ω(T,B) being the
grand-canonical potential. If the electron g-factor is zero,
we have the special case M(T,B) = Mimp(T,B).

In the grand-canonical calculations the chemical po-
tential is assumed to be zero. For a symmetric DOS,
ρ(ε) = ρ(−ε), the free electron band is thus on average
half-filled for arbitrary magnetic field and temperature.

IV. ISOTROPIC IMPURITIES

Let us first consider the case of an isotropic impurity
with D = 0 in Hamiltonian (5) and study the impurity
contribution to the magnetization Mimp and the impu-
rity magnetization M, both as function of temperature
and magnetic field. For the moment, we are only con-
cerned with the special case of equal g-factors of impu-
rity and electrons (corresponding to the case of a bulk
magnetic field). Recalling the motivation given in the in-
troduction, M as the expectation value of the impurity
magnetization operator should be the observable that is
more closely related to experimental magnetization data
obtained by methods such as XMCD. Note that M and
Mimp become equivalent if impurity and electrons decou-
ple (which happens for J → 0 or T →∞).

A. Field dependence of the magnetization

In case of the isotropic Kondo model with ge =
gS and arbitrary impurity spin S, the Bethe Ansatz
(BA) allows for the derivation of a closed expression for
the impurity contribution to the magnetization at zero
temperature.34–37,39,40 Mimp is known to display univer-
sal behavior in the so-called scaling regime, in which all
relevant energy scales are small compared to the energy
cutoff (or the finite bandwidth).40 Bare parameters of the
model can then be absorbed into an energy scale kBTH so
that the field-dependence of Mimp at T = 0 is described
by a universal function f(x), with x being the rescaled
magnetic field: x = gSµBB/kBTH .40 TH is related to the
Kondo temperature TK by a constant factor:39

TH =

√
2π

e
TK . (10)

In Fig. 1 we plot the Bethe Ansatz solution for Mimp

from Ref. 39 for three different impurity spins S = 1/2, 1,
and 3/2.65 f(x) is a strictly monotonically increasing
function of x and approaches the saturation magneti-
zation of a free spin, gSµBS, for x → ∞ with slowly
decaying logarithmic corrections.39,40,66 The behavior in

3

In many studies of thermodynamic properties of quan-
tum impurity models the behavior of impurity contribu-
tions such as Mimp is investigated.5 However, recalling
the motivation given in the introduction, M as the ex-
pectation value of the impurity magnetization operator
should be the observable that is more appropriate for
a comparison with actual magnetization data for impu-
rity systems obtained by methods such as XMCD. We
note thatM and Mimp become formally equivalent if ei-
ther impurity and electrons decouple (which happens for
J → 0 or T → ∞) or if the magnetic field is local, i.e.
ge ≡ 0.

A. Field dependence of the magnetization

Mimp is one of the quantities that were originally cal-
culated as part of the Bethe Ansatz (BA) solution of the
isotropic Kondo model.9,10 At zero temperature and for
gS = ge the Bethe Ansatz allows for the derivation of
a closed expression for the impurity contribution to the
magnetization for arbitrary impurity spin S.11–14 Like
various other properties of the isotropic Kondo model,
Mimp is known to display universal behavior in the so-
called scaling regime, in which all relevant energy scales
(e.g. thermal energy and Zeeman energy) are small
compared to the chosen energy cutoff or the (finite)
bandwidth.10 Bare parameters of the model such as ρ
and J can then be absorbed into an energy scale kBTH
so that the universal behavior of Mimp at T = 0 is de-
scribed by a function of a single variable, f(x), with x
being the rescaled magnetic field: x ≡ gSµBB/kBTH .10

TH is related to the Kondo temperature TK by a constant
factor: TH =

√
2π/e TK .9

In Fig. 1 we plot the Bethe Ansatz solution for Mimp

from Ref. 9 for three different impurity spins S = 1/2, 1,
and 3/2.15 The function f(x) is a strictly monotonically
increasing function of x and approaches the saturation
magnetization of a free spin, gSµBS, for x → ∞ with
slowly decaying logarithmic corrections.9,10,16 The be-
havior in the limit of small fields, i.e. x → 0, depends
on the value of S: in case of S = 1/2, f(x) ∝ x for
small x, whereas for S ≥ 1 f(x) goes to the satura-
tion magnetization of a reduced spin with S− 1/2, again
with logarithmic corrections.9,10,16 This low-field behav-
ior mirrors the Kondo screening effect which, for vanish-
ing magnetic field, reduces the impurity spin S to a resid-
ual spin S − 1/2 below the Kondo temperature TK .17,18

The field-dependence of Mimp is furthermore markedly
different from that of a free spin as the magnetization
of a free spin at T = 0 saturates for any finite magnetic
field.

Using NRG, we have calculated Mimp for several values
of the coupling strength ρJ and have fitted the obtained
curves to the respective BA curve by employing TH as a
fit parameter (see Fig. 1). The nice agreement with the
Bethe Ansatz solution demonstrates the universal behav-
ior that Mimp displays for small ρJ . Note that for very
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FIG. 1. (Color online) Main plots: Impurity contribution
to the magnetization, Mimp, and impurity magnetization,M,
as function of magnetic field for impurity spin a) S = 1/2, b)
S = 1, and c) S = 3/2, ge = gS , and three different couplings
ρJ . Thermal energy is kBT ≈ 1.54 ·10−15W ≈ 0 and the field
is rescaled using the energy scale kBTH . For the shown M-
curves the coupling ρJ always increases from bottom to top.
The universal Bethe Ansatz (BA) solution at T = 0 has only
been calculated for gSµBB ≥ kBTH and gSµBB � kBTH in
plots b) and c). Upper left insets show NRG results for
Mimp at T ≈ 0 (black lines) and finite temperature (solid
gray lines) as a function of magnetic field, now expressed in
units of W . Mimp for J = 0 is also computed using NRG
and resembles the magnetization of the free spin. Thermal
energies increase from left to right and range from 1.79·10−6W
(plot a)) or 1.95 · 10−12W (plots b) and c)) to 6.79 · 10−3W .
Lower right insets show a close-up of data from the main
plot for b) low fields and c) high fields together with data
points for Mimp that are multiplied by a constant & 1.

FIG. 1. (Color online) Main plots: Impurity contribution
to the magnetization Mimp and impurity magnetization M
as function of magnetic field for ge = gS , three different cou-
plings ρJ , and for impurity spin a) S = 1/2, b) S = 1, and c)
S = 3/2. The temperature is kBT/W ≈ 1.54 · 10−15 ≈ 0 and
the field is rescaled using kBTH . For the shown M-curves
the coupling ρJ always increases from bottom to top. The
universal BA solution at T = 0 has only been calculated for
gSµBB ≥ kBTH and gSµBB � kBTH in plots b) and c). Up-
per left insets show NRG results for Mimp at T ≈ 0 (black
lines) and finite temperature (solid gray lines) as a function of
magnetic field, now expressed in units of W . Mimp for J = 0
is also computed using NRG and resembles the magnetization
of the free spin. Thermal energies increase from left to right
and range from 1.79 ·10−6W (plot a)) or 1.95 ·10−12W (plots
b) and c)) to 6.79 ·10−3W . Lower right insets show a close-
up of the magnetization curves for b) low fields and c) high
fields along with data points for Mimp that are multiplied by
a constant & 1.
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the limit x → 0 depends on the value of S: In case
of S = 1/2, f(x) ∝ x for small x, whereas for S ≥ 1
the function f(x) goes to the saturation magnetization
of a reduced spin with S − 1/2, again with logarith-
mic corrections.39,40,66 This low-field behavior mirrors
the Kondo screening which, for vanishing magnetic field,
reduces the impurity spin S to a residual spin S− 1/2 in
the limit T/TK � 1.67,68 The magnetic properties of the
impurity are furthermore markedly different from that of
a free spin as the magnetization of a free spin at T = 0
saturates for any non-zero magnetic field.

Using NRG, we have calculated Mimp for several values
of the coupling strength ρJ and have fitted the obtained
curves to the respective universal BA curve by employing
TH as a fit parameter (see Fig. 1). The nice agreement
with the Bethe Ansatz solution demonstrates the univer-
sal behavior that Mimp displays for small ρJ and allows
us to reliably determine the value of TH even for impurity
spin S ≥ 1. Note that for very large magnetic fields, i.e.,
for gSµBB . W , we leave the scaling regime and Mimp,
as calculated by NRG, starts to drop below the universal
BA curve (this is not shown in Fig. 1). The determined
approximate values of kBTH/W are found in Table I. In
the cutoff scheme used in the BA solution of the Kondo
model with arbitrary impurity spin, the dynamically gen-
erated low-energy scale T0, whose ratio to TH is a uni-
versal number, depends on the value of S (before taking
the scaling limit).35,37,38,40 Here, we find that the fitted
values of TH increase with the impurity spin for fixed
coupling strength and, furthermore, that the relative de-
viation between the results for different S decreases when
ρJ is reduced. However, even for the smallest consid-
ered coupling strength (ρJ = 0.05), the values of TH
for S = 1/2 and S = 3/2 still deviate by about 44 %.
According to Eq. (10), the values of TH for S = 1/2
reported in Table I correspond to the following Kondo
temperatures: kBTK/W ≈ 4.79 · 10−10 (ρJ = 0.05),
1.80 · 10−7 (0.07), and 5.08 · 10−6 (0.09). These results
can be compared with the standard estimate for TK ,12,13

kBTK/W ≈
√
ρJ exp (−1/ρJ) , (11)

which is valid for small coupling and gives kBTK/W ≈
4.61 · 10−10 (ρJ = 0.05), 1.65 · 10−7 (0.07), and 4.48 ·
10−6 (0.09). As a further check, we have determined the
Kondo temperature for S = 1/2 and ρJ = 0.07 by fit-
ting the BA solution for the impurity contribution to the
susceptibility from Ref. 39 and the impurity contribu-
tion to the entropy from Ref. 69. This gives a value of
kBTK/W ≈ 1.79 · 10−7, which is quite similar to the one
following from Table I.

The upper left insets of Fig. 1 show finite temper-
ature NRG results for Mimp with a coupling strength
ρJ = 0.07. While the Bethe Ansatz provides a closed
expression for Mimp at zero temperature, a calculation
for finite temperature leads to so-called thermodynamic
BA equations that, at least in general, have to be solved
numerically.38,70 Hence, finite temperature results for

the magnetization are not easily available. As a refer-
ence point, we replot the zero temperature magnetization
curve that crosses over to the strong coupling regime in
the vicinity of gSµBB ≈ kBTH . As long as the ther-
mal energy is small compared to the Zeeman energy, the
magnetization always closely follows the zero tempera-
ture curve. On the other hand, if the thermal energy is
not negligibly small compared to the Zeeman energy, we
have to distinguish between complete screening and un-
derscreening of the impurity spin. For S ≥ 1, finite tem-
perature is always important as it also affects the residual
spin. On the energy scale gSµBB ≈ kBT there is a swift
drop of Mimp that is eventually followed by a linear de-
cay for small fields gSµBB � kBT . In the special case
S = 1/2, however, finite temperature has little effect if
T � TK and the magnetization already displays a linear
dependence on the magnetic field for gSµBB ≈ kBT due
to the Kondo screening. In the upper left insets of Fig.
1 we also compare the results for Mimp with NRG cal-
culations for vanishing coupling J = 0. This comparison
is meant to illustrate the influence of a non-zero value of
J .71 At high temperatures (compared to the Kondo tem-
perature) the impurity is progressively decoupled from
the electronic system and its magnetization will hence
resemble the result for J = 0 more closely. However,
note that the impurity only becomes asymptotically free
for high temperatures.

In addition to the impurity contribution to the magne-
tization Mimp, we also plot the impurity magnetization
M in Fig. 1 for the same values of the coupling ρJ
and negligible temperature. The magnetic field is again
rescaled by kBTH using the values from Table I. We find
thatM and Mimp differ for all considered magnetic fields
with M being larger than Mimp. This means, in partic-
ular, that for large magnetic fields M comes closer to
the saturation magnetization of a free spin than Mimp

does and, furthermore, that the magnetization of the con-
duction electrons is reduced due to the interaction with
the impurity spin. Upon decreasing ρJ we observe that
the impurity magnetization becomes smaller and thus ap-
proaches the universal curve for Mimp. A comparison of
the NRG results forM and Mimp shows that both quan-
tities are proportional to each other, i.e., M = αMimp

with a proportionality factor α > 1 that depends on the
coupling strength ρJ (see Table I for a list of the com-
puted values of α). This proportionality is illustrated for
the case of small magnetic fields (for S = 1) and large
magnetic fields (for S = 3/2) in the lower right insets of
Fig. 1. While the obtained values for α decrease with
increasing impurity spin S, the values for different S dif-
fer by less than 0.2 % according to Table I. Since impu-
rity and electrons progressively decouple at high temper-
atures, we expect α to be temperature dependent with
α → 1 for kBT/W � 1. The results presented in Fig. 1
show that the magnetic field cannot be rescaled by kBTH
or any scale proportional to it so as to produce a universal
curve for the impurity magnetization M.

To elucidate our findings we refer to one of the orig-
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TABLE I. Approximate values of kBTH/W as used in Fig. 1, obtained by fitting the universal Bethe Ansatz solution for Mimp,
and proportionality factors α(ρJ) relating M and Mimp according to M = αMimp. The results for α have been averaged over
magnetic fields gSµBB/W ∈ [10−13, 10−1] for kBT/W ≈ 1.54 · 10−15 ≈ 0. Numbers in parentheses give the corresponding
standard deviation for the last decimal place. For Zeeman energies close to the band edge (i.e., gSµBB . W ), which are not
considered for the average, α noticeably decreases (increases) for S = 1/2 (S = 1, 3/2).

S = 1/2 S = 1 S = 3/2
ρJ kBTH/W α kBTH/W α kBTH/W α

0.05 7.29 · 10−10 1.02659(1) 8.49 · 10−10 1.026503(7) 1.05 · 10−9 1.02638(2)
0.07 2.74 · 10−7 1.03822(2) 3.39 · 10−7 1.03792(3) 4.55 · 10−7 1.03751(6)
0.09 7.72 · 10−6 1.05048(3) 1.02 · 10−5 1.04970(8) 1.51 · 10−5 1.0487(2)

inal Bethe Ansatz investigations of the Kondo model.42

There it is found that, under the assumptions of a BA
calculation (including an arbitrarily large energy cutoff
D), M = Mimp. To study the influence of the cutoff
scheme, a comparison with perturbation theory is car-
ried out showing that M has leading corrections of the
order 1/ ln(D), whereas the corrections of Mimp vanish
like 1/D and thus much faster.42 The regime in which
all relevant energy scales are negligible compared to the
cutoff in a logarithmic sense, e.g. ln(D/gSµBB) � 1, is
termed “extreme scaling limit”.42

With this background we reach the following inter-
pretation of our NRG results for M and Mimp: For
the chosen values of the coupling strength ρJ the half-
bandwidth W (basically serving as the unit of energy)
can be regarded as very large compared to all relevant
energy scales E so that corrections of order E/W can be
expected to be small. It is for this reason that we find
nice agreement with the universal BA solution for Mimp.
On the other hand, corrections of order 1/ ln(W/E) are
not necessarily negligible for a finite value of W . This ap-
pears to be an adequate explanation for our NRG results
showing that M 6= Mimp. Moreover, a decrease of ρJ
corresponds to an increase of the bandwidth and thus
bandwidth-related corrections should become smaller.
Accordingly, M decreases for smaller coupling strength
and approaches Mimp. These observations might also
bear some importance for experimental situations: While
experimental parameters are certainly suitable to con-
sider the scaling regime (in case the system exhibits uni-
versal behavior), it is less clear whether an experimental
system can be placed in the extreme scaling regime.

B. Dependence of the zero temperature
magnetization on the coupling strength

To further illustrate the difference between the impu-
rity contribution to the magnetization and the impurity
magnetization, we examine how both quantities depend
on the coupling strength ρJ for non-zero magnetic field at
zero temperature. As before, the case of equal g-factors
for impurity and electrons is considered. NRG results for
impurity spin S = 1 and S = 3/2 are shown in Fig. 2
and Fig. 3, respectively.

5

TABLE I. Approximate values of kBTH/W , determined by fitting the Bethe Ansatz solution for Mimp, as used in Fig. 1, and
average proportionality factors α relating impurity magnetization, M, and impurity contribution to the magnetization, Mimp,
so that M = αMimp. The error estimate given for α corresponds to the rounded standard deviation.

S = 1/2 S = 1 S = 3/2
ρJ kBTH/W α kBTH/W α kBTH/W α

0.05 7.29 · 10−10 1.02659(4) 8.49 · 10−10 1.026503(5) 1.05 · 10−9 1.02638(2)
0.07 2.74 · 10−7 1.03822(2) 3.39 · 10−7 1.03792(2) 4.55 · 10−7 1.03751(5)
0.09 7.72 · 10−6 1.05048(5) 1.02 · 10−5 1.0497(1) 1.51 · 10−5 1.0487(1)

placed in the extreme scaling regime.
Was ist mit den Artikeln von Costi?
To conclude our investigation of the magnetic field

dependence of the impurity magnetization M, we have
studied the influence of the g-factor ratio ge/gS onM for
a coupling strength ρJ = 0.075, with ge/gS ranging from
0 to the arbitrarily chosen value 1.25. A ratio ge/gS = 0
corresponds to a local magnetic field that only affects
the impurity. However, for the systems mentioned in
the introduction this can only be an approximation since
ge ≈ 2 and the impurity g-factor gS typically also takes
values near 2. Quelle?

It turns out that M depends on the g-factor ratio in
a systematic way, but only slightly. In the plots of Fig.
1 the influence of ge/gS on M would be hardly visible.
With respect to the impurity magnetization, the approx-
imation ge ≡ 0, which is typically used in NRG calcula-
tions, thus appears to be unproblematic for an isotropic
system. The dependence ofM on ge should furthermore
completely vanish for T →∞ because of the decoupling
between impurity and electrons in this limit. In contrast
to M, the impurity contribution to the magnetization,
Mimp, has to depend on the ratio ge/gS more strongly
since M 6= Mimp for ge = gS , but M = Mimp for ge ≡ 0.

B. Dependence of the zero temperature
magnetization on the coupling strength

To further illustrate the difference between the impu-
rity contribution to the magnetization, Mimp(T,B), and
the impurity magnetization, M(T,B), we examine how
these quantities depend on the coupling strength ρJ for
non-zero magnetic field, B > 0, and zero temperature,
T → 0. As before, the case of equal g-factors for im-
purity and electrons, i.e. ge = gS , is considered. NRG
results for impurity spin S = 1 and S = 3/2 are shown
in Fig. 2 and 3, respectively.

Let us begin the interpretation of the plots by consid-
ering the limiting cases ρJ → 0 and ρJ →∞. For vanish-
ing coupling strength, J → 0, impurity and electrons are
decoupled and thus both Mimp andM correspond to the
magnetization of a free spin which saturates at T = 0 for
any finite value of the magnetic field. However, the be-
havior in the limit J →∞ differs for the two quantities,
demonstrating that in general Mimp 6=M. The limiting
value of Mimp and M in this case can be understood by
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FIG. 2. (Color online) Saturation value in the limit T → 0 of
a) the impurity contribution to the magnetization, Mimp, and
b) the impurity magnetization,M, as function of the coupling
strength ρJ for impurity spin S = 1, ge = gS , and several
magnetic field values. The vertical lines mark a coupling of
ρJ ′ ≈ 0.276 for which we have checked by comparing with the
Bethe Ansatz solution shown in Fig. 1 that Mimp still exhibits
universal behaviour (a fit of the BA curve gives kBTH ≈ 8.85 ·
10−2W ). Remaining lines are intended as a guide to the eye.

considering a simplified model: In the interaction term,
Eq. (4), of Hamiltonian (1) the spin density operator
s∼0 depends on the occupation of the lattice site that it

is associated with. For very large values of J it is en-
ergetically favorable if this lattice site is singly occupied
with a probability near one. We can then replace s∼0 by

a spin-1/2 operator s∼ in the interaction term, Eq. (4).

Furthermore, we can neglect all other terms in Hamilto-
nian (1) that involve degrees of freedom different from
the impurity and the lattice site to which it couples. We
are then left with a strongly coupled antiferromagnetic
dimer in a magnetic field with Hamiltonian

FIG. 2. (Color online) Saturation value in the limit T → 0 of
a) the impurity contribution to the magnetization Mimp and
b) the impurity magnetizationM as function of the coupling
strength ρJ for impurity spin S = 1, ge = gS , and several
magnetic field values. The vertical lines mark a coupling of
ρJ ′ ≈ 0.276 for which we have checked by comparing with the
Bethe Ansatz solution shown in Fig. 1 that Mimp still exhibits
universal behavior (a fit of the BA curve gives kBTH/W ≈
8.85 · 10−2). Remaining lines are intended as a guide to the
eye.

Let us begin the interpretation of the plots by consid-
ering the limiting cases ρJ → 0 and ρJ →∞. For vanish-
ing coupling strength J → 0, impurity and electrons are
decoupled and thus both Mimp andM correspond to the
magnetization of a free spin which saturates for any non-
zero value of the magnetic field at T = 0. However, the
behavior in the limit J →∞ differs for the two quantities,
demonstrating that in general Mimp 6= M. The values
of Mimp and M in this limit can be understood by con-
sidering a simplified model: In the interaction term Eq.
(4), the spin operator s∼0 depends on the occupation of
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FIG. 3. (Color online) Saturation value in the limit T → 0
of a) the impurity contribution to the magnetization, Mimp,
and b) the impurity magnetization, M, as function of the
coupling strength ρJ for ge = gS and several magnetic field
values as in Fig. 2, but here for impurity spin S = 3/2. Mimp

again shows universal behavior for ρJ ′ ≈ 0.276 and a fit of
the BA curve now gives kBTH ≈ 3.05 · 10−1W .

H∼ J→∞ = JS∼ · s∼+ gSµBB(S∼
z + s∼

z) . (10)

To determine the limiting value ofM/gSµB for ρJ →∞
at any positive magnetic field, we thus have to calculate
the expectation value of −S∼

z with respect to that eigen-

state of total spin which has the lowest value of both
Stotal and z-projection Mtotal. Denoting eigenstates of
the effective Hamiltonian (10) as |Stotal,Mtotal〉, we find

−〈0, 0|S∼
z|0, 0〉 = 0 for S = 1/2 , (11)

−
〈

1

2
,−1

2

∣∣∣S∼
z
∣∣∣ 1

2
,−1

2

〉
=

2

3
for S = 1 , (12)

−〈1,−1|S∼
z|1,−1〉 =

5

4
for S = 3/2 . (13)

In contrast, in the limit ρJ → ∞ the impurity con-
tribution to the magnetization, Mimp/gSµB , reduces to
−〈S∼

z + s∼
z〉 with respect to the above eigenstates of

Hamiltonian (10). This expectation value gives S − 1/2.
The case with S = 1/2 is therefore special since both
Mimp and M go to zero for ρJ → ∞. Figs. 2 and 3
show that NRG, as a method that is non-perturbative
in J , can in fact reproduce the limiting values for strong
coupling.24

Let us now consider the magnetization for intermedi-
ate values of ρJ . In the special case S = 1/2 both Mimp

andM are monotonically decreasing functions of the cou-
pling strength that show similar behavior. We find that a
larger value of the magnetic field B also leads to a larger
value of the magnetization. In fact, all magnetization
curves that we have calculated increase monotonically
with B. On the other hand, Mimp and M display quali-
tatively different behavior for larger impurity spin, S ≥ 1.
While Mimp is again a monotonically decreasing function
of the coupling strength, M develops a minimum for all
considered magnetic fields. As discussed in the previous
subsection, the impurity magnetization is larger than the
impurity contribution to the magnetization,M > Mimp.

It is instructive to compare the NRG results with the
Bethe Ansatz predictions for the universal behavior of
Mimp. For a coupling strength that is not too large (see
below), the “bare” parameters of the Kondo model W , ρ,
and J can be absorbed into the Kondo temperature TK
so that after rescaling of the (small) magnetic field Mimp

follows the universal zero temperature curve.10 According
to the standard estimate for TK ,1,4

kBTK ≈W
√
ρJ exp (−1/ρJ) , (14)

which is valid for small coupling, kBTK/W is a monoton-
ically increasing function of ρJ . Furthermore, a larger
magnetic field always results in a larger magnetization
for the systems under consideration. For this reason,
an increase of the coupling ρJ leads to a larger Kondo
temperature TK and thus, after rescaling, to a lower ef-
fective field and hence a lower value of Mimp. The impu-
rity contribution to the magnetization should therefore
be a monotonically decreasing function of the coupling
strength in the scaling regime. This observation is con-
sistent with our NRG results forMimp as reported in Figs.
2 and 3. The vertical lines in the plots mark a value of the
coupling, ρJ ′, for which we have checked by comparing
with the BA solution that Mimp still displays universal
behavior. It can thus be seen as a lower bound for the
couplings that can be assigned to the scaling regime. In
contrast, the impurity magnetizationM has a minimum
and then increases again as a function of ρJ for coupling
strengths that are smaller than ρJ ′. We conclude that
this behavior of M is not compatible with the standard
scaling picture as described above.

Kann man hier einen sinnvollen Zusammenhang mit
dem Lowenstein-Artikel herstellen?

V. IMPURITIES WITH “EASY AXIS”
ANISOTROPY

Having discussed isotropic impurities in the previous
section, we now deal with the case of an impurity with
additional “easy axis” anisotropy (i.e. with anisotropy
parameter D < 0 in Eq. (5)) that is exposed to a mag-
netic field. In this chapter, emphasis is placed on the

FIG. 3. (Color online) Saturation value in the limit T → 0 of
a) the impurity contribution to the magnetization and b) the
impurity magnetization as function of the coupling strength
ρJ as in Fig. 2, but here for impurity spin S = 3/2. Mimp

again shows universal behavior for ρJ ′ ≈ 0.276 and a fit of
the universal BA curve now gives kBTH/W ≈ 3.05 · 10−1.

the lattice site that it is associated with. For very large
values of J it is energetically favorable that this lattice
site is singly occupied with a probability near one. We
can then replace s∼0 by a spin-1/2 operator s∼ in Eq. (4).

Furthermore, all other terms in Hamiltonian (1) that in-
volve degrees of freedom different from the impurity and
the lattice site to which it couples can be neglected. We
are then left with a strongly coupled antiferromagnetic
dimer in a magnetic field with Hamiltonian

H∼ J→∞ = JS∼ · s∼+ gSµBB(S∼
z + s∼

z) . (12)

To determine the limiting value of M/gSµB for ρJ →
∞ at any positive magnetic field, we thus have to calcu-
late the expectation value of −S∼

z with respect to that

eigenstate of total spin which has the lowest value of
Stotal and corresponding z-projection Mtotal = −Stotal.
Denoting eigenstates of the effective Hamiltonian (12) as
|Stotal,Mtotal〉, we find:

− 〈0, 0|S∼
z|0, 0〉 = 0 for S = 1/2 , (13)

−
〈

1

2
,−1

2

∣∣∣S∼
z
∣∣∣ 1

2
,−1

2

〉
=

2

3
for S = 1 , (14)

−〈1,−1|S∼
z|1,−1〉 =

5

4
for S = 3/2 . (15)

In contrast, in the limit ρJ → ∞ the impurity con-
tribution to the magnetization Mimp/gSµB reduces to
−〈S∼

z + s∼
z〉 with respect to the above eigenstates of

Hamiltonian (12). This expectation value gives S − 1/2.
The case S = 1/2 is therefore special since both Mimp

and M go to zero for ρJ →∞. Figs. 2 and 3 show that
NRG, as a method that is non-perturbative in J , can
in fact reproduce the limiting values for large coupling
strength.72

Let us now consider the magnetization for interme-
diate values of ρJ . In the special case S = 1/2 both
Mimp and M are monotonically decreasing functions of
the coupling strength that show similar behavior. We
furthermore find that a larger value of the magnetic field
B also leads to a larger value of the magnetization. In
fact, all magnetization curves that we have calculated in-
crease monotonically with B. On the other hand, Mimp

and M display qualitatively different behavior for im-
purity spin S ≥ 1. While Mimp is again a monotonically
decreasing function of the coupling strength,M develops
a minimum for all considered magnetic fields.

It is instructive to compare the NRG results with the
Bethe Ansatz solution for Mimp. According to the stan-
dard estimate for the Kondo temperature from Eq. (11),
kBTK/W is a monotonically increasing function of the
coupling strength ρJ . Furthermore, a larger magnetic
field always results in a larger magnetization for the sys-
tem under consideration. For this reason, an increase of
the coupling ρJ leads to a larger Kondo temperature TK
and thus, after rescaling, to a lower effective field and
hence a smaller value of Mimp. The impurity contribu-
tion to the magnetization should therefore be a monoton-
ically decreasing function of the coupling strength in the
scaling regime. This observation is consistent with our
NRG results for Mimp as reported in Figs. 2 and 3. The
vertical lines in the plots mark a coupling strength ρJ ′

for which we have checked by comparing with the BA
solution that Mimp still displays universal behavior. It
can thus be seen as a lower bound for the couplings that
can be assigned to the scaling regime. In contrast, the
impurity magnetization M has a minimum for coupling
strengths that are smaller than ρJ ′. We conclude that
this behavior of M is not compatible with the standard
scaling picture as described above.

V. IMPURITIES WITH EASY AXIS
ANISOTROPY

We now deal with the case of an impurity with addi-
tional easy axis anisotropy (i.e., with anisotropy param-
eter D < 0 in Eq. (5)). In this section, emphasis is
placed on the field dependence of the impurity magneti-
zation M, again for the case of equal g-factors. Before
considering the full impurity model given by Eq. (1), let
us briefly recapitulate the magnetic properties of a free
anisotropic spin with Hamiltonian (5).

For negative anisotropy parameter D and vanishing
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magnetic field, the groundstate of a spin S ≥ 1 is a dou-
blet composed of the states with magnetic quantum num-
ber M = ±S. In the special case S = 1/2, the anisotropy
term D(S∼

z)2 evaluates to a constant and is thus insignif-

icant for the thermodynamics. The first excited state
is a singlet with M = 0 for S = 1 and a doublet with
M = ±(S − 1) for all larger spins. It follows that the
energy gap between groundstate and first excited state is
given by |D|(2S−1). For thermal energies that are small
compared to this gap, the zero-field magnetic susceptibil-
ity approximately obeys a Curie law with Curie constant
〈(S∼

z)2〉 = S2 (instead of S(S+1)/3 for an isotropic spin).

What do we expect for the full impurity model if there
is an additional easy axis anisotropy? Since the ground-
state doublet of the free anisotropic spin has ∆M = 2S >
1, the two states it is comprised of are not connected by
a single spin-flip, which changes M by 1. Furthermore,
for increasing values of |D| the gap in the energy spec-
trum of the free anisotropic spin progressively suppresses
scattering processes connecting groundstate and first ex-
cited state. With the scattering picture in mind, one
would thus assume that the Kondo effect is weakened
by a negative value of D. This is in line with the simpli-
fied picture for the limit |D| → ∞: The anisotropy term
D(S∼

z)2 then effectively acts as a projection operator onto

the groundstate doublet of the impurity with M = ±S
and hence asymptotically reduces the full Kondo interac-
tion of Eq. (4) to an Ising-type coupling.56 With respect
to the impurity magnetization M, there appears to be
an even simpler argument: A larger negative value of
the anisotropy parameter D energetically lifts all excited
states of the impurity, which have reduced magnetic mo-
ment in comparison to the groundstate doublet. At large
|D| one would thus expect that the excited states have
less weight in the many-body groundstate of the full im-
purity model leading to an increased value of M at zero
temperature for positive magnetic field.

A. Field dependence of the impurity magnetization

In Fig. 4 low-temperature NRG results for the impu-
rity magnetization M(B) for impurity spin S = 1, 3/2, 2
are presented. We start the discussion of the results at
high magnetic fields and move from there to lower fields.
If the Zeeman energy is much larger than the anisotropy
parameter, i.e., if gSµBB � |D|, nearly isotropic behav-
ior ofM is observed. At smaller fields gSµBB ≈ |D|, the
impurity magnetization for D < 0 begins to deviate from
the isotropic curve and, for gSµBB � |D|, converges to
a D-dependent value larger than gSµB(S − 1/2). In the
limit of low fields, the impurity magnetization curves for
D < 0 shown in Fig. 4 are well described by a linear law:

M(B) ≈M(0)(D) + γ(D) · gSµBB/W . (16)

M(0)(D) thus corresponds to the impurity magnetization
in the groundstate of Hamiltonian (1) for infinitesimal

7

field dependence of the impurity magnetization M. Be-
fore considering the full impurity model with non-zero
coupling J as described by Eq. (1), let us briefly recapit-
ulate the magnetic properties of a free anisotropic spin
with Hamiltonian (5).

For negative anisotropy parameter D and vanishing
magnetic field B, the groundstate of a spin S ≥ 1 is
a doublet composed of two states with magnetic quan-
tum number M = ±S. In the special case S = 1/2 the
anisotropy term D(S∼

z)2 in Eq. (5) evaluates to a con-

stant and is thus insignificant for the thermodynamics.
The first excited state is a singlet with M = 0 for S = 1
and a doublet with M = ±(S − 1) for all larger spins.
It follows that the energy gap between groundstate and
first excited state is given by |D|(2S−1). For thermal en-
ergies that are small compared to this gap, the zero-field
magnetic susceptibility approximately obeys a Curie law
with Curie constant 〈(S∼

z)2〉 = S2 (instead of S(S + 1)/3

for an isotropic spin).
What do we expect for non-zero and negative coupling

J if there is an additional “easy axis” anisotropy? Since
the groundstate doublet of the free anisotropic spin has
∆M = 2S > 1, the two states it is comprised of are not
connected by a single spin-flip, which would change M
by 1. Furthermore, for increasing values of |D| the gap in
the energy spectrum of the free anisotropic spin progres-
sively suppresses scattering processes connecting ground-
state and first excited state. With the scattering picture
in mind, one would thus assume that the Kondo screening
effect is weakened by a negative value of D. This is in line
with the simplified picture for the limit |D| → ∞: The
anisotropy term D(S∼

z)2 in Hamiltonian (1) then effec-

tively acts as a projection operator onto the groundstate
doublet of the impurity with M = ±S and hence asymp-
totically reduces the full Kondo interaction of Eq. (4) to
an Ising-type coupling.25 With respect to the impurity
magnetization M, there appears to be an even simpler
argument: a negative value of the anisotropy parameter
D energetically lifts all excited states of the impurity,
which have reduced magnetic moment in comparison to
the groundstate doublet. At large |D| one would thus
expect that the excited states have less weight in the
many-body groundstate of the impurity model of Eq. (1)
leading to an increased value of M at zero temperature
and non-zero magnetic field.

The temperature dependence of a Kondo impurity with
additional “easy axis” anisotropy at zero magnetic field
has been previously studied in Ref. 25. There it was
found that the impurity contribution to the entropy Simp

displays isotropic behavior for kBT � |D|. Upon lower-
ing the thermal energy below kBT ≈ |D|, Simp crosses
over to its zero-temperature limiting value of kB ln 2,
which is indicative of an effective two-level system.25 The
impurity contribution to the magnetic susceptibility χimp

follows a Curie law at low thermal energy kBT � |D|,
with a Curie constant interpolating between the free
isotropic value of S(S + 1)/3 for |D| → 0 and the free
anisotropic low temperature value of S2 for |D| → ∞.25
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FIG. 4. (Color online) Impurity magnetization M for differ-
ent anisotropy parameters D < 0 (“easy axis” anisotropy)
as function of magnetic field for thermal energy kBT ≈
1.54 ·10−15W ≈ 0, coupling strength ρJ = 0.07, and impurity
spin a) S = 1, b) S = 3/2, and c) S = 2. For the solid curves
the value of |D| decreases from top to bottom and we com-
pare with the magnetization of an isotropic impurity (dashed
line). As before, the g-factors of electrons and impurity are
chosen equal, ge = gS . The vertical lines mark the value of
kBTH/W , which is determined by fitting the Bethe Ansatz
solution for the universal behavior of Mimp.

This behavior of χimp indicates the presence of impurity
states with non-zero magnetic moment in the ground-
state of Hamiltonian (1) for D < 0 and B = 0.

A. Field dependence of the impurity magnetization

We now turn to the case of non-zero magnetic field.
In Fig. 4 low-temperature NRG results for the impu-
rity magnetization M(B) are presented. The calcula-
tions were done for equal g-factors ge = gS , a number of
anisotropy parameters D < 0, and three impurity spins
S = 1, S = 3/2, and S = 2. As a reference point we also
show the magnetization curve for an isotropic impurity
with D = 0 in each subplot. The vertical lines in Fig.
4 mark the values of kBTH/W that were determined for
each impurity spin S at D = 0 by fitting the universal

FIG. 4. (Color online) Impurity magnetization M for differ-
ent anisotropy parameters D < 0 (easy axis anisotropy) as
function of magnetic field for kBT/W ≈ 1.54 · 10−15 ≈ 0,
coupling strength ρJ = 0.07, and impurity spin a) S = 1, b)
S = 3/2, and c) S = 2. For the solid curves the value of |D| in-
creases from bottom to top and we compare with the magneti-
zation of an isotropic impurity (dashed line). As before, equal
g-factors of electrons and impurity are assumed. Vertical lines
mark the value of kBTH/W , which is determined by fitting
the universal Bethe Ansatz solution for Mimp with D = 0.
For ρJ = 0.07 and S = 2, we find kBTH/W ≈ 6.8 · 10−7.

magnetic field. The low-field behavior for D < 0 as de-
scribed by Eq. (16) is different from that displayed by
an isotropic impurity: For D = 0 and S ≥ 1, the im-
purity contribution to the magnetization Mimp, which is
proportional toM in the isotropic case as demonstrated
in Sec. IV A, approaches the limit of zero magnetic field
with slowly decaying logarithmic corrections.39,40,66

From the results presented in Fig. 4 we conclude that
for non-zero magnetic field and D < 0 a larger value of
|D| leads to a larger impurity magnetizationM, with an
upper bound for |D| → ∞ given by the free saturation
value gSµBS. This observation is in agreement with the
expectations formulated at the beginning of this section.
One might therefore say that an easy axis anisotropy sta-
bilizes the impurity spin.

Taking another look at Fig. 4 and focusing on the
regime of small magnetic fields with Zeeman energy
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BA solution9 for the impurity contribution to the magne-
tization Mimp. As discussed in section IV A, the value of
TH increases with S despite equal “bare” parameters of
the model (cf. Table I). For the chosen coupling strength
ρJ = 0.07 and S = 2 we obtained kBTH/W ≈ 6.8 · 10−7.

We start the discussion of the results for the impu-
rity magnetization M at high magnetic fields and move
from there to lower fields. If the Zeeman energy is much
larger than the anisotropy parameter, i.e. gSµBB � |D|,
nearly isotropic behavior of M is observed. At smaller
fields for which gSµBB ≈ |D|, the impurity magnetiza-
tion for D < 0 begins to deviate from the isotropic curve
and eventually converges to a D-dependent value larger
than gSµB(S − 1/2) in the limit of low fields, defined by
gSµBB � |D|. In this limit, the anisotropic magnetiza-
tion curves shown in Fig. 4 are well described by a linear
law

M/gSµB ≈M(0)(D)/gSµB + γ(D) · gSµBB/W (15)

with aD-dependent factor γ. M(0)(D) is thus an approx-
imation for the impurity magnetization in the ground-
state of Hamiltonian (1) for infinitesimal magnetic field.
The limiting behavior of M for D < 0 as described by
Eq. (15) is fundamentally different from that exhibited
by an isotropic impurity: for D = 0 and S ≥ 1 the im-
purity contribution to the magnetization Mimp, which is
proportional toM in the isotropic case as demonstrated
in section IV A, approaches the limit of zero magnetic
field with slowly decaying logarithmic corrections.9,10,16

From the results presented in Fig. 4 we conclude that
for non-zero magnetic field and D < 0 a larger value of
|D| leads to a larger impurity magnetizationM, with an
upper bound for |D| → ∞ given by the free saturation
value gSµBS. This observation is in agreement with the
expectations formulated at the beginning of this section
as the Kondo screening effect, whose full development is
inhibited by an additional “easy axis” anisotropy, is the
reason for the reduction of the zero-temperature impurity
magnetization in comparison to the saturation magneti-
zation of a free spin. One might therefore say that a
negative value of the anisotropy parameter D stabilizes
the impurity spin.

We have also calculated the impurity magnetizationM
for vanishing electron g-factor, ge = 0, in order to study
the influence of the g-factor ratio ge/gS on the prop-
erties of a Kondo impurity with additional “easy axis”
anisotropy. It turns out that the difference between the
magnetization curves for ge = 0 and ge = gS is again
very small meaning that it would be barely noticeable in
the plots of Fig. 4. We thus reach the same conclusion
as in the isotropic case, namely that the Zeeman term
for the electrons can be neglected when calculating the
impurity magnetization.

Taking another look at Fig. 4 and focusing on the
regime of small magnetic fields with Zeeman energy
gSµBB � |D|, one might be misled to think that there is
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FIG. 5. (Color online) Impurity magnetizationM as function
of magnetic field for fixed anisotropy parameterD = −10−3W
and thermal energy kBT ≈ 1.03 · 10−6W for S = 1, kBT ≈
1.28 ·10−8W for S = 3/2, and kBT ≈ 1.58 ·10−10W for S = 2.
The impurity spin S increases from bottom to top. Note that
M is not saturated for any field in the plot range (cf. Fig.
4). Open symbols represent fits using a rescaled and shifted
Brillouin function, f(x) = γBS(ηx), and solid (green) lines
fits using a rescaled and shifted Langevin function, g(x) =
γL(ηx).

a saturation of the impurity magnetization M (this im-
pression would not occur for an isotropic impurity). This
observation raises the question whether it is possible to
approximately describe the field dependence of M for
gSµBB � |D| using a theory for a free spin, whose mag-
netization saturates at zero temperature. In the simplest
case such a description could be provided by a Brillouin
function BS(x), which gives the temperature and field
dependence of the magnetization of a free and isotropic
spin. As demonstrated in Fig. 5 for one value of the
anisotropy parameter D, it is in fact possible to ade-
quately fit the NRG results for M from Fig. 4 using a
rescaled and shifted Brillouin function, f(x) = γBS(ηx)
with free parameters γ and η, as long as kBT � |D|
and gSµBB � |D|. However, for larger fields the be-
havior of the impurity magnetization clearly differs from
the prediction of a Brillouin function, as seen in Fig. 4.
The ratio of |D| and kBTH (or alternatively kBTK) de-
termines the “apparent saturation value” ofM and thus
the parameter γ. In contrast to a fit employing a mod-
ified Brillouin function, a classical description using a
rescaled and shifted Langevin function, g(x) = γL(ηx)
with L(x) = limS→∞BS(x), does not work well for mag-
netic fields close to the saturation field (cf. the solid lines
in Fig. 5), as is to be expected for a quantum mechani-
cal system with low spin. Nevertheless, a fit using g(x)
can produce reasonable results for fields that are small in
comparison to the saturation field.

The results depicted in Fig. 5 might be of impor-
tance for an experimental study of a system that is (ap-
proximately) described by Hamiltonian (1) with a strong
“easy axis” anisotropy. (Hier ein Hinweis auf irgendein

FIG. 5. (Color online) Impurity magnetizationM as function
of magnetic field for fixed anisotropy D/W = −10−3 and
temperature kBT/W ≈ 1.03 · 10−6 for S = 1, kBT/W ≈
1.28 · 10−8 for S = 3/2, and kBT/W ≈ 1.58 · 10−10 for S = 2.
The impurity spin S increases from bottom to top. Note that
M is not saturated for any field in the plot range (cf. Fig.
4). Open symbols represent fits using a rescaled and shifted
Brillouin function, f(x) = γBS(ηx), and solid (green) lines
fits using a rescaled and shifted Langevin function, g(x) =
γL(ηx).

gSµBB � |D|, one might be misled to think that there
is a saturation of the impurity magnetization M (this
impression would not occur for an isotropic impurity).
This raises the question whether it is possible to approx-
imately describe the field dependence ofM for gSµBB �
|D| using a model for a free spin. In the simplest case,
such a description could be provided by a Brillouin func-
tion BS(x), which gives the temperature and field depen-
dence of the magnetization of a free and isotropic spin S.
As demonstrated in Fig. 5 for one value of D, it is in fact
possible to adequately fit the NRG results for M from
Fig. 4 using a rescaled and shifted Brillouin function,
f(x) = γBS(ηx) with free parameters γ and η, as long
as kBT � |D| and gSµBB � |D|. However, for larger
fields the behavior of the impurity magnetization clearly
differs from the prediction of a Brillouin function, as seen
in Fig. 4. The ratio of |D| and kBTH (or alternatively
kBTK) determines the “apparent saturation value” ofM
and thus the parameter γ. In contrast to a fit with a
modified Brillouin function, a classical description using
a rescaled and shifted Langevin function, g(x) = γL(ηx)
with L(x) = limS→∞BS(x), does not work well for mag-
netic fields close to the “saturation field” (cf. the solid
lines in Fig. 5), as is to be expected for a quantum me-
chanical system with low spin. Nevertheless, a fit using
g(x) can produce reasonable results for fields that are
small compared to the “saturation field”.

The results depicted in Fig. 5 might be of importance
for an experimental study of a system that is (approxi-
mately) described by Hamiltonian (1) with a strong easy
axis anisotropy. It is then conceivable that a measure-
ment of the magnetization for magnetic fields that can

be realistically produced in an experiment (depending
on the value of D, fields with gSµBB ≈ |D| might not be
obtainable) does not allow to distinguish between the be-
havior of an anisotropic impurity spin and that of a free
spin. Such a scenario seems more likely if the experimen-
tal control over the g-factor and the absolute magnitude
of the magnetization is limited, and if |D| is large com-
pared to kBTK so that the “apparent saturation value”
of the impurity magnetization lies close to the free satu-
ration value gSµBS.

B. Impurity contribution to the magnetization and
the susceptibility

As for an isotropic impurity (cf. Sec. IV A), we have
analyzed the connection between the impurity magneti-
zation M, which is shown in Fig. 4, and the impurity
contribution to the magnetization Mimp (not shown) for
D < 0. It is found that the relation between both quanti-
ties is the same as in the isotropic case, i.e.,M = αMimp

with a proportionality factor α that is independent of
the anisotropy parameter D when taking into account
the precision of the results from Table I. For impurity
spin S = 2 and coupling strength ρJ = 0.07 the obtained
value of the proportionality factor is α = 1.03701(3).

We have furthermore investigated the relationship be-
tween Mimp at non-zero magnetic field and the impurity
contribution to the susceptibility χimp at zero field. At
low temperature kBT � |D|, χimp obeys a Curie law with
a Curie constant interpolating between the free isotropic
value of S(S + 1)/3 for |D| → 0 and the free anisotropic
low temperature value of S2 for |D| → ∞.56 It turns out
that there is a simple relation between the Curie constant
and the zero-temperature magnetization Mimp for small
magnetic fields gSµBB � |D|:

kBTχimp

(gSµB)2

∣∣∣∣
B=0, kBT�|D|

u
(
Mimp

gSµB

)2
∣∣∣∣∣
h̃�|D|, kBT�h̃

(17)

with h̃ = gSµBB. The relative deviation between left
hand and right hand side of Eq. (17), as determined by
NRG calculations for all parameter combinations used
in Fig. 4, is less than 1 ‰. The relationship between
zero-field susceptibility and magnetization expressed by
Eq. (17) is actually the same as for a doublet composed
of states with magnetic quantum numbers ±M . In par-
ticular, a free spin with easy axis anisotropy effectively
reduces to such a doublet at low temperature kBT � |D|,
as discussed at the beginning of this section.

In summary, the following picture of the low-
temperature properties of a Kondo impurity with easy
axis anisotropy is obtained: The impurity effectively
acts as a two-level system with residual entropy Simp =
kB ln 2,56 that splits up in a small magnetic field (leading
to Simp = 0) and displays an unusual groundstate magne-
tization indicative of a so-called “fractional spin”56. De-
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FIG. 6. (Color online) Energy eigenvalues with magnetic
quantum numbers M (upper panels) and magnetization
(lower panels) as function of magnetic field for an anisotropic
spin, described by Hamiltonian (5) with D > 0 (hard axis
anisotropy), with a) S = 1, b) S = 3/2, and c) S = 2. For
the magnetization curves and fields larger than the respective
saturation field, temperature increases from top to bottom.

spite this special property, the combination of χimp and
Mimp shows that the magnetic response at low tempera-
ture and field still resembles that of an ordinary magnetic
doublet.

VI. IMPURITIES WITH HARD AXIS
ANISOTROPY

We now investigate how an additional hard axis
anisotropy (D > 0) affects the magnetic properties of
the impurity. To lay the foundations for a study of the
full impurity problem, we first discuss the magnetic field
dependence of the magnetization for a free anisotropic
spin described by Hamiltonian (5) with D > 0.

For positive D and B = 0, the eigenvalues of Hamilto-
nian (5) are energetically ordered according to the abso-
lute value of their respective magnetic quantum number
M . Depending on the spin S, the groundstate is thus
either a singlet with M = 0 (for integer S) or a dou-
blet with M = ±1/2 (for half-integer S). In either case,
the rest of the energy spectrum is comprised of doublets
with magnetic quantum numbers ±M and 1/2 < M ≤ S.
The energy gap ∆|M | between a level with quantum num-
ber M and the next higher-lying doublet is given by
∆|M | = (2|M |+ 1)D. As a consequence of the magnetic
field dependence of the eigenvalues described by the Zee-
man term in Eq. (5), n groundstate level crossings oc-
cur for positive magnetic fields, with n = S for integer
spin and n = S − 1/2 for half-integer spin. At the field
BM = ∆|M |/gSµB , the magnetic quantum number of the
groundstate abruptly changes from −M to −(M+1) and
hence the zero-temperature magnetization curve displays
a discontinuous step. This effect is illustrated in Fig. 6
for spin S = 1, 3/2, and 2. Finite temperature smears
out the magnetization steps and renders them continu-

ous. As the low-energy situation is the same in the vicin-
ity of each groundstate level crossing, so is the effect of
moderate temperature (cf. Fig. 6 c).

A. Magnetic field dependence of the impurity
magnetization

We begin with the discussion of the magnetic field de-
pendence of the impurity magnetizationM(B) for equal
g-factors and quasi-vanishing temperature T ≈ 0. Mag-
netization curves for impurity spin S = 1, 3/2, and 2,
and several values of the anisotropy parameter D > 0
are shown in Fig. 7. Since the coupling strength ρJ , and
thus the isotropic energy scale kBTH according to Table
I, is kept constant, the ratio kBTH/D is varied. Note
that a linear magnetic field scale is used in Fig. 7 to
allow for an easy comparison with the results for a free
anisotropic spin from Fig. 6.

For an interpretation of the results for M(B, T ≈ 0),
let us first consider the two limiting cases in which D
is either small or large compared to kBTH . In the fol-
lowing, imagine that we move from large magnetic fields
to lower fields. If D is large, then little isotropic Kondo
screening can occur before the anisotropy becomes ef-
fective. As a guideline, we might thus think of the en-
ergy spectrum of a free anisotropic spin S. On the other
hand, for small D significant isotropic Kondo screening
can take place before the magnetic field reaches the en-
ergy scale defined by the anisotropy, so that it eventu-
ally becomes more appropriate to think of the energy
levels of a free anisotropic spin S − 1/2. As illustrated
in Fig. 6, groundstate level crossings occur for a spin
with hard axis anisotropy at certain fields and give rise
to steps in the zero-temperature magnetization curve.
For small and large anisotropy D, the impurity mag-
netization M(B, T ≈ 0) also displays sharp, step-like
features that are surrounded by magnetic field domains
in which M only slowly increases with B (“pseudo-
plateaus”). However, due to the energy continuum of
electronic states, these sharp features stay continuous
even in the limit of zero temperature. The number of
steps and their position relative to the field D/gSµB de-
pends on the impurity spin S for large D and on the
residual spin S − 1/2 for small D, respectively. The case
S = 1 is special because the residual spin-1/2 cannot
have uniaxial anisotropy. The single step which exists
for S = 1 at large D therefore disappears for smaller val-
ues of D. With respect to the energy scale imposed by
the anisotropy, the steps in the impurity magnetization
become well-defined for small and large D. In addition,
the pseudo-plateaus become flatter. Fig. 7 c furthermore
suggests that the two steps appearing in M(B, T ≈ 0)
for S = 2 and large D have different width. We are going
to discuss the aspect of step width in more detail in Sec.
VI C. In particular, it will be shown that an impurity
magnetization step is steeper if it occurs at larger field.
It turns out that a standard z-averaging of the NRG re-
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of small anisotropy, we have calculated additional mag-
netization curves for impurity spin S = 3/2 and S = 2
with decreasing coupling strength ρJ (0.09, 0.07, and
0.05). Since ρ = 1/2W , a reduction of ρJ can be inter-
preted as an increase of the half-bandwidth W for fixed
J . For each value of the coupling strength the anisotropy
parameter was chosen according to Table I so as to give
a constant ratio kBTH/D = 1000. With this choice of
D, a reduction of ρJ leads to a shift of the step in the
impurity magnetization curve towards smaller fields rel-
ative to D/gSµB . This suggests that the effect observed
for small D is not a result of the finite bandwidth as-
sumed in the calculations. The question at which fields
impurity magnetization steps occur for large anisotropy
is considered in chapter VI C.

The limiting cases of small and large anisotropy D
are connected by a regime with partial isotropic Kondo
screening in which it is not possible to exclusively think
in terms of the impurity spin S or the residual spin
S − 1/2. Impurity magnetization steps are broadened
in this regime and, upon reducing the anisotropy param-
eter, move towards lower fields relative to D/gSµB (see
e.g. Fig. 7 b). In addition, one step disappears for
D ≈ kBTH in case of integer impurity spin S (cf. Fig. 7
c).

For the largest magnetic fields relative to D/gSµB that
are considered in Fig. 7, the value of the impurity mag-
netization M lies close to the corresponding value for
an isotropic impurity. A reduction of D thus brings
M(B, T ≈ 0) closer to the isotropic low-field magneti-
zation of α(ρJ)gSµB(S − 1/2) for moderately large ra-
tios gSµBB/D. Isotropic Kondo screening effectively
changes the impurity spin S from integer to half-integer
and vice versa.26 Depending on the ratio kBTH/D and
the resulting degree of isotropic Kondo screening, differ-
ent behavior of the impurity magnetization is therefore
observed, in particular for fields B . D/gSµB : while
there is little magnetic response for an effective integer
spin (there is none at all for a free anisotropic integer
spin as shown in Fig. 6), we have larger impurity mag-
netization M ≈ gSµB/2 for effective half-integer spin.
However, in the latter case an additional S = 1/2-Kondo
screening effect occurs26 which leads to a suppression of
the impurity magnetization for even smaller fields.

In order to study the three different anisotropy regimes
(kBTH/D � 1, kBTH/D ≈ 1, and kBTH/D � 1)
in more detail, selected impurity magnetization curves
shown in Fig. 7 are replotted using a logarithmic mag-
netic field scale (see Figs. 8, 9, and 10). This brings out
effective S = 1/2-Kondo screening effects more clearly
and allows for a meaningful comparison with the behav-
ior of an isotropic impurity. Figs. 8 – 10 furthermore
demonstrate the effect of finite temperature on the impu-
rity magnetization for the case of “hard axis” anisotropy.

At large magnetic fields B � D/gSµB , the magneti-
zation curve M(B, T ≈ 0) for an anisotropic impurity
closely resembles the isotropic result. For lower fields
B & D/gSµB , the anisotropy eventually becomes ef-
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FIG. 7. (Color online) Impurity magnetization M for dif-
ferent anisotropy parameters D > 0 as function of magnetic
field for thermal energy kBT/W ≈ 1.54 · 10−15 ≈ 0, coupling
strength ρJ = 0.07, equal g-factors ge = gS , and impurity
spin a) S = 1, b) S = 3/2, and c) S = 2. The value of D in-
creases from bottom to top or from left to right, respectively.
Note the use of a linear magnetic field scale and the rescaling
of the Zeeman energy gSµBB by D.

fective and M(B, T ≈ 0) begins to deviate from the
isotropic curve. In particular, M(B, T ≈ 0) exhibits a
linear dependence on B for magnetic fields that are small
compared to all relevant energy scales. A proportionality
M(B) ∝ B at low field is also observed for finite tem-
perature, but, in general, the slope of the impurity mag-

FIG. 7. (Color online) Impurity magnetization M for differ-
ent anisotropy parameters D > 0 as function of magnetic field
for temperature kBT/W ≈ 1.54 ·10−15 ≈ 0, coupling strength
ρJ = 0.07, equal g-factors, and impurity spin a) S = 1, b)
S = 3/2, and c) S = 2. The value of D increases from bottom
to top or from left to right, respectively. Note the use of a
linear magnetic field scale and the rescaling of the Zeeman
energy gSµBB by D.

sults introduces artifacts into the magnetization steps for
large anisotropy D. This problem is investigated in more
detail in the context of an effective model at the end of
Sec. VI C. The plots shown in Fig. 7 are not visibly
affected by this numerical shortcoming.

The position of the steps in the impurity magnetiza-

tion curves for both small and large anisotropy D seems
interesting. Figs. 7 b and c show that for small D and
impurity spin S = 3/2 and S = 2 a step occurs at a
magnetic field which is smaller than the corresponding
level crossing field for a free anisotropic spin S − 1/2. In
contrast, for large D and all three impurity spins con-
sidered in Fig. 7, each impurity magnetization step is
found at a field exceeding the corresponding level cross-
ing field for a spin S. One might wonder whether the
half-bandwidthW of the electrons has an impact on these
two effects. To investigate this question for the case of
small anisotropy, we have calculated additional magneti-
zation curves for impurity spin S = 3/2 and S = 2 with
decreasing coupling strength ρJ (0.09, 0.07, and 0.05).
Since ρ = 1/2W , a reduction of ρJ can be interpreted
as an increase of the half-bandwidth W for fixed J . For
each value of the coupling strength the anisotropy pa-
rameter was chosen according to Table I so as to give
a constant ratio kBTH/D = 1000. With this choice of
D, a reduction of ρJ leads to a shift of the step in the
impurity magnetization curve towards smaller fields rel-
ative to D/gSµB . This suggests that the effect observed
for small D is not bandwidth-related. The question at
which fields impurity magnetization steps occur for large
anisotropy is considered in chapter VI C.

The limiting cases of small and large anisotropy D
are connected by a regime with partial isotropic Kondo
screening in which it is not possible to exclusively think
in terms of the impurity spin S or an residual spin
S − 1/2. Impurity magnetization steps are broadened in
this regime with respect to the energy scale D and, upon
reducing the anisotropy parameter, move towards lower
fields relative to D/gSµB (see Fig. 7 b). In addition, one
step disappears for D ≈ kBTH in case of integer impurity
spin S (cf. Fig. 7 c). Isotropic Kondo screening effec-
tively changes the impurity spin S from integer to half-
integer and vice versa.56 Depending on the ratio kBTH/D
and the resulting degree of isotropic Kondo screening,
different behavior of the impurity magnetization is there-
fore observed, in particular for fields gSµBB . D: While
there is little magnetic response for an effective integer
spin (at zero temperature, there is none at all for a free
anisotropic integer spin as shown in Fig. 6), we have
larger impurity magnetizationM≈ gSµB/2 for effective
half-integer spin. However, in the latter case an addi-
tional pseudo-spin-1/2 Kondo effect occurs56 which leads
to a suppression of the impurity magnetization for mag-
netic fields gSµBB � D.

In order to study the three different anisotropy regimes
(kBTH/D � 1, kBTH/D ≈ 1, and kBTH/D � 1) in
more detail, selected impurity magnetization curves from
Fig. 7 are replotted using a logarithmic magnetic field
scale (see Figs. 8, 9, and 10). This brings out effec-
tive spin-1/2 Kondo effects more clearly and allows for a
better comparison with the behavior of an isotropic im-
purity. Figs. 8, 9, and 10 furthermore demonstrate the
effect of finite temperature on the impurity magnetiza-
tion for the case of hard axis anisotropy.
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netization curve is different from the zero-temperature
value. If there is an effective Kondo screening effect, the
slope in the linear regime is reduced for sufficiently high
temperature resulting in a lower impurity magnetization
(this is reminiscent of the behavior of a free anisotropic
spin with half-integer S as exemplified by Fig. 6 b). Oth-
erwise, the slope initially grows with temperature lead-
ing to a higher value of M (similar to a free anisotropic
spin with integer S, cf. Figs. 6 a and c). If temper-
ature is high so that kBT � D, then M(B) is sup-
pressed for magnetic fields on the order of and smaller
than kBT/gSµB . On the contrary, judging by the rel-
ative deviation from the zero-temperature curve, finite
temperature has negligible effect on the impurity magne-
tization if the thermal energy falls into the energy interval
in whichM(B, T ≈ 0) ∝ B (such a temperature indepen-
dence is known for an isotropic impurity with S = 1/2, as
discussed in chapter IV A). In this regard,M differs from
the magnetization of a free anisotropic spin for which fi-
nite temperature is always relevant. If the impurity mag-
netization curve features steps, they are smeared out for
sufficiently high temperature. In case there is more than
one step in M(B, T ≈ 0) (e.g. for S = 2 and large D,
cf. Fig. 10 a), then, as a further difference in comparison
to a free anisotropic spin, finite temperature has unequal
effect on the different steps. These last two observations
are discussed in more detail in chapter VI C.

Ref. 26 arrived at the conclusion that an impurity
with additional “hard axis” anisotropy undergoes a cer-
tain S = 1/2-Kondo screening effect if higher-lying im-
purity states are frozen out so that the impurity is ef-
fectively reduced to a spin-1/2 doublet. Provided that
the magnetic field is small compared to D/gSµB , the im-
purity magnetization at low temperature is dominated
by the impurity’s groundstate properties. It is therefore
either suppressed if the impurity is effectively reduced
to a singlet (cf. Figs. 8 a, 9 c, and 10 a), or it reflects
the magnetic response of a Kondo screened spin-1/2 dou-
blet (cf. Figs. 8 c, 9 a, and 10 c). The corresponding
Kondo temperature T ∗K exhibits a certain dependence on
the anisotropy parameter D: for small D and integer im-
purity spin, T ∗K decreases faster than linear in D upon
reducing the anisotropy (it even drops exponentially fast
in the special case S = 1).26 This property of T ∗K af-
fects the small-D magnetization curvesM(B, T ≈ 0) for
impurity spin S = 1 and S = 2: the pseudo-plateau
that appears for S = 2 at magnetic fields B . 2D/gSµB
(see Figs. 10 c and 7 c) becomes flatter and broader
when decreasing D, whereas a reduction of D eventu-
ally leads to quasi-isotropic behavior over the whole con-
sidered magnetic field range for S = 1 (see Figs. 8 c
and 7 a). On the other hand, for large and increasing
anisotropy D and half-integer spin, the impurity is re-
duced more and more to its groundstate doublet at low
temperature.26 The observed screening effect is therefore
increasingly well described by an exchange-anisotropic
S = 1/2-Kondo model, whose Kondo temperature has a
value much smaller than W/kB .26 This means that the
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FIG. 8. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 1 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−7 (solid lines, cf. Fig. 7). Dashed lines show M for the
isotropic case and thermal energy kBT/W ≈ 1.54 ·10−15 ≈ 0.
For the light gray lines, the approximate value of kBT/W in-
creases from left to right from a) 4.35 · 10−4 to 6.10 · 10−2, b)
1.99 · 10−7 to 6.79 · 10−3, and c) 4.73 · 10−10 to 6.79 · 10−3.
Thin vertical lines indicate the respective magnetic field value
B = D/gSµB . For the chosen coupling strength ρJ = 0.07
and D = 0, we have kBTH/W ≈ 3.39 · 10−7 according to
Table I.

pseudo-plateau occuring for impurity spin S = 3/2 and
fields B . 2D/gSµB (see Figs. 9 a and 7 b) becomes
more pronounced for larger anisotropy D. As a final re-
mark, Fig. 10 a once again shows the different width of
the two impurity magnetization steps for S = 2 and large
D.

FIG. 8. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 1 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−7 (solid lines, cf. Fig. 7). Dashed lines showM(B) for the
isotropic case and kBT/W ≈ 1.54 · 10−15 ≈ 0. For the light
gray lines, the approximate value of kBT/W increases from
left to right from a) 4.35 · 10−4 to 6.10 · 10−2, b) 1.99 · 10−7

to 6.79 · 10−3, and c) 4.73 · 10−10 to 6.79 · 10−3. Thin vertical
lines indicate the respective Zeeman energy gSµBB = D. For
the chosen coupling strength ρJ = 0.07 and D = 0, we have
kBTH/W ≈ 3.39 · 10−7 according to Table I.

At large magnetic fields gSµBB � D, the magneti-
zation curve M(B, T ≈ 0) for an anisotropic impurity
closely resembles the isotropic result. For lower fields
gSµBB & D, the anisotropy eventually becomes effec-
tive and the impurity magnetization begins to deviate
from the isotropic curve. In particular, M(B, T ≈ 0)
displays a linear dependence on B for magnetic fields
that are small compared to all relevant energy scales. If
temperature is high so that kBT � D, then M(B) is
suppressed for magnetic fields of the order of and smaller
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FIG. 9. (Color online) Impurity magnetizationM as function
of magnetic field for impurity spin S = 3/2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−10 (solid lines, cf. Fig. 7). As before, dashed lines show
M for the isotropic case and kBT/W ≈ 0. For the light gray
lines, the approximate value of kBT/W increases from left
to right from a) 1.61 · 10−5 to 1.05 · 10−1, b) 3.45 · 10−7 to
6.79 · 10−3, and c) 1.01 · 10−11 to 6.79 · 10−3. Magnetic fields
satisfying B = nD/gSµB with n = 1, 2 are highlighted by thin
vertical lines. According to Table I, kBTH/W ≈ 4.55 · 10−7

for ρJ = 0.07 and D = 0.

B. Influence of the electron g-factor on M and the
connection between M and Mimp

We now investigate how the impurity magnetization
M(B, T ≈ 0) is affected by a non-zero electron g-factor
corresponding to a positive ratio ge/gS > 0. Because of
the sharp features that are found in the magnetization
curves, the present case of “hard axis” anisotropy seems
well suited to study the influence of non-zero ge (alterna-
tively one could examine the effect of the electron g-factor
on the basis of the linear magnetic field dependence that

a)

D/W = 10−2

S = 2

log10 (gSµBB/W )
−3 −2 −1

M
/g

S
µ

B

0.0

0.5

1.0

1.5

2.0

D/W = 0

kBT/W ≈ 0

kBT/W > 0

b)
D/W = 10−6

log10 (gSµBB/W )
−9 −8 −7 −6 −5 −4 −3 −2 −1

M
/g

S
µ

B

0.0

0.5

1.0

1.5

2.0

kBT
W

≈ 0

c)
D/W = 10−8

log10 (gSµBB/W )
−12 −10 −8 −6 −4 −2

M
/g

S
µ

B

0.0

0.5

1.0

1.5

2.0

kBT
W

≈ 0

FIG. 10. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−8 (solid lines, cf. Fig. 7). Dashed lines again show M for
the isotropic case and kBT/W ≈ 0. For the light gray lines,
the approximate value of kBT/W increases from left to right
from a) 7.54 · 10−4 to 1.05 · 10−1, b) 3.45 · 10−7 to 6.79 · 10−3,
and c) 5.26 · 10−11 to 6.79 · 10−3. Thin vertical lines indicate
magnetic fields satisfying B = nD/gSµB , with n = 1, 2, 3.
For ρJ = 0.07 and D = 0 we obtain kBTH/W ≈ 6.8 · 10−7.

M(B) exhibits for small B). As an example, Fig. 11
shows magnetization curves M(B, T ≈ 0) for impurity
spin S = 1, moderately large D, and several g-factor ra-
tios interpolating between a “local field” (ge = 0) and a
“bulk field” (ge = gS).

The results presented in Fig. 11 demonstrate that a
positive electron g-factor effectively causes a rescaling of
the magnetic field: a ratio ge/gS > 0 shifts the impurity
magnetization curve for ge = 0 towards larger fields and
thus reduces M(B, T ≈ 0), which is a monotonically
increasing function of B, for a fixed magnetic field value.

FIG. 9. (Color online) Impurity magnetizationM as function
of magnetic field for impurity spin S = 3/2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−10 (solid lines, cf. Fig. 7). As before, dashed lines show
M(B) for the isotropic case and kBT/W ≈ 0. For the light
gray lines, the approximate value of kBT/W increases from
left to right from a) 1.61 · 10−5 to 1.05 · 10−1, b) 3.45 · 10−7 to
6.79 · 10−3, and c) 1.01 · 10−11 to 6.79 · 10−3. Magnetic fields
satisfying gSµBB = nD with n = 1, 2 are highlighted by thin
vertical lines. According to Table I, kBTH/W ≈ 4.55 · 10−7

for ρJ = 0.07 and D = 0.

than kBT/gSµB . On the other hand, judging by the rel-
ative deviation from the zero-temperature curve, finite
temperature has negligible effect on the impurity magne-
tization if the thermal energy falls into the energy regime
in whichM(B, T ≈ 0) ∝ B (such a temperature indepen-
dence is known for an isotropic impurity with S = 1/2,
as discussed in Sec. IV A). In this regard,M differs from
the magnetization of a free anisotropic spin for which
non-zero temperature is always relevant. If the impurity
magnetization curve features steps, they are smeared out
for sufficiently high temperature. In case there is more
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FIG. 9. (Color online) Impurity magnetizationM as function
of magnetic field for impurity spin S = 3/2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−10 (solid lines, cf. Fig. 7). As before, dashed lines show
M for the isotropic case and kBT/W ≈ 0. For the light gray
lines, the approximate value of kBT/W increases from left
to right from a) 1.61 · 10−5 to 1.05 · 10−1, b) 3.45 · 10−7 to
6.79 · 10−3, and c) 1.01 · 10−11 to 6.79 · 10−3. Magnetic fields
satisfying B = nD/gSµB with n = 1, 2 are highlighted by thin
vertical lines. According to Table I, kBTH/W ≈ 4.55 · 10−7

for ρJ = 0.07 and D = 0.

B. Influence of the electron g-factor on M and the
connection between M and Mimp

We now investigate how the impurity magnetization
M(B, T ≈ 0) is affected by a non-zero electron g-factor
corresponding to a positive ratio ge/gS > 0. Because of
the sharp features that are found in the magnetization
curves, the present case of “hard axis” anisotropy seems
well suited to study the influence of non-zero ge (alterna-
tively one could examine the effect of the electron g-factor
on the basis of the linear magnetic field dependence that
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FIG. 10. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−8 (solid lines, cf. Fig. 7). Dashed lines again show M for
the isotropic case and kBT/W ≈ 0. For the light gray lines,
the approximate value of kBT/W increases from left to right
from a) 7.54 · 10−4 to 1.05 · 10−1, b) 3.45 · 10−7 to 6.79 · 10−3,
and c) 5.26 · 10−11 to 6.79 · 10−3. Thin vertical lines indicate
magnetic fields satisfying B = nD/gSµB , with n = 1, 2, 3.
For ρJ = 0.07 and D = 0 we obtain kBTH/W ≈ 6.8 · 10−7.

M(B) exhibits for small B). As an example, Fig. 11
shows magnetization curves M(B, T ≈ 0) for impurity
spin S = 1, moderately large D, and several g-factor ra-
tios interpolating between a “local field” (ge = 0) and a
“bulk field” (ge = gS).

The results presented in Fig. 11 demonstrate that a
positive electron g-factor effectively causes a rescaling of
the magnetic field: a ratio ge/gS > 0 shifts the impurity
magnetization curve for ge = 0 towards larger fields and
thus reduces M(B, T ≈ 0), which is a monotonically
increasing function of B, for a fixed magnetic field value.

FIG. 9. (Color online) Impurity magnetizationM as function
of magnetic field for impurity spin S = 3/2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−10 (solid lines, cf. Fig. 7). As before, dashed lines show
M for the isotropic case and kBT/W ≈ 0. For the light gray
lines, the approximate value of kBT/W increases from left
to right from a) 1.61 · 10−5 to 1.05 · 10−1, b) 3.45 · 10−7 to
6.79 · 10−3, and c) 1.01 · 10−11 to 6.79 · 10−3. Magnetic fields
satisfying B = nD/gSµB with n = 1, 2 are highlighted by thin
vertical lines. According to Table I, kBTH/W ≈ 4.55 · 10−7

for ρJ = 0.07 and D = 0.

B. Influence of the electron g-factor on M and the
connection between M and Mimp

We now investigate how the impurity magnetization
M(B, T ≈ 0) is affected by a non-zero electron g-factor
corresponding to a positive ratio ge/gS > 0. Because of
the sharp features that are found in the magnetization
curves, the present case of “hard axis” anisotropy seems
well suited to study the influence of non-zero ge (alterna-
tively one could examine the effect of the electron g-factor
on the basis of the linear magnetic field dependence that
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FIG. 10. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c) D/W =
10−8 (solid lines, cf. Fig. 7). Dashed lines again show M for
the isotropic case and kBT/W ≈ 0. For the light gray lines,
the approximate value of kBT/W increases from left to right
from a) 7.54 · 10−4 to 1.05 · 10−1, b) 3.45 · 10−7 to 6.79 · 10−3,
and c) 5.26 · 10−11 to 6.79 · 10−3. Thin vertical lines indicate
magnetic fields satisfying B = nD/gSµB , with n = 1, 2, 3.
For ρJ = 0.07 and D = 0 we obtain kBTH/W ≈ 6.8 · 10−7.

M(B) exhibits for small B). As an example, Fig. 11
shows magnetization curves M(B, T ≈ 0) for impurity
spin S = 1, moderately large D, and several g-factor ra-
tios interpolating between a “local field” (ge = 0) and a
“bulk field” (ge = gS).

The results presented in Fig. 11 demonstrate that a
positive electron g-factor effectively causes a rescaling of
the magnetic field: a ratio ge/gS > 0 shifts the impurity
magnetization curve for ge = 0 towards larger fields and
thus reduces M(B, T ≈ 0), which is a monotonically
increasing function of B, for a fixed magnetic field value.

FIG. 10. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 2 and anisotropy
parameter a) D/W = 10−2, b) D/W = 10−6, and c)
D/W = 10−8 (solid lines, cf. Fig. 7). Dashed lines again
show M(B) for the isotropic case and kBT/W ≈ 0. For the
light gray lines, the approximate value of kBT/W increases
from left to right from a) 7.54·10−4 to 1.05·10−1, b) 3.45·10−7

to 6.79 · 10−3, and c) 5.26 · 10−11 to 6.79 · 10−3. Thin ver-
tical lines indicate magnetic fields satisfying gSµBB = nD,
with n = 1, 2, 3. For ρJ = 0.07 and D = 0, we obtain
kBTH/W ≈ 6.8 · 10−7.

than one step in M(B, T ≈ 0) (cf. Fig. 10 a), then, as
a further difference compared to a free anisotropic spin,
non-zero temperature has unequal effect on the different
steps. We come back to the last two observations in Sec.
VI C.

Ref. 56 arrives at the conclusion that an impurity with
additional hard axis anisotropy undergoes anisotropic
spin-1/2 Kondo screening if higher-lying impurity states
are frozen out so that the impurity is effectively reduced
to a spin-1/2 doublet. For gSµBB � D and low tem-

perature, the impurity magnetization is therefore either
suppressed if the impurity is effectively reduced to a sin-
glet (cf. Figs. 8 a, 9 c, and 10 a), or it reflects the
magnetic response of a Kondo screened spin-1/2 doublet
(cf. Figs. 8 c, 9 a, and 10 c). For small D and inte-
ger impurity spin, the corresponding Kondo temperature
T ∗K decreases faster than linear in D upon reducing the
anisotropy (it even drops exponentially fast in the spe-
cial case S = 1).56 As a result, the pseudo-plateau that
appears for S = 2 at magnetic fields gSµBB . 2D (see
Figs. 10 c and 7 c) becomes flatter and broader when de-
creasing D, whereas a reduction of D eventually leads to
quasi-isotropic behavior over the whole considered mag-
netic field range for S = 1 (see Figs. 8 c and 7 a). On
the other hand, for large and increasing anisotropy D and
half-integer impurity spin, the observed screening effect
is increasingly well described by an exchange-anisotropic
S = 1/2-Kondo model, whose Kondo temperature has a
value much smaller than W/kB .56 This means that the
pseudo-plateau occuring for impurity spin S = 3/2 and
fields gSµBB . 2D (see Figs. 9 a and 7 b) becomes more
pronounced for larger anisotropy D. As a final remark,
Fig. 10 a once again shows the different width of the two
impurity magnetization steps for S = 2 and large D.

B. Influence of the electron g-factor on M and the
connection between M and Mimp

We now investigate how the impurity magnetization
M(B, T ≈ 0) is affected by a non-zero electron g-factor
corresponding to a positive ratio ge/gS > 0. Because of
the sharp features that are found in the magnetization
curves, the case of hard axis anisotropy seems well suited
to study the influence of non-zero ge (alternatively one
could examine the effect of the electron g-factor on the
basis of the linear magnetic field dependence ofM(B) for
small B). As an example, Fig. 11 shows magnetization
curvesM(B, T ≈ 0) for impurity spin S = 1, moderately
large D, and several g-factor ratios interpolating between
a local field (ge = 0) and a bulk field (ge = gS).

The results presented in Fig. 11 demonstrate that a
positive electron g-factor effectively causes a rescaling of
the magnetic field: A ratio ge/gS > 0 shifts the impurity
magnetization curve for ge = 0 towards larger fields and
thus reduces M(B, T ≈ 0), which is a monotonically
increasing function of B, for a fixed magnetic field value.
Using the notation M(B, T, gS , ge), this statement can
be expressed as:

M(B, T ≈ 0, gS , 0) =M(B̃, T ≈ 0, gS , ge) , (18)

B̃ = η

(
ρJ,

ge
gS

)
B , (19)

with a rescaling factor η(ρJ, ge/gS) ≥ 1 for ge/gS ≥ 0
that depends on the coupling strength ρJ . Taking the
magnetization curve for a local field as reference, we
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Using the notation M(B, T, gS , ge), this statement can
be expressed as

M(B, T ≈ 0, gS , 0) =M(B̃, T ≈ 0, gS , ge) , (17)

B̃ = η

(
ρJ,

ge
gS

)
B , (18)

with a rescaling factor η(ρJ, ge/gS) ≥ 1 for ge/gS ≥ 0.
Taking the magnetization curve for a local field as refer-
ence, we may therefore state that the impurity effectively
“feels” a smaller magnetic field if there is also a Zeeman
coupling for the electrons.

For a bulk field, Fig. 11 additionally shows the im-
purity contribution to the magnetization Mimp. As pre-
viously found in the isotropic (cf. chapter IV A) and
“easy axis” case (cf. chapter V A), the numerical re-
sult strongly suggests a proportionality M(B, T ≈ 0) =
α(ρJ)Mimp(B, T ≈ 0) for fields B � W/gSµB . A fur-
ther study of the connection between M and Mimp for
anisotropy parameters 0 < D � W and impurity spin
S = 1, 3/2, and 2 reveals that the average values for
α(0.07) are nearly identical to the isotropic values re-
ported in Table I, and that the standard deviations have
the same order of magnitude.28 In combination with the
previous results for D ≤ 0, we hence suspect that the
value of α(ρJ) is actually independent of the uniaxial
anisotropy as long as |D| � W . So nicht befriedigend:
Geht es vielleicht tatsaechlich um das Verhaeltnis von D
zu TK?

An analysis of the magnetization curves for “hard axis”
anisotropy shows that the values of the rescaling factor
η(0.07, 1) (approximately 1.038 for S = 1, 1.0375 for
S = 3/2, and 1.037 for S = 2) and the correspond-
ing proportionality factor α(0.07) are remarkably simi-
lar. In case of S = 1, we have also studied the differ-
ence between a local and bulk magnetic field for the two
other coupling strengths previously used (i.e. ρJ = 0.05
and 0.09). The rescaling factors obtained for D � W
(η(0.05, 1) ≈ 1.0265 and η(0.09, 1) ≈ 1.0497) are again
in remarkable agreement with the corresponding values
of α(ρJ). Moreover, we find that Eqs. (17) and (18),
with the values of η(ρJ, 1) as determined for D > 0, are
also suitable to describe the difference in the impurity
magnetization between a local and bulk magnetic field
for anisotropy D ≤ 0. As M(B, T ≈ 0) lacks sharp fea-
tures in the isotropic and “easy axis” case, the effect of
a non-zero electron g-factor is more subtle, though.

The numerical results thus strongly suggest that the
rescaling factor η(ρJ, 1) and the proportionality factor
α(ρJ) take the same value. In particular, we expect that
η(ρJ, 1) tends to 1 in the limiting case ρJ → 0, which
corresponds to the limit of infinite bandwidth W → ∞.
Along with the monotonous dependence of the impurity
magnetization on the g-factor ratio ge/gS , which is il-
lustrated in Fig. 11, we therefore find the results for
M(B, T ≈ 0, gS , ge) to be compatible with the conclu-
sion of Ref. 24 that, in case of the isotropic Kondo model
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FIG. 11. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 1, D/W = 10−4,
coupling strength ρJ = 0.07, and several values of the g-factor
ratio ge/gS (cf. Fig. 7 a for ge = gS). For equal g-factors, the
impurity contribution to the magnetization Mimp is shown,
too. The thermal energy is kBT/W ≈ 1.54 · 10−15 ≈ 0 in all
cases.

with S = 1/2, the g-factor of the electrons (or equiva-
lently their magnetic moment) is irrelevant for impurity
properties in the limit of infinite bandwidth.

In the special case of impurity spin S = 1/2 and vanish-
ing anisotropy D = 0, it is also possible to compare the
obtained values for η(ρJ, 1) and α(ρJ) with previously
published results. For the exchange-anisotropic multi-
channel S = 1/2-Kondo model with couplings Jz > J⊥,
it is known that the impurity contributions to the free en-
ergy Fimp(B, T, gS , ge) for local and bulk magnetic field
have the following relation:29

Fimp(B, T, gS , gS) = Fimp(B̄, T, gS , 0) , (19)

B̄ = (1− 2fδ/π)B . (20)

Here, f is the number of electron channels and δ
is the phase shift generated by the coupling Jz.
This result for Fimp is a generalization of the con-
clusion that the impurity contribution to the sus-
ceptibility χimp(gS , ge) at zero magnetic field satisfies
χimp(gS , ge) = λ(ge/gS , δ)χimp(gS , gS), with a certain
factor λ, for the single-channel exchange-anisotropic S =
1/2-Kondo model.30 Using the definition for the impurity
contribution to the magnetization, Mimp = −∂Fimp/∂B,
and the equivalence of Mimp and the impurity magneti-
zation M for ge = 0, the following relation is obtained
from Eqs. (19) and (20):

Mimp(B, T, gS , gS) =

(1− 2fδ/π)M((1− 2fδ/π)B, T, gS , 0) . (21)

On the other hand, the proportionality M(B, T ≈
0, gS , gS) = α(ρJ)Mimp(B, T ≈ 0, gS , gS) implied by our

FIG. 11. (Color online) Impurity magnetization M as func-
tion of magnetic field for impurity spin S = 1, D/W = 10−4,
coupling strength ρJ = 0.07, and several values of the g-factor
ratio ge/gS (cf. Fig. 7 a for ge = gS). For equal g-factors, the
impurity contribution to the magnetization Mimp is shown,
too. The temperature is kBT/W ≈ 1.54 · 10−15 ≈ 0 in all
cases.

may therefore state that the impurity effectively “feels”
a smaller magnetic field if there is also a Zeeman term
for the electrons in Hamiltonian (1).

For a bulk field, Fig. 11 additionally shows the impu-
rity contribution to the magnetization Mimp. Note that
M and Mimp are equal by definition for a local field.
As previously found in the isotropic (cf. Sec. IV A)
and easy axis case (cf. Sec. V A), the numerical re-
sults strongly suggest a proportionality M(B, T ≈ 0) =
α(ρJ)Mimp(B, T ≈ 0) for fields gSµBB �W . A study of
the connection between M and Mimp for anisotropy pa-
rameters 0 < D �W and impurity spin S = 1, 3/2, and
2 reveals that the average values for α(0.07) are nearly
identical to the values for the isotropic case reported in
Table I, and that the standard deviations have the same
order of magnitude.73 In combination with the previous
results for D ≤ 0, we hence conclude that the effect of
the uniaxial anisotropy on the value of α must be very
small as long as |D| �W .

An analysis of the magnetization curves for hard axis
anisotropy furthermore shows that the values of the
rescaling factor η(0.07, 1) (approximately 1.038 for S = 1,
1.0375 for S = 3/2, and 1.037 for S = 2) and the corre-
sponding proportionality factor α(0.07) are remarkably
similar. In case of S = 1, we have also studied the dif-
ference between a local and bulk magnetic field for the
two other coupling strengths previously considered (i.e.,
for ρJ = 0.05, 0.09). The rescaling factors obtained for
D � W (η(0.05, 1) ≈ 1.0265 and η(0.09, 1) ≈ 1.0497)
are again in remarkable agreement with the correspond-
ing values of α(ρJ). Moreover, we find that Eqs. (18)
and (19), with the values of η(ρJ, 1) as determined for
D > 0, are also suitable to describe the relation between
the impurity magnetization curves for a local and bulk
magnetic field for anisotropy D ≤ 0. As M(B, T ≈ 0)

lacks sharp features in the isotropic and easy axis case,
the effect of a non-zero electron g-factor is more subtle,
though.

The numerical results thus strongly suggest that the
rescaling factor η(ρJ, 1) and the proportionality factor
α(ρJ) take the same value. Furthermore, we find our
results to be compatible with the conclusion of Ref. 42
that, in case of the isotropic Kondo model with S =
1/2, the g-factor of the electrons (or equivalently their
magnetic moment) is irrelevant for impurity properties in
the limit of infinite bandwidth, corresponding to ρJ → 0.

In the case of impurity spin S = 1/2 and vanish-
ing anisotropy D, it is also possible to compare the ob-
tained values for η(ρJ, 1) and α(ρJ) with previously pub-
lished results. For the exchange-anisotropic multichannel
S = 1/2-Kondo model with transverse coupling strength
ρJ⊥ � 1 (see Eq. (29) for the meaning of the symbols
J⊥ and J‖), it is known that the impurity contributions
to the free energy Fimp(B, T, gS , ge) for local and bulk
magnetic field have the following relation:74

Fimp(B, T, gS , gS) = Fimp(B̄, T, gS , 0) , (20)

B̄ = (1− 2fδ/π)B . (21)

Here, f is the number of electron channels and δ is
the phase shift generated by the longitudinal coupling
J‖. This result for Fimp is a generalization of the
conclusion that the impurity contribution to the sus-
ceptibility χimp(gS , ge) at zero magnetic field satisfies
χimp(gS , ge) = λ(ge/gS , δ)χimp(gS , gS), with a certain
factor λ, for the single-channel exchange-anisotropic S =
1/2-Kondo model with ρJ⊥ � 1.75 Using the defini-
tion for the impurity contribution to the magnetization,
Mimp = −∂Fimp/∂B, and the equivalence of Mimp and
the impurity magnetization M for ge = 0, the following
relation is obtained from Eqs. (20) and (21):

Mimp(B, T, gS , gS) =

(1− 2fδ/π)M((1− 2fδ/π)B, T, gS , 0) . (22)

On the other hand, the proportionality M(B, T ≈
0, gS , gS) = α(ρJ)Mimp(B, T ≈ 0, gS , gS) implied by our
NRG results can be combined with Eqs. (18) and (19)
to give:

Mimp(B, T ≈ 0, gS , gS) =

1

α(ρJ)
M
(

B

η(ρJ, 1)
, T ≈ 0, gS , 0

)
. (23)

With f = 1 and the phase shift for the case of an elec-
tron band of width 2W with constant DOS ρ = 1/2W ,76

δ(ρJ‖) = arctan (πρJ‖/4) (note the sign change with re-
spect to Ref. 76), we compare Eqs. (22) and (23) and
deduce for ρJ⊥ � 1:



1516

On the other hand, the proportionality M(B, T ≈
0, gS , gS) = α(ρJ)Mimp(B, T ≈ 0, gS , gS) implied by our
NRG results can be combined with Eqs. (18) and (19)
to give:

Mimp(B, T ≈ 0, gS , gS) =

1

α(ρJ)
M
(

B

η(ρJ, 1)
, T ≈ 0, gS , 0

)
. (23)

With f = 1 and the phase shift for the case of an elec-
tron band of width 2W with constant DOS ρ = 1/2W ,76

δ(ρJ‖) = arctan (πρJ‖/4) (note the sign change with re-
spect to Ref. 76), we compare Eqs. (22) and (23) and
deduce for ρJ⊥ � 1:

α(ρJ‖) = η(ρJ‖, 1) =
1

1− 2
π arctan (πρJ‖/4)

. (24)

This equation predicts, in particular, that both the pro-
portionality factor and the rescaling factor tend to 1 in
the limit ρJ‖ → 0. From Eq. (24) the following values for
α(ρJ‖) are obtained: α = 1.02563 (ρJ‖ = 0.05), 1.03623
(0.07), and 1.04704 (0.09). In Fig. 12, we present NRG
results for α for an impurity spin S = 1/2 with van-
ishing uniaxial anisotropy, but with additional exchange
anisotropy. It is seen that the calculated proportional-
ity factors indeed approach the predictions of Eq. (24)
for decreasing transverse coupling strength ρJ⊥. For
ρJ⊥ = 0.01 and all three considered values of ρJ‖, the

relative deviation is of the order of 10−4. In the isotropic
case (i.e., J‖ = J⊥ = J), the relative deviation is less
than half a percent, with better agreement for smaller
coupling J .

Since Eqs. (20) and (21) also hold for finite tem-
perature, the connection between M(B, T > 0) and
Mimp(B, T > 0) has been studied for isotropic impu-
rity spin S = 1/2, 1, and 3/2, and isotropic coupling
ρJ = 0.05, 0.07, and 0.09. It turns out that M and
Mimp are still proportional for finite temperature and
that, for gSµBB/W ∈ [10−13, 10−1], the relative devia-
tion of the proportionality factor from the corresponding
value α(ρJ, T ≈ 0) is less than 1 ‰ for thermal energies
kBT/W ≤ 10−2.

C. Field-induced Kondo effect

We would like to better understand the properties of
Hamiltonian (1) for large anisotropy D > 0 and magnetic
fields near those fields for which the magnetization shows
steps at low temperature (cf. Figs. 7 and 13 a)). To
this end, we now derive effective (simplified) models near
groundstate level crossings (LCs) of the respective free
anisotropic spin (see Fig. 6) that correspond to the full
Hamiltonian in the limit D →∞.
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FIG. 12. (Color online) Proportionality factor α in M =
αMimp as function of the transverse coupling strength ρJ⊥
for impurity spin S = 1/2, vanishing uniaxial anisotropy D,
and three values of the longitudinal coupling ρJ‖. Dashed
horizontal lines mark the values of α, given by the numbers
in parentheses, that are predicted by Eq. (24). Open symbols
indicate the proportionality factors for the isotropic case (i.e.,
J‖ = J⊥), which are also found in Table I. As before, α has

been averaged over magnetic fields gSµBB/W ∈ [10−13, 10−1]
for kBT/W ≈ 1.54 · 10−15 ≈ 0. The corresponding standard
deviations would amount to error bars smaller than the sym-
bol size.

1. Effective models near groundstate level crossings in the
limit of arbitrarily large anisotropy

For given impurity spin S ≥ 1 let us consider one of
the groundstate level crossings of the corresponding free
anisotropic spin (see Fig. 6). If D is large, then the
two levels which cross in the groundstate are energeti-
cally well separated from the rest of the spectrum in the
vicinity of the LC field. As an approximation for the
full impurity model near this free LC field, we therefore
project the impurity degrees of freedom in Hamiltonian
(1) onto the two impurity states involved in the free LC.
This way, the impurity Hilbert space is reduced to two
states and the impurity spin S can thus be mapped to
an effective spin-1/2. While the projection becomes exact
only in the limit D →∞, we expect it to be a convincing
approximation for D �W and D � kBT .

The mapping of the impurity spin to a spin-1/2 is an
extension of the ideas from Refs. 61 and 56. In contrast
to the case of zero magnetic field that is studied there, we
do not project onto impurity doublets with M = ±1/2
(see below). Furthermore, at each LC, i.e. for each step
in the magnetization curve, the impurity is reduced to
a different pair of states. As a consequence, different
parameters of the effective model are obtained at each
LC.

We intend to use the effective models to determine the
magnetic fields for which steps appear in the impurity
magnetization curve at large anisotropy D (cf. Fig. 7),
and to investigate how the properties of the full impurity
model differ near the various free LCs (as indicated, e.g.,

FIG. 12. (Color online) Proportionality factor α in M =
αMimp as function of the transverse coupling strength ρJ⊥
for impurity spin S = 1/2, vanishing uniaxial anisotropy D,
and three values of the longitudinal coupling ρJ‖. Dashed
horizontal lines mark the values of α, given by the numbers
in parentheses, that are predicted by Eq. (24). Open symbols
indicate the proportionality factors for the isotropic case (i.e.,
J‖ = J⊥), which are also found in Table I. As before, α has

been averaged over magnetic fields gSµBB/W ∈ [10−13, 10−1]
for kBT/W ≈ 1.54 · 10−15 ≈ 0. The corresponding standard
deviations would amount to error bars smaller than the sym-
bol size.

α(ρJ‖) = η(ρJ‖, 1) =
1

1− 2
π arctan (πρJ‖/4)

. (24)

This equation predicts, in particular, that both the pro-
portionality factor and the rescaling factor tend to 1 in
the limit ρJ‖ → 0. From Eq. (24) the following values for
α(ρJ‖) are obtained: α = 1.02563 (ρJ‖ = 0.05), 1.03623
(0.07), and 1.04704 (0.09). In Fig. 12, we present NRG
results for α for an impurity spin S = 1/2 with van-
ishing uniaxial anisotropy, but with additional exchange
anisotropy. It is seen that the calculated proportional-
ity factors indeed approach the predictions of Eq. (24)
for decreasing transverse coupling strength ρJ⊥. For
ρJ⊥ = 0.01 and all three considered values of ρJ‖, the

relative deviation is about 4 · 10−5. In the isotropic case
(i.e., J‖ = J⊥ = J), the relative deviation is less than half
a percent, with better agreement for smaller coupling J .

Since Eqs. (20) and (21) also hold for non-zero tem-
perature, the connection between M(B, T > 0) and
Mimp(B, T > 0) has been studied for isotropic impu-
rity spin S = 1/2, 1, and 3/2, and isotropic coupling
ρJ = 0.05, 0.07, and 0.09. It turns out thatM and Mimp

are still proportional for non-zero temperature and that,
for gSµBB/W ∈ [10−13, 10−1], the relative deviation be-
tween the proportionality factor and the corresponding
value α(ρJ, T ≈ 0) is less than 1 ‰ for thermal energies
kBT/W ≤ 10−2.

C. Field-induced Kondo effect

To better understand the steps in the low tempera-
ture magnetization curves for large anisotropy D > 0
(cf. Figs. 7 and 13 a), we now derive effective (simpli-
fied) models near groundstate level crossings (LCs) of the
corresponding free anisotropic spin (see Fig. 6). These
models are approximations to the full Hamiltonian in the
limit D →∞.

1. Effective models near groundstate level crossings in the
limit of arbitrarily large anisotropy

For given impurity spin S ≥ 1 let us consider one of
the groundstate level crossings of the corresponding free
anisotropic spin (cf. Fig. 6). If D is large, then the
two levels which cross in the groundstate are energeti-
cally well separated from the rest of the spectrum in the
vicinity of the LC field. As an approximation for the
full impurity model near this free LC field, we therefore
project the impurity degrees of freedom in Hamiltonian
(1) onto the two impurity states involved in the free LC.
This way, the impurity Hilbert space is reduced to two
states and the impurity spin S can thus be mapped to
an effective spin-1/2. While the projection becomes exact
only in the limit D →∞, we expect it to be a quantita-
tive approximation for D �W and D � kBT .

The mapping of the impurity spin to a spin-1/2 is an
extension of the ideas from Refs. 61 and 56. In contrast
to the case of zero magnetic field that has been stud-
ied there, we do not project onto impurity doublets with
M = ±1/2 (see below). Furthermore, at each LC, i.e.,
for each step in the magnetization curve, the impurity is
reduced to a different pair of states. As a consequence,
different parameters of the effective model are obtained
at each LC.

We intend to use the effective models to determine the
magnetic fields at which steps appear in the impurity
magnetization curves for large anisotropy D (cf. Fig. 7),
and to investigate how the properties of the full impurity
model differ near the various free LCs (as indicated, e.g.,
by Fig. 13 a). Compared to the full model, the effective
models are numerically less demanding as they feature an
impurity spin-1/2 independent of the value of S, and they
allow to study the effect of the different terms appearing
in the effective Hamiltonian.

To be specific, we consider the two impurity states
with magnetic quantum numbers −M and −(M + 1)
(assuming M ≥ 0), which cross at the free LC field
BM = (2M + 1)D/gSµB , and project Hamiltonian (1)
onto them. The effective model is determined by requir-
ing that its matrix representation be equal to that of the
full model in the chosen subspace. Note that we have to
introduce new impurity states by shifting the magnetic
quantum number in order to map the impurity spin to a
spin-1/2. This mapping then corresponds to the follow-
ing replacements for the impurity spin operators:
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S∼
x →

√
(S −M)(S +M + 1) s∼

x , (25)

S∼
y →

√
(S −M)(S +M + 1) s∼

y , (26)

S∼
z → s∼

z − (M + 1/2) 1∼s . (27)

The impurity now has spin s = 1/2 and the replacement
for (S∼

z)2 directly follows from that for S∼
z. In the param-

eter regime in which the projection is valid, the mapping
for S∼

z leads to the following connection between the im-

purity magnetization of the full and effective model:

M/gSµB = −〈S∼
z〉 ≈ −〈s∼

z〉+ (M + 1/2) . (28)

There is an analogous relationship for the impurity con-
tribution to the magnetization Mimp. According to its
definition, the impurity contribution to the magnetic sus-
ceptibility χimp is not affected by the shift of the magnetic
quantum numbers.

Applying mappings (25) to (27) to the full impurity
model (1) and dropping all constant terms, the following
Hamiltonian is obtained:

H∼ s(S,M) =
∑

k,σ

εkσ c∼
†
kσ c∼kσ − κs∼

z
0 (29)

+ J⊥(s∼
x
0 s∼

x + s∼
y
0 s∼

y) + J‖s∼
z
0s∼

z

+ gSµB(B −BM )s∼
z ,

with the set of parameters

εkσ = εk + σgeµBB (30)

(σ = ±1/2) ,

κ = (M + 1/2) J , (31)

J⊥ =
√

(S −M)(S +M + 1) J , (32)

J‖ = J , (33)

BM = (2M + 1)D/gSµB . (34)

In contrast to the full Hamiltonian, H∼ s(S,M) is exchange

anisotropic with J⊥ > J‖: J⊥/J‖ grows with S and de-
creases with increasing M (while always present, the ex-
change anisotropy thus becomes weaker with every fur-
ther LC). The Zeeman term for the impurity is now
expressed relative to the free LC field BM . H∼ s(S,M)

furthermore contains the new term −κs∼
z
0 representing

an effective magnetic field, which couples to the elec-
tron spin at the origin and points in the opposite direc-
tion of the external field B. With respect to NRG, this
term can be regarded as spin-dependent scattering at the
zeroth site of the Wilson chain. It breaks the invari-
ance under a spinflip transformation (c∼kσ → c∼k−σ and

s∼ → (s∼
x,−s∼

y,−s∼
z)), which H∼ s(S,M) would otherwise

possess for B = BM . While the scattering parameter

κ grows with M , the ratio κ/BM is independent of M .
Starting with the second LC, κ is larger than J‖. The
ratio κ/J⊥, which at first is smaller than 1, also grows
with M and eventually becomes greater than 1 if S is
large enough.

As an analogue to the free LC field BM , we call the
magnetic field BELC for which the impurity magnetiza-
tion vanishes at zero temperature (i.e., the two impurity
levels are effectively degenerate), “effective level crossing
(ELC) field”:

〈s∼
z〉(BELC, T = 0) = 0 . (35)

In the parameter regime in which the mapping to a spin-
1/2 is valid, there is a step in the impurity magnetization
curve of the full model at the ELC and, according to Eq.
(28), the value ofM at the ELC isM≈ gSµB(M+1/2).
In the following, we discuss the properties of Hamiltonian
(29) in more detail for the two different cases ge > 0 and
ge = 0.

Let us begin with the case ge > 0. As the free LC field
BM is proportional to D, the limit D → ∞ also corre-
sponds to the limit B →∞. A non-zero Zeeman coupling
of the electrons therefore leads to their complete polariza-
tion so that formally they may be replaced with spinless
fermions (corresponding to spin-down electrons). Since
the remaining fermion band is then completely filled, all
interaction terms vanish and the electrons can be com-
pletely eliminated from the problem. For ge > 0 and
arbitrarily large D, Hamiltonian (29) thus reduces to a
pure spin model:

H∼
(ge>0)
eff (B̃) = gSµB

(
B̃ − J/2

gSµB

)
s∼
z . (36)

Here, we have introduced a relative magnetic field B̃ =
B − BM . As the only remnant of the interaction be-
tween impurity and electrons, a shift of the free LC field
remains. This shift is positive for antiferromagnetic cou-
pling J > 0 and only depends on the coupling strength,
but not on S or M . It is thus the same for all LCs. From
the effective model (36) we learn that the ELC fields
eventually exceed the free LC fields for ge > 0 and large
anisotropy D (cf. Fig. 7).

We now turn to the case of a local magnetic field. Set-

ting ge = 0 and using the relative field B̃, Hamiltonian
(29) becomes the effective model for arbitrarily large D:

H∼
(ge=0)
eff (B̃;S,M) = H∼ s(S,M)

∣∣∣
ge=0

. (37)

We are particularly interested in the properties of

H
(ge=0)
eff (B̃;S,M) at the ELC field B̃ELC = BELC −BM .

Due to the scattering term, the effective model does
not exhibit a spinflip-invariance at the ELC. It there-
fore seems that the ELC is not characterized by spe-
cial symmetry properties. A spin-independent (poten-
tial) scattering term can be treated by transforming to
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scattering states which diagonalize the electronic part of
the Hamiltonian (cf. App. C of Ref. 77). Although
such a transformation can be easily adapted to the case
of spin-dependent scattering, it does not seem to yield
the intended results. The approximation which is used
in the spin-independent case (a modification of the den-
sity of states at the Fermi level expressed by an effective
coupling parameter)77 would restore spinflip-invariance

for B̃ = 0 in the spin-dependent case and would thus

erroneously imply 〈s∼
z〉(B̃ = 0, T ) = 0. Instead, we are

going to use NRG to determine the ELC field B̃ELC and

to study the properties of H
(ge=0)
eff (B̃ELC;S,M).

For the interpretation of the properties of the full
Hamiltonian (1) near the ELCs, we are going to use the

main results for the effective model H∼
(ge=0)
eff (B̃ELC;S,M).

These are explicitly demonstrated in Sec. VI C 4 and are
summarized in the following. At an ELC the impurity
spin s = 1/2 of the effective model is Kondo screened
for T → 0. The temperature dependence of the impu-
rity contribution to the entropy at an ELC is described
by the corresponding universal function for the isotropic
S = 1/2-Kondo model with zero magnetic field. Since
the parameters of the effective model are different near
each free LC (see Eqs. (31) and (32)), there is also a dif-
ferent Kondo temperature TK at each ELC. It turns out
that TK decreases with increasing M , i.e., TK becomes
smaller with every further ELC.

2. Magnetic field dependence of impurity contributions near
effective level crossing fields

Armed with the effective model H∼
(ge=0)
eff (B̃;S,M) for

a local magnetic field, we now study in detail the field
dependence of typical impurity contributions of the full
impurity model for moderately large anisotropy D > 0.
In Fig. 13 results for Mimp(B), Simp(B), and Tχimp(B)
are shown for impurity spin S = 3 and anisotropy
D/W = 10−3. As before, equal g-factors have been
assumed.78

Let us start with a discussion of the magnetization
curves depicted in Fig. 13 a. According to the previ-
ously considered behavior of the impurity magnetization
M and its connection with Mimp, there are also steps
in Mimp(B) at low temperature. These steps have finite
widths for T → 0 and are smeared out for sufficiently high
temperature. It is noticeable that the steps have differ-
ent widths: those occurring at larger magnetic field are
steeper. Fig. 13 a furthermore indicates that the influ-
ence of non-zero temperature is different for the different
steps. In contrast, for a free anisotropic spin the steps in
the magnetization become discontinuous for T → 0 and
the effect of non-zero (small) temperature is the same for
all of them (see Fig. 6). In the chosen representation of
Fig. 13 a, the pseudo-plateaus between the steps become
flatter in the direction of increasing magnetic field and
approach the true plateaus of the free anisotropic spin
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FIG. 12. (Color online) Impurity contribution to a) the mag-
netization Mimp, b) the entropy Simp, and c) the effective
moment Tχimp as function of magnetic field for impurity spin
S = 3, “hard axis” anisotropy D/W = 10−3, and several tem-
perature values. In plot a) the dashed curve shows Mimp for
kBT/W ≈ 0, and for the curves in plots b) and c) tempera-
ture increases from bottom to top. Thin vertical lines indicate
the (equal) peak positions for Simp and Tχimp. As before, the
coupling strength is chosen as ρJ = 0.07 and equal g-factors
are used.

3. Temperature dependence of impurity contributions at
effective level crossing fields

Fig. 13 shows the temperature dependence of Simp,
Tχimp, and χimp at the three ELCs that occur for the
example considered in Fig. 12. In case of entropy and
effective moment it is thus demonstrated how the peak
heights in Figs. 12 b) and c) decrease when the tem-

perature is lowered. For the purpose of comparison, Fig.
13 also includes results for an isotropic impurity with
S = 3 (in zero magnetic field) and a decoupled (J = 0)
anisotropic impurity (for the three ELC fields). To illus-
trate how the magnetic field “induces” S = 1/2-Kondo
effects, we furthermore compare with the behavior of an
anisotropic impurity in zero field.

Let us begin with a discussion of the results for Simp(T )
shown in Fig. 13 a). Simp/kB(B = 0, T ) for the isotropic
impurity with S = 3 interpolates between the limiting
values of ln 7 (for T → ∞) and ln 6 (for T = 0), ac-
cording to the screening of half a magnetic moment. In
contrast, for the anisotropic impurity in zero field all
higher-lying impurity levels are frozen out on the tem-
perature scale kBT ≈ D so that Simp quickly drops to
zero.26 At high temperatures kBT � D, on the other
hand, the anisotropic impurity behaves more and more
like an isotropic impurity. For the three ELC fields, we
observe qualitatively different behavior at low tempera-
ture kBT < D compared to the case of zero field: Start-
ing at Simp/kB ≈ ln 2, the effective impurity doublet,
which is formed due to the magnetic field, undergoes
Kondo screening with a value of TK that decreases with
every further ELC. While there is fair agreement with
the results for a decoupled impurity at kBT > D, low
temperature kBT � D reveals that the ELC fields are
not equal to the free LC fields. For this reason, all states
except the respective non-degenerate groundstate are ul-
timately frozen out for T → 0.

We continue with a discussion of the temperature de-
pendence of the effective moment Tχimp as illustrated
in Fig. 13 b). For the isotropic impurity with S = 3,
kBTχimp(B = 0, T )/(gSµB)2 behaves according to a
Curie law at both high and low temperature and goes
from S(S + 1)/3 = 4 (for T → ∞) to (S − 1/2)(S +
1/2)/3 = 35/12 (for T = 0). For the anisotropic impurity
in zero magnetic field, on the other hand, the increas-
ing thermal reduction to a non-magnetic groundstate
for kBT < D leads to a vanishing effective moment at
zero temperature.26 At very high temperature kBT .W
(not shown), we find the expected agreement between
Tχimp(B = 0) for the isotropic and anisotropic case. The
effective moment of the decoupled anisotropic impurity
first goes to about 1/4 at kBT . D (according to the sus-
ceptibility of a doublet with ∆M = 1), but then quickly
drops to zero because of the non-degenerate ground-
state with good magnetic quantum number. For the
anisotropic impurity at the ELC fields, we again observe
Kondo screening with different TK , starting with an ef-
fective moment of kBTχimp/(gSµB)2 ≈ 1/4 at kBT . D.

Finally, we take a look at the results for the impurity
contribution to the susceptibility χimp(T ) that are pre-
sented in Fig. 13 c). According to its definition, χimp is
just the slope of Mimp and thus directly yields informa-
tion about the width of the steps in the magnetization
curve shown in Fig. 12 a). For an isotropic impurity
with S ≥ 1, the zero-field susceptibility at low temper-
ature is described by a Curie law and thus diverges for

FIG. 13. (Color online) Impurity contribution to a) the mag-
netization Mimp, b) the entropy Simp, and c) the effective
moment Tχimp as function of magnetic field for impurity spin
S = 3, hard axis anisotropy D/W = 10−3, and several tem-
perature values. In plot a, the dashed curve shows Mimp for
kBT/W ≈ 0, and for the curves in plots b and c temperature
increases from bottom to top. Thin vertical lines indicate the
(equal) peak positions for Simp and Tχimp. As before, the
coupling strength is chosen as ρJ = 0.07 and equal g-factors
are used.

from below for growing anisotropy D.

The behavior of Mimp(B) as shown in Fig. 13 a can
be understood by considering the magnetic field depen-
dence of Mimp for the isotropic S = 1/2-Kondo model
with ge = gS . In this case, Mimp(B, T = 0) is de-
scribed by a universal function f(x) with the variable
x = gSµBB/kBTH (and TH ∝ TK , cf. Sec. IV A).39

f(x) is linear in x for x � 1 and thus the slope of
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Mimp(B) for small fields is higher if the Kondo tem-
perature is smaller.39,40 This relation is also expressed
by Wilson’s definition of the Kondo temperature:12 The
zero-field susceptibility for T � TK is a TK-dependent
constant: χimp(B = 0, T � TK) = const./TK . Com-
bined with the prediction of the effective model with
ge = 0 for the Kondo temperatures at the different ELCs,
this explains why the steps in the magnetization curve of
the full model have different widths at zero temperature.
In case of the S = 1/2-Kondo model, temperature has to
reach the scale of TK to become relevant for the zero-field
susceptibility.12 For this reason, thermal broadening of a
step in Mimp(B) begins at lower temperature if the step
occurs at a later ELC with smaller TK . Furthermore,
away from an ELC the magnetization reaches values of
the order of the respective saturation value for smaller
magnetic fields (relative to the ELC field) if the Kondo
temperature at the ELC is lower. It subsequently en-
ters the regime of very slow growth towards saturation,
which shows up in Fig. 13 a in the form of a pseudo-
plateau. This also explains why pseudo-plateaus between
later ELCs with smaller TK are flatter.

We now continue with a discussion of the magnetic
field dependence of the impurity contribution to the en-
tropy and the effective moment. Results for Simp(B) and
Tχimp(B) at low temperature kBT < D are shown in Fig.
13 b and c, respectively. In both cases we observe peaks
of varying height and width whose positions coincide with
those of the steps in Mimp(B). We find that the peaks be-
come both higher and narrower with every further ELC.
If the temperature is reduced, the peak heights decline
and at the same time, if T is not too low, the peaks be-
come sharper. It is noticeable that there is a temperature
below which the width of the first peak in both Simp and
Tχimp varies only little as a function of T .

At zero temperature both Simp and Tχimp vanish for
all magnetic fields. In case of the entropy, the reason is
that the magnetic field either leads to a non-degenerate
groundstate or it creates an effective impurity doublet
which is then Kondo screened. The effective moment,
on the other hand, has to go to zero since the slope of
Mimp(B) at zero temperature, i.e., χimp(B, T = 0), is
finite for all fields. For large anisotropy D, the tem-
perature dependence of the peak heights is determined
by the pseudo-spin-1/2 Kondo effects that take place
at the ELCs (see the next section and Fig. 14 for de-
tails). By recollecting results for the S = 1/2-Kondo
model,44 we can furthermore understand the different
peak widths and their temperature dependence. In case
of the S = 1/2-Kondo effect, the Zeeman energy gSµBB
has to reach the energy scale of max (kBT, kBTK) in or-
der to considerably suppress Simp and Tχimp.44 In par-
ticular, since the lowest temperatures considered in Fig.
13 are smaller than TK at the first ELC (cf. the in-
dicated temperature range in Fig. 14 a), temperatures
are reached for which the thermal broadening of the first
peak is small.
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T → 0. In contrast, χimp(B = 0, T ) for the anisotropic
impurity has a maximum at kBT ≈ D and vanishes for
zero temperature. Since the ELCs lie close to the free
LCs in this example, the susceptibility for the decoupled
anisotropic impurity displays a maximum at a thermal
energy of the order of the level splitting before falling
off at low temperature. At the ELCs, χimp(T ) for the
anisotropic impurity saturates at a finite value for T → 0
that increases with decreasing Kondo temperature.

VII. CONCLUSIONS

Zusammenfassung der Ergebnisse
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Appendix A: Numerical Renormalization Group
with non-zero electron g-factor

In this appendix we describe the changes which are
necessary in the standard NRG procedure6 in order to
carry out calculations with an additional Zeeman term
for the electrons.

1. Logarithmic discretization

Our starting point is the continuous energy represen-
tation of the Hamilton operator from Eq. (7) and we
restrict ourselves to the physically reasonable case of
h < W . In the following we assume that the magnetic
field, corresponding to h, is non-zero and fixed. We now
introduce abbreviations for the absolute value of the in-
tegration boundaries in Eq. (7),

B±µ (h) ≡ | ±W + µh| , (A1)

rescale the integration variable ε, and change to rescaled
operators (cf. Ref. 1):

ξ+
µ (h) ≡ ε

B+
µ (h)

for ε > 0 , (A2)

ξ−µ (h) ≡ ε

B−µ (h)
for ε < 0 , (A3)

a∼
+
ξµ(h) ≡

√
B+
µ (h) a∼εµ for ε > 0 , (A4)

a∼
−
ξµ(h) ≡

√
B−µ (h) a∼εµ for ε < 0 . (A5)
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FIG. 13. (Color online) Impurity contribution to a) the en-
tropy Simp, b) the effective moment Tχimp, and c) the mag-
netic susceptibility χimp as function of temperature for impu-
rity spin S = 3 and “hard axis” anisotropyD/W = 10−3. The
chosen non-zero magnetic fields correspond to the peak posi-
tions for Simp and Tχimp according to Fig. 12. Also shown
are NRG results for vanishing coupling strength (dashed lines)
and for the isotropic case (dash-dotted lines). Solid vertical
lines delimit the temperature interval considered in Fig. 12,
whereas dashed vertical lines indicate the thermal energy for
which kBT = D. In the insets, data from the main plots is
presented for a reduced temperature range.

Defining the normalized zeroth state of the Wilson
chain as

FIG. 14. (Color online) Impurity contribution to a) the en-
tropy Simp, b) the effective moment Tχimp, and c) the mag-
netic susceptibility χimp as function of temperature for impu-
rity spin S = 3 and hard axis anisotropy D/W = 10−3. The
chosen non-zero magnetic fields correspond to the peak posi-
tions for Simp and Tχimp according to Fig. 13. Also shown
are NRG results for vanishing coupling strength (dashed lines)
and for the isotropic case (dash-dotted lines). Solid vertical
lines delimit the temperature interval considered in Fig. 13,
whereas dashed vertical lines indicate the thermal energy for
which kBT = D. In the insets, data from the main plots is
presented for a reduced temperature range.

3. Temperature dependence of impurity contributions at
effective level crossing fields

Fig. 14 shows the temperature dependence of Simp,
Tχimp, and χimp at the three ELCs that occur for the
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example considered in Fig. 13. In case of entropy and
effective moment it is thus demonstrated how the peak
heights in Figs. 13 b and c decrease when the tempera-
ture is lowered.

Let us begin with a discussion of the results for Simp(T )
shown in Fig. 14 a. Simp(B = 0, T ) for the isotropic
impurity with S = 3 interpolates between the limiting
values of kB ln 7 (for T → ∞) and kB ln 6 (for T = 0),
according to the screening of half a magnetic moment.
In contrast, for the anisotropic impurity in zero field all
higher-lying impurity levels are frozen out on the tem-
perature scale kBT ≈ D so that Simp quickly drops to
zero.56 At high temperatures kBT � D, on the other
hand, the anisotropic impurity behaves more and more
like an isotropic impurity. For the three ELC fields,
we observe qualitatively different behavior at low tem-
perature kBT < D compared to the case of zero field:
Starting at Simp ≈ kB ln 2, the effective impurity dou-
blet, which is formed due to the magnetic field, under-
goes Kondo screening with a value of TK that decreases
with every further ELC. While there is fair agreement
with the results for a decoupled impurity at kBT > D,
low temperature kBT � D reveals that the ELC fields
are not equal to the free LC fields. For this reason, all
states except the respective non-degenerate groundstate
are ultimately frozen out for T → 0.

We continue with a discussion of the temperature de-
pendence of the effective moment Tχimp as illustrated
in Fig. 14 b. For the isotropic impurity with S = 3,
kBTχimp(B = 0, T )/(gSµB)2 obeys a Curie law at both
high and low temperature and goes from S(S + 1)/3 = 4
(for T → ∞) to (S − 1/2)(S + 1/2)/3 = 35/12 (for
T = 0). For the anisotropic impurity in zero magnetic
field, on the other hand, the increasing thermal reduc-
tion to a non-magnetic groundstate for kBT < D leads
to a vanishing effective moment at zero temperature.56

At very high temperature kBT .W (not shown), we find
the expected agreement between Tχimp(B = 0) for the
isotropic and anisotropic case. The effective moment of
the decoupled anisotropic impurity first goes to about 1/4
at kBT . D (according to the susceptibility of a doublet
with ∆M = 1), but then quickly drops to zero because
of the non-degenerate groundstate with good magnetic
quantum number. For the anisotropic impurity at the
ELC fields, we again observe Kondo screening for T → 0
with different TK , starting with an effective moment of
kBTχimp/(gSµB)2 ≈ 1/4 at kBT . D.

Finally, we take a look at the results for the impurity
contribution to the susceptibility χimp(T ) that are pre-
sented in Fig. 14 c. According to its definition, χimp is
just the slope of Mimp and thus directly yields informa-
tion about the width of the steps in the magnetization
curve shown in Fig. 13 a. For an isotropic impurity with
S ≥ 1, the zero-field susceptibility at low temperature is
described by a Curie law and thus diverges for T → 0.
In contrast, χimp(B = 0, T ) for the anisotropic impurity
has a maximum at kBT ≈ D and vanishes for zero tem-
perature. Since the ELCs lie close to the free LCs in this

example, the susceptibility for the decoupled anisotropic
impurity displays a maximum at a thermal energy of the
order of the level splitting before falling off at low temper-
ature. At the ELCs, χimp(T ) for the anisotropic impurity
saturates at a finite value for T → 0 that increases with
decreasing Kondo temperature.

Recently, it has been demonstrated that a field-induced
Kondo effect also occurs for Hamiltonian (1) with easy
axis anisotropy D < 0, additional transverse anisotropy
E, and a local magnetic field aligned along the x-axis.58

4. Properties of the effective model for vanishing electron
g-factor

We now return to the effective model for ge = 0 given
by Hamiltonian (37) in order to study its properties in

greater detail. The ELC field B̃ELC and the Kondo tem-
perature TELC

K at the ELC field are determined as func-
tion of the parameters J‖, J⊥, and κ of the effective model
or, respectively, as function of the parameters J , S, and
M of the full Hamiltonian (according to Eqs. (31) to
(33)). As a prerequisite, we have to figure out how to
reliably extract these quantities from the NRG results.

To determine B̃ELC, the impurity magnetization in

units of gSµB for the effective model, −〈s∼
z〉(B̃), is cal-

culated for low temperature kBT � W . In the vicinity
of an ELC, i.e., near its root, the impurity magnetization

depends linearly on the (relative) magnetic field B̃. The

root, which corresponds to B̃ELC at T = 0, can therefore
be determined by performing a linear fit to the numerical
data. However, the following complication arises: The

position of the root of 〈s∼
z〉(B̃) depends on the value of

the twist parameter z and thereby on the discretization
of the electron band. On the contrary, a physically mean-
ingful result for the ELC field should display only a weak
dependence on the numerical parameters of an NRG cal-
culation in order to accurately reflect the continuum limit
Λ→ 1. It turns out that a standard z-averaging, i.e., an
averaging of the impurity magnetization curves for dif-
ferent values of z at fixed temperature, is not reasonable
at this point. Near an ELC, such an averaging in gen-
eral introduces artifacts into the averaged curve because
of non-linear components which some of the z-dependent
curves might already comprise. Similar numerical arti-
facts are found in the z-averaged magnetization curves
of the full model for large hard axis anisotropy. Upon
closer inspection, one discovers that z-averaging divides
the total height of a magnetization step into smaller “sub-
steps” of equal height whose number corresponds to the
number of z-values used.

For one set of parameters of the effective model, the de-
pendence of the impurity magnetization root on the dis-
cretization of the electron band is demonstrated in Fig.
15. There, the three common discretization schemes are
compared for three different values of the discretization
parameter Λ and, only in this example, for 16 values of
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such an error estimate is far too pessimistic. For the ŽP
discretization with Λ = 3 and four z values we expect

that the relative error of the obtained ELC field B̃ELC is
about one order of magnitude smaller than suggested by
the roots’ dependency on z.

Having determined B̃zELC for all values of z, we can
study the thermodynamic properties of the effective
model at the ELC field by calculating the impurity con-

tribution to the entropy Szimp(T, B̃zELC) for each z at
the respective ELC field. For thermal energies that are
small compared to the bandwidth, the NRG results for

Szimp(T, B̃zELC) can be aligned with the known universal
temperature dependence of the entropy for the isotropic
Kondo model with S = 1/2. We find, however, that there
is a dip in the entropy for thermal energies close to the
bandwidth that becomes more pronounced for stronger

scattering κ. The Kondo temperature TELC,z
K character-

izing the universal behavior of Szimp(T, B̃zELC) is obtained
in the following way for each value of z: By comparing
with the Bethe Ansatz solution for the impurity contri-
bution to the magnetization in Sec. IV A, the value of TK
(as occurring in the Bethe Ansatz solution of the Kondo
model) for the isotropic NRG results is known (cf. Ta-

ble I). As a first step, the result for Szimp(T, B̃zELC) is
restricted to the linear low-temperature regime in which
a continuous curve is produced using a linear fit. This

fit then allows to determine the value of TELC,z
K by com-

paring with an isotropic NRG result with known Kondo
temperature T iso

K . A better approximation for the Kondo
temperature at the ELC field TELC

K is again obtained by
averaging over the z-dependent values. Regarding the
variation with respect to z and the error estimate for the
mean value, comparable statements hold true as in the
case of the ELC field.

Before continuing, we would like to point out that the
root of the impurity magnetization depends on tempera-
ture. This is possible since its value is not determined by
symmetry properties of the effective model. When the
temperature exceeds the Kondo temperature at the ELC
field, two effects eventually occur: The slope of the mag-
netization curve decreases and the root moves towards
larger relative magnetic fields.

We now study how the parameter κ, which corresponds
to spin-dependent scattering at the zeroth site of the Wil-
son chain with on-site energies ε0↓ = −ε0↑ > 0 as seen

from Eqs. (28) and (30), affects the values of B̃ELC and
TELC
K . To this end, we interpret κ as a free parameter

of the effective model. For the isotropic Kondo model
in zero magnetic field it is known that ordinary (spin-
independent) potential scattering can be approximately
mapped to a modified electron DOS at the Fermi level
or, equivalently, to an effective coupling parameter Jeff.77

This approximation predicts that an increase of the scat-
tering parameter reduces Jeff and thus also the Kondo
temperature.

In the example shown in Fig. 15, spin quantum num-
ber S = 3 (as in Fig. 12) is considered and those cou-
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FIG. 14. (Color online) Impurity magnetization (in units of
gSµB) for the effective Hamiltonian with ge = 0 and pa-
rameters according to Eqs. (30) to (32) as function of the
relative magnetic field at kBT/W ≈ 10−15 ≈ 0. The re-
sults were calculated using the discretization schemes by a)
Yoshida et al. (with correction factor13,14,79 AΛ),80–82 b)
Campo and Oliveira,79 and c) Žitko and Pruschke.62,63 For
each discretization scheme, results are presented for three val-
ues of the discretization parameter Λ and 16 values of the
twist parameter z (i.e., zi = i/16 with i ∈ {1, 2, ..., 16}). In
plot c), data points are vertically offset to enhance legibility.

Numbers in parentheses denote the ELC field B̃ELC and the
Kondo temperature TELC

K at the ELC field, respectively (cf.
main text).

pling parameters J⊥ are chosen which, as per Eq. (31),
are assigned to the three magnetic quantum numbers al-
lowed for this value of S (i.e., M = 0, 1, 2). Without
scattering term, the Kondo temperature decreases when
J⊥ is reduced.6,55 Additional spin-dependent scattering
further lowers TELC

K just as standard potential scattering
with ε0↓ = ε0↑ at zero magnetic field does, but in compar-
ison leads to smaller values of the Kondo temperature.
In accordance with the expression for Jeff from Ref. 77,
the sign of the spin-independent on-site energies is irrel-
evant at this point. Fig. 15 reveals that the decrease of
TELC
K accelerates with growing scattering strength. Fur-

thermore, we observe that the spin-dependent scattering
has a larger influence on the Kondo temperature at the
ELC field when the coupling parameter J⊥ is smaller.

Let us now turn to the effect of κ on the position of
the ELC field. An additional spin-dependent scattering
term breaks the spinflip invariance and is therefore the

very reason for a finite value of B̃ELC. It thus seems
plausible that a larger value of κ also leads to a larger
absolute value of the ELC field (cf. the numbers in paren-

theses in Fig. 15). This increase of |B̃ELC| decelerates
with growing scattering strength. A closer look at the
data reveals that κ again has a stronger effect when the

FIG. 15. (Color online) Impurity magnetization (in units of
gSµB) for the effective Hamiltonian with ge = 0 and pa-
rameters according to Eqs. (31) to (33) as function of the
relative magnetic field for kBT/W ≈ 10−15 ≈ 0. The re-
sults have been calculated using the discretization schemes
by a) Yoshida et al. (with correction factor13,14,79 AΛ),80–82

b) Campo and Oliveira,79 and c) Žitko and Pruschke.63,64

For each discretization scheme, results are presented for three
values of the discretization parameter Λ and 16 values of the
twist parameter z (i.e., zi = i/16 with i ∈ {1, 2, ..., 16}). In
plot c, data points are vertically offset to enhance legibility.

Numbers in parentheses denote the ELC field B̃ELC and the
Kondo temperature TELC

K at the ELC field, respectively (cf.
main text).

the twist parameter z. In all cases, we observe a spread
of the position of the impurity magnetization root with
respect to z. This variation decreases for smaller values
of Λ and is always largest when using the discretization
scheme by Žitko and Pruschke (ŽP). The spread due to z
defines a magnetic field interval which, in case of the dis-
cretization by Yoshida et al. (Y) and Campo and Oliveira
(CO), moves towards larger fields when Λ is reduced. In
contrast, the ŽP discretization leads to nested intervals
so that an interval for smaller Λ is wholly contained in an
interval for larger Λ. In the special case z = 1 (which cor-
responds to the smallest root), the CO and ŽP discretiza-
tion give the same result.63 Note that the Λ-dependence
of the data shown in Fig. 15 is consistent with an agree-
ment of the results of all three discretization schemes in
the continuum limit Λ→ 1. However, in order to obtain
reliable information about the continuum limit it would
be necessary to perform an impractical extrapolation in
Λ when using the Y or CO discretization. On the con-
trary, the ŽP discretization apparently allows to make
a dependable statement about the limit Λ → 1 on the
basis of results for only a single value of the discretiza-
tion parameter: Fig. 15 suggests that the continuum

value of B̃ELC lies in the magnetic field interval that is
spanned by the z-dependent roots for Λ > 1. It turns

out that, using the ŽP discretization, one can obtain a
better approximation for the ELC field by averaging over
the z-dependent impurity magnetization roots since the
resulting mean value displays only a weak dependence
on Λ (cf. the numbers in parentheses in Fig. 15). The
spread of the roots with respect to z then provides a safe
error estimate for the mean value (amounting to a rela-
tive deviation of about 3 to 4 % for Λ = 3). However,
the dependence of the mean value on Λ indicates that
such an error estimate is far too pessimistic. For the ŽP
discretization with Λ = 3 and four z-values, we expect

that the relative error of the obtained ELC field B̃ELC is
about one order of magnitude smaller than suggested by
the roots’ dependency on z.

Having determined B̃zELC for all values of z, we can
study the thermodynamic properties of the effective
model at the ELC field by calculating the impurity con-

tribution to the entropy Szimp(T, B̃zELC) for each z at
the respective ELC field. For thermal energies that are
small compared to the bandwidth, the NRG results for

Szimp(T, B̃zELC) can be aligned with the known universal
temperature dependence of the entropy for the isotropic
Kondo model with S = 1/2. We find, however, that there
is a dip in the entropy for thermal energies close to the
band edge that becomes more pronounced for stronger

scattering κ. The Kondo temperature TELC,z
K character-

izing the universal behavior of Szimp(T, B̃zELC) is obtained
in the following way for each value of z: By comparing
with the Bethe Ansatz solution for the impurity contri-
bution to the magnetization in Sec. IV A, the value of
TK (as occurring in the BA solution of the Kondo model)
for the isotropic NRG results is known (cf. Table I and

Eq. (10)). As a first step, the result for Szimp(T, B̃zELC) is
restricted to the linear low-temperature regime in which
a continuous curve is produced using a linear fit. This

fit then allows to determine the value of TELC,z
K by com-

paring with an isotropic NRG result for S = 1/2 with
known Kondo temperature T iso

K . A better approxima-
tion for the Kondo temperature at the ELC field TELC

K is
again obtained by averaging over the z-dependent values.
Regarding the variation with respect to z and the error
estimate for the mean value, comparable statements hold
true as in the case of the ELC field.

Before continuing, we note that the root of the im-
purity magnetization depends on temperature. This is
possible since its value is not determined by symmetry
properties of the effective model. When the temperature
exceeds the Kondo temperature at the ELC field, two
effects eventually occur: The slope of the magnetization
curve decreases and the root moves towards larger rela-
tive magnetic fields.

We now study how the parameter κ, which corresponds
to spin-dependent scattering at the zeroth site of the Wil-
son chain with on-site energies ε0↓ = −ε0↑ > 0 as seen

from Eqs. (29) and (31), affects the values of B̃ELC and
TELC
K . To this end, we interpret κ as a free parameter

of the effective model. For the isotropic Kondo model
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FIG. 15. (Color online) Kondo temperature at the ELC field
(cf. main text) for the effective Hamiltonian with ge = 0 as
function of the scattering parameter κ (corresponding to a
pair of on-site energies ε0↓ = −ε0↑ > 0 for the zeroth site of
the Wilson chain) for fixed J‖ and three values of the coupling
parameter J⊥ > J‖. Numbers in parentheses denote the re-
spective ELC field and lines are intended as a guide to the
eye. Pessimistic error bars would be smaller than the symbol
size. Additional crosses indicate the Kondo temperature for
parameters which, according to Eqs. (30) and (31), corre-
spond to certain values of the quantum numbers S and M .
Small dots mark TK for the case of potential scattering, i.e.,
for spin-independent on-site energies at zero magnetic field.

coupling parameter J⊥ is smaller.

Additional crosses in Fig. 15 mark the Kondo temper-
ature for those values of the scattering parameter κ that
follow from Eq. (30) for the three considered M quantum
numbers. We observe that the effective model predicts a
decrease of TELC

K with growing M , i.e., with every fur-
ther ELC. As the example demonstrates, this decline of
the Kondo temperature is due to three cooperating ef-
fects: 1) According to Eq. (31), J⊥ becomes smaller
when M is increased. 2) At the same time, κ becomes
larger. 3) Because of the decreasing value of J⊥, the scat-
tering parameter additionally gains in importance. For

the ELC fields gSµBB̃ELC/W that belong to the three
special values of TELC

K , we obtain the following results
(the error estimates indicate the variance with respect to
z): −6.59+0.19

−0.25 · 10−3 (S = 3,M = 0), −1.78+0.06
−0.07 · 10−2

(M = 1), and −2.36+0.06
−0.09 · 10−2 (M = 2).

Finally, we investigate how the ELC field and the
Kondo temperature at the ELC field depend on the pa-
rameters of the full Hamiltonian, i.e. on J , S, and M ,
with the parameters of the effective model given by Eqs.
(30) to (32). First of all, we would like to point out
that all obtained (relative) ELC fields are negative. This
supports the conclusion that, in the impurity magneti-
zation curves for equal g-factors and large “hard axis”
anisotropy presented in Fig. 7, the free LCs are only ex-
ceeded because of the electrons’ non-zero magnetic cou-
pling. For S = 1, 3/2, 2 and J/W = 0.14 (as in Fig.

7), the following values for gSµBB̃ELC/W are obtained:
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FIG. 16. (Color online) Negative value of the ELC field for
a set of parameter combinations of the effective Hamiltonian
with ge = 0 which, according to Eqs. (30) to (32), correspond
to certain spin quantum numbers S, magnetic quantum num-
bers 0 ≤ M < S, and coupling parameters J . Projections
of the data points onto two planes are shown as small dots
and lines connect points with the same value of S and J .
Pessimistic error bars would be smaller than the symbol size.

−3.90+0.10
−0.14 · 10−3 (S = 1,M = 0), −8.27+0.22

−0.30 · 10−3

(S = 3/2,M = 1/2), −4.95+0.14
−0.18 · 10−3 (S = 2,M = 0),

−1.31+0.04
−0.05 · 10−2 (S = 2,M = 1).

In contrast to the prediction of the effective model
with ge > 0 from Eq. (34), the ELC fields depend on
the quantum numbers S and M for vanishing electron g-
factor (see Fig. 16). With increasing value of S, i.e. with
increasing coupling parameter J⊥, the absolute value of
the ELC field grows as already seen in Fig. 15. A larger
coupling J increases all parameters of the effective model
(J‖, J⊥, and κ) and, as demonstrated by Fig. 16, thereby

leads to a larger value of |B̃ELC|. It is furthermore evident
that, with growing J , the quantum number S gains in im-
portance: Fig. 16 shows that the curves for fixed coupling
strength “fan out” for larger value of J . The dependence
of the ELC field on the magnetic quantum number is the
result of two counteracting effects: 1) A larger value of
M leads to smaller coupling strength J⊥ which, on its

own, would lower the value of |B̃ELC|. 2) On the other
hand, the scattering term becomes stronger with increas-

ing M and would, on its own, enlarge |B̃ELC|. For the
parameters considered in Fig. 16, there is a growth of

|B̃ELC| with M for S ≤ 7/2 that decelerates with in-
creasing M . In the case of S = 4 and both J/W = 0.16
and J/W = 0.18, we observe a decrease of the absolute
value of the ELC field in the last step.

To conclude this section, the Kondo temperatures be-
longing to the ELC fields shown in Fig. 16 are presented
in Fig. 17. As the main result we find that, accord-
ing to the above explanation, the value of TELC

K increas-
ingly drops with growing M . On the other hand, a larger

FIG. 16. (Color online) Kondo temperature at the ELC field
for the effective Hamiltonian with ge = 0 as function of the
scattering parameter κ (corresponding to a pair of on-site
energies ε0↓ = −ε0↑ > 0 for the zeroth site of the Wilson
chain) for fixed J‖ and three values of the coupling parameter
J⊥ > J‖. Numbers in parentheses denote the respective ELC
field and lines are intended as a guide to the eye. Pessimistic
error bars would be smaller than the symbol size. Additional
crosses indicate the Kondo temperature for parameters which,
according to Eqs. (31) and (32), correspond to the given
values of the quantum numbers S andM . Small dots mark TK

for the case of potential scattering, i.e., for spin-independent
on-site energies at zero magnetic field.

in zero magnetic field it is known that ordinary (spin-
independent) potential scattering can be approximately
mapped to a modified electron DOS at the Fermi level
or, equivalently, to an effective coupling parameter Jeff.77

This approximation predicts that an increase of the scat-
tering parameter reduces Jeff and thus also the Kondo
temperature.

In the example shown in Fig. 16, spin quantum num-
ber S = 3 (as in Fig. 13) is considered and those cou-
pling parameters J⊥ are chosen which, as per Eq. (32),
are assigned to the three magnetic quantum numbers al-
lowed for this value of S (i.e., M = 0, 1, 2). Without
scattering term, the Kondo temperature decreases when
J⊥ is reduced.6,56 Additional spin-dependent scattering
further lowers TELC

K just as standard potential scatter-
ing with ε0↓ = ε0↑ at zero magnetic field does, but in
comparison leads to smaller values of the Kondo temper-
ature. In accordance with the expression for Jeff from
Ref. 77, the sign of the spin-independent on-site energies
does not affect TK . Fig. 16 reveals that the decrease of
TELC
K accelerates with growing scattering strength. Fur-

thermore, we observe that the spin-dependent scattering
has a larger influence on the Kondo temperature at the
ELC field when the coupling parameter J⊥ is smaller.

Let us now turn to the effect of κ on the position of
the ELC field. An additional spin-dependent scattering
term breaks the spinflip-invariance and is therefore the

very reason for a non-zero value of B̃ELC. It thus seems
plausible that a larger value of κ also leads to a larger
absolute value of the ELC field (cf. the numbers in paren-

theses in Fig. 16). This increase of |B̃ELC| decelerates
with growing scattering strength. A closer look at the
data reveals that κ again has a stronger effect when the
coupling parameter J⊥ is smaller.

Additional crosses in Fig. 16 mark the Kondo temper-
ature for those values of the scattering parameter κ that
follow from Eq. (31) for the three considered M quantum
numbers. We observe that the effective model predicts a
decrease of TELC

K with growing M , i.e., with every fur-
ther ELC. As the example demonstrates, this decline of
the Kondo temperature is due to three cooperating ef-
fects: 1) According to Eq. (32), J⊥ becomes smaller
when M is increased. 2) Simultaneously, κ becomes
larger. 3) Because of the decreasing value of J⊥, the scat-
tering parameter additionally gains in importance. For

the ELC fields gSµBB̃ELC/W that belong to the three
special values of TELC

K , we obtain the following results
(the error estimates indicate the variance with respect to
z): −6.59+0.19

−0.25 · 10−3 (S = 3,M = 0), −1.78+0.06
−0.07 · 10−2

(M = 1), and −2.36+0.06
−0.09 · 10−2 (M = 2).

Finally, we investigate how the ELC field and the
Kondo temperature at the ELC field depend on the pa-
rameters of the full Hamiltonian, i.e., on J , S, and M ,
with the parameters of the effective model given by Eqs.
(31) to (33). First of all, we note that all obtained (rel-
ative) ELC fields are negative. This supports the con-
clusion that, in the impurity magnetization curves for
equal g-factors and large hard axis anisotropy presented
in Fig. 7, the free LCs are only exceeded because of
the electrons’ non-zero magnetic coupling. For S = 1,
3/2, 2 and J/W = 0.14 (as in Fig. 7), the following

values for gSµBB̃ELC/W are obtained: −3.90+0.10
−0.14 · 10−3

(S = 1,M = 0), −8.27+0.22
−0.30 · 10−3 (S = 3/2,M = 1/2),

−4.95+0.14
−0.18 · 10−3 (S = 2,M = 0), −1.31+0.04

−0.05 · 10−2

(S = 2,M = 1).

In contrast to the prediction of the effective model with
ge > 0 from Eq. (36), the ELC fields depend on the quan-
tum numbers S and M for vanishing electron g-factor
(see Fig. 17). With increasing value of S, i.e., with in-
creasing coupling parameter J⊥, the absolute value of
the ELC field grows as already seen in Fig. 16. A larger
coupling J increases all parameters of the effective model
(J‖, J⊥, and κ) and, as demonstrated by Fig. 17, thereby

leads to a larger value of |B̃ELC|. It is furthermore evi-
dent that, with growing J , the quantum number S gains
in importance: Fig. 17 shows that the “curves” for fixed
coupling strength “fan out” for larger value of J . The
dependence of the ELC field on the magnetic quantum
number is the result of two counteracting effects: 1) A
larger value of M leads to smaller coupling strength J⊥
which, on its own, would lower |B̃ELC|. 2) On the other
hand, the scattering term becomes stronger with increas-

ing M and would, on its own, enlarge |B̃ELC|. For the
parameters considered in Fig. 17, there is a growth of

|B̃ELC| with M for S ≤ 7/2 that decelerates with in-
creasing M . In the case of S = 4 and both J/W = 0.16
and J/W = 0.18, we observe a decrease of the absolute
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FIG. 15. (Color online) Kondo temperature at the ELC field
(cf. main text) for the effective Hamiltonian with ge = 0 as
function of the scattering parameter κ (corresponding to a
pair of on-site energies ε0↓ = −ε0↑ > 0 for the zeroth site of
the Wilson chain) for fixed J‖ and three values of the coupling
parameter J⊥ > J‖. Numbers in parentheses denote the re-
spective ELC field and lines are intended as a guide to the
eye. Pessimistic error bars would be smaller than the symbol
size. Additional crosses indicate the Kondo temperature for
parameters which, according to Eqs. (30) and (31), corre-
spond to certain values of the quantum numbers S and M .
Small dots mark TK for the case of potential scattering, i.e.,
for spin-independent on-site energies at zero magnetic field.

coupling parameter J⊥ is smaller.

Additional crosses in Fig. 15 mark the Kondo temper-
ature for those values of the scattering parameter κ that
follow from Eq. (30) for the three considered M quantum
numbers. We observe that the effective model predicts a
decrease of TELC

K with growing M , i.e., with every fur-
ther ELC. As the example demonstrates, this decline of
the Kondo temperature is due to three cooperating ef-
fects: 1) According to Eq. (31), J⊥ becomes smaller
when M is increased. 2) At the same time, κ becomes
larger. 3) Because of the decreasing value of J⊥, the scat-
tering parameter additionally gains in importance. For

the ELC fields gSµBB̃ELC/W that belong to the three
special values of TELC

K , we obtain the following results
(the error estimates indicate the variance with respect to
z): −6.59+0.19

−0.25 · 10−3 (S = 3,M = 0), −1.78+0.06
−0.07 · 10−2

(M = 1), and −2.36+0.06
−0.09 · 10−2 (M = 2).

Finally, we investigate how the ELC field and the
Kondo temperature at the ELC field depend on the pa-
rameters of the full Hamiltonian, i.e. on J , S, and M ,
with the parameters of the effective model given by Eqs.
(30) to (32). First of all, we would like to point out
that all obtained (relative) ELC fields are negative. This
supports the conclusion that, in the impurity magneti-
zation curves for equal g-factors and large “hard axis”
anisotropy presented in Fig. 7, the free LCs are only ex-
ceeded because of the electrons’ non-zero magnetic cou-
pling. For S = 1, 3/2, 2 and J/W = 0.14 (as in Fig.

7), the following values for gSµBB̃ELC/W are obtained:
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FIG. 16. (Color online) Negative value of the ELC field for
a set of parameter combinations of the effective Hamiltonian
with ge = 0 which, according to Eqs. (30) to (32), correspond
to certain spin quantum numbers S, magnetic quantum num-
bers 0 ≤ M < S, and coupling parameters J . Projections
of the data points onto two planes are shown as small dots
and lines connect points with the same value of S and J .
Pessimistic error bars would be smaller than the symbol size.

−3.90+0.10
−0.14 · 10−3 (S = 1,M = 0), −8.27+0.22

−0.30 · 10−3

(S = 3/2,M = 1/2), −4.95+0.14
−0.18 · 10−3 (S = 2,M = 0),

−1.31+0.04
−0.05 · 10−2 (S = 2,M = 1).

In contrast to the prediction of the effective model
with ge > 0 from Eq. (34), the ELC fields depend on
the quantum numbers S and M for vanishing electron g-
factor (see Fig. 16). With increasing value of S, i.e. with
increasing coupling parameter J⊥, the absolute value of
the ELC field grows as already seen in Fig. 15. A larger
coupling J increases all parameters of the effective model
(J‖, J⊥, and κ) and, as demonstrated by Fig. 16, thereby

leads to a larger value of |B̃ELC|. It is furthermore evident
that, with growing J , the quantum number S gains in im-
portance: Fig. 16 shows that the curves for fixed coupling
strength “fan out” for larger value of J . The dependence
of the ELC field on the magnetic quantum number is the
result of two counteracting effects: 1) A larger value of
M leads to smaller coupling strength J⊥ which, on its

own, would lower the value of |B̃ELC|. 2) On the other
hand, the scattering term becomes stronger with increas-

ing M and would, on its own, enlarge |B̃ELC|. For the
parameters considered in Fig. 16, there is a growth of

|B̃ELC| with M for S ≤ 7/2 that decelerates with in-
creasing M . In the case of S = 4 and both J/W = 0.16
and J/W = 0.18, we observe a decrease of the absolute
value of the ELC field in the last step.

To conclude this section, the Kondo temperatures be-
longing to the ELC fields shown in Fig. 16 are presented
in Fig. 17. As the main result we find that, accord-
ing to the above explanation, the value of TELC

K increas-
ingly drops with growing M . On the other hand, a larger

FIG. 15. (Color online) Kondo temperature at the ELC field
(cf. main text) for the effective Hamiltonian with ge = 0 as
function of the scattering parameter κ (corresponding to a
pair of on-site energies ε0↓ = −ε0↑ > 0 for the zeroth site of
the Wilson chain) for fixed J‖ and three values of the coupling
parameter J⊥ > J‖. Numbers in parentheses denote the re-
spective ELC field and lines are intended as a guide to the
eye. Pessimistic error bars would be smaller than the symbol
size. Additional crosses indicate the Kondo temperature for
parameters which, according to Eqs. (30) and (31), corre-
spond to certain values of the quantum numbers S and M .
Small dots mark TK for the case of potential scattering, i.e.,
for spin-independent on-site energies at zero magnetic field.

coupling parameter J⊥ is smaller.

Additional crosses in Fig. 15 mark the Kondo temper-
ature for those values of the scattering parameter κ that
follow from Eq. (30) for the three considered M quantum
numbers. We observe that the effective model predicts a
decrease of TELC

K with growing M , i.e., with every fur-
ther ELC. As the example demonstrates, this decline of
the Kondo temperature is due to three cooperating ef-
fects: 1) According to Eq. (31), J⊥ becomes smaller
when M is increased. 2) At the same time, κ becomes
larger. 3) Because of the decreasing value of J⊥, the scat-
tering parameter additionally gains in importance. For

the ELC fields gSµBB̃ELC/W that belong to the three
special values of TELC

K , we obtain the following results
(the error estimates indicate the variance with respect to
z): −6.59+0.19

−0.25 · 10−3 (S = 3,M = 0), −1.78+0.06
−0.07 · 10−2

(M = 1), and −2.36+0.06
−0.09 · 10−2 (M = 2).

Finally, we investigate how the ELC field and the
Kondo temperature at the ELC field depend on the pa-
rameters of the full Hamiltonian, i.e. on J , S, and M ,
with the parameters of the effective model given by Eqs.
(30) to (32). First of all, we would like to point out
that all obtained (relative) ELC fields are negative. This
supports the conclusion that, in the impurity magneti-
zation curves for equal g-factors and large “hard axis”
anisotropy presented in Fig. 7, the free LCs are only ex-
ceeded because of the electrons’ non-zero magnetic cou-
pling. For S = 1, 3/2, 2 and J/W = 0.14 (as in Fig.

7), the following values for gSµBB̃ELC/W are obtained:
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FIG. 16. (Color online) Negative value of the ELC field for
a set of parameter combinations of the effective Hamiltonian
with ge = 0 which, according to Eqs. (30) to (32), correspond
to certain spin quantum numbers S, magnetic quantum num-
bers 0 ≤ M < S, and coupling parameters J . Projections
of the data points onto two planes are shown as small dots
and lines connect points with the same value of S and J .
Pessimistic error bars would be smaller than the symbol size.

−3.90+0.10
−0.14 · 10−3 (S = 1,M = 0), −8.27+0.22

−0.30 · 10−3

(S = 3/2,M = 1/2), −4.95+0.14
−0.18 · 10−3 (S = 2,M = 0),

−1.31+0.04
−0.05 · 10−2 (S = 2,M = 1).

In contrast to the prediction of the effective model
with ge > 0 from Eq. (34), the ELC fields depend on
the quantum numbers S and M for vanishing electron g-
factor (see Fig. 16). With increasing value of S, i.e. with
increasing coupling parameter J⊥, the absolute value of
the ELC field grows as already seen in Fig. 15. A larger
coupling J increases all parameters of the effective model
(J‖, J⊥, and κ) and, as demonstrated by Fig. 16, thereby

leads to a larger value of |B̃ELC|. It is furthermore evident
that, with growing J , the quantum number S gains in im-
portance: Fig. 16 shows that the curves for fixed coupling
strength “fan out” for larger value of J . The dependence
of the ELC field on the magnetic quantum number is the
result of two counteracting effects: 1) A larger value of
M leads to smaller coupling strength J⊥ which, on its

own, would lower the value of |B̃ELC|. 2) On the other
hand, the scattering term becomes stronger with increas-

ing M and would, on its own, enlarge |B̃ELC|. For the
parameters considered in Fig. 16, there is a growth of

|B̃ELC| with M for S ≤ 7/2 that decelerates with in-
creasing M . In the case of S = 4 and both J/W = 0.16
and J/W = 0.18, we observe a decrease of the absolute
value of the ELC field in the last step.

To conclude this section, the Kondo temperatures be-
longing to the ELC fields shown in Fig. 16 are presented
in Fig. 17. As the main result we find that, accord-
ing to the above explanation, the value of TELC

K increas-
ingly drops with growing M . On the other hand, a larger

FIG. 17. (Color online) Negative value of the ELC field for
a set of parameter combinations of the effective Hamiltonian
with ge = 0 which, according to Eqs. (31) to (33), correspond
to certain spin quantum numbers S, magnetic quantum num-
bers 0 ≤ M < S, and coupling parameters J . Projections
of the data points onto two planes are shown as small dots
and lines connect points with the same value of S and J .
Pessimistic error bars would be smaller than the symbol size.

value of the ELC field in the last step.
To conclude this section, the Kondo temperatures be-

longing to the ELC fields shown in Fig. 17 are pre-
sented in Fig. 18. As the main result we find that,
according to the above explanation, the value of TELC

K
increasingly drops with growing M . On the other hand,
a larger value of S increases the coupling strength J⊥
and thus also TELC

K . For the parameters considered in
Fig. 18, the “last” value of the Kondo temperature (i.e.,
for M = S − 1 at fixed J) also grows with S. It turns
out that the influence of S on TELC

K is reduced for larger
coupling J . As a consequence, the “curves” for fixed
J are “focussed” in the direction of increasing coupling
strength. We find that the dependence of the Kondo
temperature on J is the result of two counteracting ef-
fects: 1) Both coupling parameters J‖ and J⊥ grow with

J and would, on their own, lead to a larger value of TELC
K .

2) However, the scattering parameter κ is also increased
and would, on its own, lower the Kondo temperature.
For all parameter combinations presented in Fig. 18,
TELC
K is a monotonously increasing function of the cou-

pling strength J . As a final observation, the relative
decrease of the Kondo temperature between two consec-
utive values of M (for fixed J) becomes smaller for larger
quantum number S.

5. Comparison of anisotropy- and field-induced
pseudo-spin-1/2 Kondo effect for half-integer impurity spin

In the case of half-integer impurity spin S ≥ 3/2, two
different types of pseudo-spin-1/2 Kondo effects occur for
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FIG. 17. (Color online) Kondo temperature at the respective
ELC field for the same set of parameter combinations of the
effective Hamiltonian with ge = 0 as in Fig. 16. Again,
pessimistic error bars would be smaller than the symbol size.
Three small crosses in the plane spanned by kBT

ELC
K /W and

J/W indicate the value of the Kondo temperature for the
isotropic case without magnetic field (as inferred from Table
I).

value of S increases the coupling strength J⊥ and thus
also TELC

K . For the parameters considered in Fig. 17, the
“last” value of the Kondo temperature (i.e., forM = S−1
at fixed J) also grows with S. It turns out that the influ-
ence of S on TELC

K is reduced for larger coupling J . As a
consequence, the curves for fixed J are “focussed” in the
direction of increasing coupling strength. We find that
the dependence of the Kondo temperature on J is the
result of two counteracting effects: 1) Both coupling pa-
rameters J‖ and J⊥ grow with J and would, on their own,

lead to a larger value of TELC
K . 2) However, the scatter-

ing parameter κ is also increased and would, on its own,
lower the Kondo temperature. For all parameter com-
binations presented in Fig. 17, TELC

K is a monotonously
increasing function of the coupling strength J . As a final
observation, the relative decrease of the Kondo temper-
ature between two consecutive values of M (for fixed J)
becomes smaller for larger quantum number S.

5. Comparison of anisotropy- and field-induced
pseudo-spin-1/2 Kondo effect for half-integer impurity spin

In the case of half-integer impurity spin S ≥ 3/2, two
different types of pseudo-spin-1/2 Kondo effects occur for
large “hard axis” anisotropy D. At zero magnetic field,
the anisotropy splits up the impurity multiplet and a dou-
blet with magnetic quantum numbersM = ±1/2 remains
as the lowest-lying impurity level (cf. Fig. 6 b)). If the
energy gap to the impurity states with M = ±3/2, which
is equal to 2D, is sufficiently large, this doublet under-

goes spin-1/2 Kondo screening (let us call this Kondo ef-
fect “anisotropy-induced”).55 At non-zero magnetic field,
on the other hand, ELCs with associated “field-induced”
Kondo effects occur, as discussed in the previous section.
Both types of Kondo effects show up in the corresponding
impurity magnetization curves. In Fig. 9 a), for example,
we observe the magnetic response of the effective impu-
rity doublet at low magnetic fields gSµBB/D � 1, which
is then followed by a step at gSµBB/D ≈ 2 due to the
ELC.

One might wonder how the Kondo temperatures of
the anisotropy- and field-induced Kondo effects compare.
It was shown in Ref. 55 that the anisotropy-induced
Kondo screening in the limit D/W →∞ is explained by

Hamiltonian (35) with B̃ = 0 and parameters J‖ = J ,

JD⊥ = (S + 1/2)J , and κ = 0. On the other hand,
the pseudo-spin-1/2 Kondo effect at the first ELC (i.e.,
M = 1/2) is described by the same Hamiltonian with

B̃ = B̃ELC = BELC − B1/2 and parameters J‖ = J ,

JELC
⊥ =

√
(S − 1/2)(S + 3/2) J , and κ = J . In par-

ticular, we thus have JELC
⊥ < JD⊥ ∀S ≥ 3/2. Since

we saw in Fig. 15 that additional scattering κ reduces
the Kondo temperature, we can conclude that TDK for
the anisotropy-induced Kondo effect is always larger than
TELC
K at the first ELC and, according to Fig. 17, at all

following ELCs, too.

VII. SUMMARY

In this article, we have reported on Numerical Renor-
malization Group (NRG) calculations for a Kondo model
with variable impurity spin S ≥ 1/2 and additional uni-
axial anisotropy D. Results have been presented for non-
zero magnetic field B and different ratios ge/gS of elec-
tron and impurity g-factor.

In the isotropic case (D = 0), a comparison of low-
temperature NRG results for the impurity magnetization
M(B) ∼ 〈S∼

z〉 and the impurity contribution to the mag-

netization Mimp(B) for equal g-factors and finite band-
width W reveals that both quantities are proportional,
with M = αMimp and a factor α > 1 that depends
on the dimensionless coupling ρJ . In contrast to Mimp,
M(T = 0, B) does not display universal behavior in the
usual sense as already observed by Lowenstein.41

With additional “easy axis” anisotropy (D < 0),
the zero-temperature curve Mimp(B) approaches a D-
dependent saturation value for small, but non-zero mag-
netic field, which corresponds to the effective moment of
the respective “fractional spin”55 as given by Tχimp(B =
0). The magnetic response at small fields and low tem-
perature (relative to |D|) is thus reminiscent of an or-
dinary magnetic doublet. Appropriately, the impurity
magnetization is well described by a rescaled and shifted
Brillouin function in this regime.

The case of “hard axis” anisotropy (D > 0) shows
that a non-zero electron g-factor effectively rescales the

FIG. 18. (Color online) Kondo temperature at the respective
ELC field for the same set of parameter combinations of the
effective Hamiltonian with ge = 0 as in Fig. 17. Again,
pessimistic error bars would be smaller than the symbol size.
Three small crosses in the plane spanned by kBT

ELC
K /W and

J/W indicate the value of the Kondo temperature for the
isotropic case without scattering term (as inferred from Table
I).

large hard axis anisotropy D. At zero magnetic field, the
anisotropy splits up the impurity multiplet and a doublet
with magnetic quantum numbers M = ±1/2 remains as
the lowest-lying impurity level (cf. Fig. 6 b). If the en-
ergy gap to the impurity states with M = ±3/2, which
is equal to 2D, is sufficiently large, this doublet under-
goes spin-1/2 Kondo screening (let us call this Kondo ef-
fect “anisotropy-induced”).56 At non-zero magnetic field,
on the other hand, ELCs with associated “field-induced”
Kondo effects occur, as discussed in the previous section.
Both types of Kondo effects show up in the corresponding
impurity magnetization curves. In Fig. 9 a, for example,
we observe the magnetic response of the effective impu-
rity doublet at low magnetic fields gSµBB/D � 1, which
is then followed by a step at gSµBB/D ≈ 2 due to the
ELC.

One might wonder how the Kondo temperatures of
the anisotropy- and field-induced Kondo effects com-
pare. It has been shown in Ref. 56 that the anisotropy-
induced Kondo screening in the limit D/W → ∞ is ex-

plained by Hamiltonian (37) with B̃ = 0 and param-
eters J‖ = J , JD⊥ = (S + 1/2)J , and κ = 0. On
the other hand, the pseudo-spin-1/2 Kondo effect at the
first ELC (i.e., M = 1/2) is described by the same

Hamiltonian with B̃ = B̃ELC and parameters J‖ = J ,

JELC
⊥ =

√
(S − 1/2)(S + 3/2) J , and κ = J . In par-

ticular, we thus have JELC
⊥ < JD⊥ for S ≥ 3/2. Since

Fig. 16 shows that additional scattering κ reduces the
Kondo temperature, we can conclude that TDK for the
anisotropy-induced Kondo effect is always larger than
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TELC
K at the first ELC and, according to Fig. 18, at

all following ELCs, too.

VII. SUMMARY

In this article, we have reported on Numerical Renor-
malization Group (NRG) calculations for a Kondo model
with additional uniaxial anisotropy D. Results have been
presented for non-zero magnetic field B and different ra-
tios ge/gS of electron and impurity g-factor.

For a bulk field (i.e., for equal g-factors), a comparison
of low-temperature NRG results for the impurity mag-
netization M(B) and the impurity contribution to the
magnetization Mimp(B) reveals that M = αMimp. The
proportionality factor α > 1 decreases for smaller cou-
plings ρJ‖ and ρJ⊥. Compared to the case of a local
field (i.e., ge = 0), a non-zero electron g-factor effectively
rescales the magnetic field argument of the impurity mag-
netization M(B) at low temperature. Calculations for
isotropic exchange interaction (i.e., J‖ = J⊥ = J) sug-
gest that both effects must have a weak dependence on
D as long as the uniaxial anisotropy is small compared to
the bandwidth. In addition, the corresponding values of
the rescaling factor η(ge/gS = 1) and the proportionality
factor α apparently coincide.

For an isotropic impurity (D = 0), we find thatM(T ≈
0, B), unlike Mimp, does not display universal behavior
in the usual sense as already noticed by Lowenstein.42

With additional easy axis anisotropy (D < 0), the zero-
temperature curve Mimp(B) approaches a D-dependent
value for small, but non-zero magnetic field, which cor-
responds to the effective moment of the respective “frac-
tional spin”56 as given by Tχimp(B = 0). The magnetic
response at small fields and low temperature (relative to
|D|) is thus reminiscent of an ordinary magnetic doublet.
Appropriately, the impurity magnetizationM is well de-
scribed by a rescaled and shifted Brillouin function in
this regime.

In the case of hard axis anisotropy (D > 0), a non-
zero magnetic field can lead to “effective level crossings”
(ELCs), at which pseudo-spin-1/2 Kondo screening oc-
curs. For ge = 0 and D/W → ∞, these field-induced
Kondo effects are described by an exchange-anisotropic
spin-1/2 Kondo model with additional spin-dependent
scattering at the zeroth site of the Wilson chain. At
the respective ELC field, this scattering leads to a reduc-
tion of the Kondo temperature TELC

K in a similar way as
ordinary potential scattering does at zero magnetic field.
In particular, the effective model predicts that TELC

K de-
creases with every further ELC. This agrees with the ob-
servation that the steps in the magnetization curves for
large D, which are due to the field-induced Kondo effects,
become steeper in the direction of increasing magnetic
field.
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Appendix A: Numerical Renormalization Group
calculations with conduction electron Zeeman term

In this appendix, we briefly describe the changes to the
standard NRG procedure14 which are necessary in order
to carry out calculations with an additional Zeeman term
for the conduction electrons.

1. Logarithmic discretization

The starting point is the continuous energy represen-
tation of the Hamiltonian from Eq. (7) with a restriction
to the physically reasonable case h < W . In the following
it is assumed that the magnetic field, which appears in
h = geµBB, is non-zero and fixed and, to simplify the no-
tation, that the chemical potential is zero. We introduce
abbreviations for the absolute value of the integration
boundaries in Eq. (7),

B±µ = | ±W + µh| , (A1)

rescale the integration variable ε, and change to rescaled
electron operators (cf. Ref. 13):

ξ+
µ =

ε

B+
µ

for ε > 0 , (A2)

ξ−µ =
ε

B−µ
for ε < 0 , (A3)

a∼
+
ξµ =

√
B+
µ a∼εµ for ε > 0 , (A4)

a∼
−
ξµ =

√
B−µ a∼εµ for ε < 0 . (A5)

Using
∫W
−W dε ρ(ε) = 1 and defining the normalized ze-

roth state of the Wilson chain as

f
∼0µ =

∫ 1

0

dξ+
µ

√
ρ
(
ξ+
µ B+

µ − µh
)
B+
µ a∼

+
ξµ (A6)

+

∫ 0

−1

dξ−µ

√
ρ
(
ξ−µ B−µ − µh

)
B−µ a∼

−
ξµ ,
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we then obtain an equivalent expression for the electronic
and interaction term in Eq. (7):

H∼ cb+int = W
∑

µ

(B+
µ

W

∫ 1

0

dξ+
µ ξ

+
µ a∼

+†
ξµ a∼

+
ξµ (A7)

+
B−µ
W

∫ 0

−1

dξ−µ ξ
−
µ a∼
−†
ξµ a∼

−
ξµ

)

+ J S∼ ·
∑

µ,ν

f
∼
†
0µ

σµν
2
f
∼0ν .

Next, the logarithmic discretization of the conduction
band is carried out according to one of the available dis-
cretization schemes63,64,79–82 by dividing the integration
range [−1, 1] into standard intervals I±m and using the fol-
lowing weight function on the mth positive and negative
interval, respectively:

ϕ±mµ(ξ±µ ) =

√√√√ ρ
(
ξ±µ B±µ − µh

)
∫
I±m

dξ
′±
µ ρ

(
ξ
′±
µ B±µ − µh

) . (A8)

With s = ±,

γsmµ =

√
Bsµ
W

∫

Ism

dξsµ ρ
(
ξsµBsµ − µh

)
W , (A9)

and new operators a∼
s
mµ corresponding to the weight func-

tions ϕsmµ(ξsµ) on the intervals Ism, we have the following
exact expansion for the zeroth state of the Wilson chain:

f
∼0µ =

∑

s,m

γsmµ a∼
s
mµ . (A10)

In addition, a dimensionless “energy” Esmµ has to be as-
signed to each interval Ism for each spin projection µ. This
is done according to the chosen discretization scheme by
using the weight function (A8) with the shifted DOS,
leading to a discrete approximation to Hamiltonian (A7):

H∼ cb+int →W
∑

s,m,µ

Bsµ
W
Esmµ a∼

s†
mµ a∼

s
mµ (A11)

+ J S∼ ·
∑

µ,ν

f
∼
†
0µ

σµν
2
f
∼0ν .

At this point, the substitution (A11) is still valid for
arbitrary ρ(ε). The above expressions simplify in the case
of a constant density of states, ρ(ε) = 1/2W , as a shifted
constant DOS is, of course, still a constant DOS:

H∼ cb+int →W
∑

s,m,µ

Bsµ
W
Esmµ(h = 0)
︸ ︷︷ ︸

= Esm

a∼
s†
mµ a∼

s
mµ

+ J S∼ ·
∑

µ,ν

f
∼
†
0µ

σµν
2
f
∼0ν , (A12)

f
∼0µ =

∑

s,m

√
Bsµ
W

γsmµ(h = 0)
︸ ︷︷ ︸

= γm

a∼
s
mµ . (A13)

Here, Esm and γm are the “energies” and expansion coeffi-
cients, respectively, for the system with a local magnetic
field (i.e., with ge = 0).

2. Tridiagonalization

Since the rescaling factors

Bsµ
W

=

∣∣∣∣s+ µ
ge
gS

gSµBB

W

∣∣∣∣ (A14)

depend on spin projection µ and magnetic field B, the
tridiagonalization of Hamiltonian (A12), which leads to
the Wilson chain with hopping parameters tiµ(B) and on-
site energies εiµ(B), has to be done separately for spin-
up and spin-down and for each value of B. In case of
a constant DOS, Eqs. (A12) and (A13) show that the
only necessary modification of an existing code solving
the recursion relations given in Ref. 14 is to multiply all
“energies” Esm and coefficients γ2

m with the appropriate
factor (A14).

For a particle-hole symmetric DOS we have Esmµ =

−E−sm−µ and γsmµ = γ−sm−µ. Using the Ansatz unmµ =
(−1)nvnm−µ and vnmµ = (−1)nunm−µ for the coefficients
of the orthogonal transformation (following the notation
of Ref. 14), it can then be shown that ti↑(B) = ti↓(B)
and εi↑(B) = −εi↓(B) for all sites i of the Wilson chain.
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