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Abstract

We discuss modern numerical methods for quantum spin systems and their
application to magnetic molecules.
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1. Introduction

The knowledge of the energy eigenvalues and eigenstates of small mag-
netic systems such as magnetic molecules is indispensable for a complete
understanding of their spectroscopic, dynamic, and thermodynamic proper-
ties. In this respect the numerical exact diagonalization of the appropriate
quantum Hamiltonian is the method of choice. Nevertheless, such an attempt
is very often severely restricted due to the huge dimension of the underlying
Hilbert space. For a magnetic system of N spins of spin quantum number s
the dimension is (2s+ 1)N which grows exponentially with N .

Group theoretical methods can help to ease this numerical problem.
Along these lines much effort has been put into the development of an efficient
numerical diagonalization technique of the Heisenberg model

H∼ Heisenberg = −2
∑
i<j

Jij s∼(i) · s∼(j) (1)

using irreducible tensor operators and thus employing SU(2) symmetry of
angular momenta [1, 2, 3, 4, 5, 6]. A combination of this meanwhile well es-
tablished technique with point-group symmetries could be developed over the
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past years, first for those point-group symmetries that are compatible with
the spin coupling scheme, i.e. avoid complicated basis transforms between
different coupling schemes [7, 8, 9, 10], later also for general point groups
[11, 12, 13]. Nevertheless, if the dimension of the largest Hilbert subspace
exceeds about 105 complete numerically exact diagonalization is no longer
possible with current computers and programs.

Fortunately, a few very accurate approximations have been developed
that can be applied to quantum spin systems. In this article we are going
to discuss the Finite Temperature Lanczos Method (FTLM), the Density
Matrix Renormalization Group (DMRG) and its dynamical variant as well
as Quantum Monte Carlo (QMC).

For problems with Hilbert space dimensions of up to roughly 1010 – the
Finite Temperature Lanczos Method (FTLM) provides a very accurate and
astonishingly easy to program method [14, 15]. In recent publications we
demonstrated that this method is indeed capable of evaluating thermody-
namic observables for magnetic molecules with an accuracy that is nearly
indistinguishable from exact results [16, 17, 18]. So far we encountered only
one problem where achieving a satisfying accuracy posed a problem – the
FeIII

10 ferric wheel [19]. Mathematically this methods relies on the idea of
trace estimators [20]; it is not restricted to spin systems and for instance also
applied in quantum chemistry [21, 22].

The Density Matrix Renormalization Group (DMRG) method is a vari-
ational method that approximates the true eigenstates by so-called matrix-
product states [23, 24, 25, 26]. These states are iteratively constructed, thus
the method allows to treat the full Heisenberg Hamiltonian but in a reduced
Hilbert space. The Hilbert space is truncated in a controlled way and the
accuracy of the method can be estimated with the help of a truncation error.
In the field of molecular magnetism DMRG has been applied for instance to
the Heisenberg icosidodecahedron with s = 5/2 [27, 28], i.e. a model of the
Mo72Fe30 Keplerate [29, 30].

DMRG can be extended in order to evaluate transition matrix elements.
This variant is called Dynamical DMRG (DDMRG); it aims at the calculation
of dynamical correlation functions as needed for the description of Inelastic
Neutron Scattering cross sections [31, 32]. In a recent article we could show
that DDMRG is able to model INS spectra of the very large magnetic ring
molecule Fe18 with unprecedented accuracy and thus allows to determine
model parameters which would be impossible using only observables such as
susceptibility [33]. This extension is not discussed in this article.
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Finally we would like to provide examples for the application of Quantum
Monte Carlo (QMC) [34, 35, 36] to magnetic molecules. This approximate
method which works accurately only for non-frustrated quantum spin sys-
tems [37], has already been applied to several molecular systems by Larry
Engelhardt [38, 39, 40, 41]. He also provides a very popular program – FIT-
MART – with which one can deduce Heisenberg exchange parameters from
susceptibility data [42].

Some of the discussed methods are freely available as program packages.
Besides FIT-MART the program MAGPACK [43] can be used for complete
diagonalization. Approximate methods such as DMRG and QMC are pro-
vided by the ALPS package [44, 45, 46].

The article is organized as follows. In Section 2 the Finite-Temperature
Lanczos Method is introduced. Section 3 discusses the application of Quan-
tum Monte Carlo, and Section 4 briefly introduces to the Density Matrix
Renormalization Group.

2. Application of the Finite-Temperature Lanczos Method to giant
gadolinium clusters

Figure 1: The core structure of {Gd12Mo4} is a truncated tetrahedron. The bullets rep-
resent the 12 spin sites and the edges correspond to the 18 exchange interactions between
nearest-neighbor spins. The exchange inside the four triangles is named J1, between tri-
angles J2.

In a recent publication heterometallic cluster complexes {Ln12Mo4} fea-
turing a Ln12 core that has the structure of a distorted truncated tetrahe-
dron, see Fig. 1, were reported [47]. The experimental magnetic studies of
the {Gd12Mo4} were accompanied on the theoretical side by calculations that
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replaced the Gd spin of s = 7/2 by fictitious spins s = 5/2 since otherwise
the calculation would not have been feasible in a reasonable time (of several
weeks [sic!]). Now, after a few months, the calculations using the Finite-
Temperature Lanczos Method for N = 12 spins s = 7/2 are completed.
Before presenting the results a short reminder of the method shall be given
which in detail is explained elsewhere [14, 15, 16].

For the evaluation of thermodynamic properties in the canonical ensemble
the exact partition function Z depending on temperature T and magnetic
field B is given by

Z(T,B) =
∑
ν

〈 ν | e−βH∼ | ν 〉 . (2)

Here { | ν 〉} denotes an orthonormal basis of the respective Hilbert space.
Following the ideas of Refs. [14, 15] the unknown matrix elements are ap-
proximated as

〈 ν | e−βH∼ | ν 〉 ≈
NL∑
n=1

〈 ν |n(ν) 〉e−βε
(ν)
n 〈n(ν) | ν 〉 , (3)

which yields for the partition function

Z(T,B) ≈ dim(H)

R

R∑
ν=1

NL∑
n=1

e−βε
(ν)
n |〈n(ν) | ν 〉|2 . (4)

For this procedure | ν 〉 is taken as the initial vector of a Lanczos iteration.
This iteration consists of NL Lanczos steps, which span a respective Krylow
space, in which the Hamiltonian is diagonalized. This yields the NL Lanczos
eigenvectors |n(ν) 〉 as well as the associated Lanczos energy eigenvalues ε

(ν)
n .

They are enumerated by n = 1, . . . , NL. The number of Lanczos steps NL

is a parameter of the approximation; NL ≈ 100 is usually a good value.
In addition, the complete and thus very large sum over all states | ν 〉 is
replaced by a summation over a subset of R random vectors, where R is the
second parameter of the method. For many cases R can be rather small, e.g.
R ≈ 20, whereas for other systems convergence is achieved only for R ≈ 100.
An observable would then be calculated as

O(T,B) ≈ 1

Z(T,B)

∑
Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ)
n

×〈n(ν,Γ) |O∼ | ν,Γ 〉〈 ν,Γ |n(ν,Γ) 〉 . (5)
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Here Γ labels the irreducible representations of a symmetry group that can
be used to split the Hilbert space into subspaces H(Γ) in order to increase
the accuracy. In the following calculations we decomposed the Hilbert space
according to the total magnetic quantum number M .

Figure 2: Magnetization of {Gd12Mo4} as function of temperature (l.h.s.) as well as
of applied magnetic field (r.h.s.). The experimental data [47] are given as symbols, the
theoretical calculations as curves.

The magnetization of {Gd12Mo4} was evaluated for four different parame-
ter sets. Since the total dimension is a staggering (2s+1)N = 68, 719, 476, 736
and even the dimension of the largest Hilbert subspace with M = 0 is still
3, 409, 213, 016, the calculations needed about a quarter of a year on a super-
computer. As Fig. 2 shows, the exchange interactions are antiferromagnetic
and of the order of -0.05 K. Since they are so small, the experimental data,
taken from [47], is not sufficient to disentangle between scenarios where the
interactions J1 between spins within triangles and J2 between triangles are
the same or different. A scenario where only interactions between triangles
bind the spins into dimers can be excluded, but a scenario where the system
would consist of uncoupled triangles cannot be excluded.

Figure 3 displays the magnetocaloric behavior for a coupling scheme with
J1 = J2 = −0.05 K. The l.h.s. shows a set of isentropes, i.e. curves which
the system would follow when the magnetic field is reduced in an adiabatic
process. The figure on the r.h.s. shows the isothermal entropy changes for
field sweeps from B = (1, 2, 7) T, respectively, to B = 0. The entropy
differences are rather large at low temperature as expected for a weakly
couple gadolinium system.
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Figure 3: Theoretical magnetic isentropes {Gd12Mo4} as function of temperature and
field (l.h.s.) and isothermal entropy change for various starting fields (r.h.s.). The chosen
parameters are J1 = J2 = −0.05 K.

3. Quantum Monte Carlo

Quantum Monte Carlo (QMC) [34, 35, 36] is a very powerful method
for non-frustrated, i.e. bipartite quantum spin systems. For a discussion of
frustration see e.g. [48]. The method can easily deal with up to 100 or more
spins. In the field of molecule-based magnetism is was applied to several spin
systems, e.g. homo- and heterometallic rings [38, 39, 40, 41] as well as to a
one-dimensional spin tube [49]. In the latter publication the heat capacity
of a system of N = 100 spins with s = 3/2 was calculated with the help of
QMC.

Again the idea is to approximate the partition function. This time the
partition function is chopped (sliced) in the sense that the exponential is
written as a product of m exponentials with exponents divided by m (Trotter-
Suzuki decomposition [50, 51, 52]). For m → ∞ the exponential can be
written as a product of the exponentials of the (even non-commuting) parts
of the Hamiltonian. One can as well linearize the exponential for large enough
m. In any case, the multi-index sum is evaluated in a Monte-Carlo fashion
as sketched in the equations below:

Z(T,B) =
∑
ν

〈 ν | e−βH∼ | ν 〉 =
∑
ν

〈 ν |
[
exp

{
−βH∼ /m

}]m
| ν 〉 (6)

=
∑

ν,α,γ,...

〈 ν | exp
{
−βH∼ /m

}
|α 〉〈α | exp

{
−βH∼ /m

}
| γ 〉〈 γ | · · ·

≈
∑

ν,α,γ,...

〈 ν |
{

1− βH∼ /m
}
|α 〉〈α | · · · .
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As an example the magnetic susceptibility of the ten-membered ferric wheel,
which was synthesized 18 years ago [53], is presented in Fig. 4. The symbols
mark the experimental values [53], the solid curve shows the result of exact
diagonalization [13], and the dotted curve shows the result obtained with
ALPS QMC using 107 steps for equilibration and 1010 steps for the Monte-
Carlo sampling for each temperature. As one can see the QMC result is
indistinguishable from the exact one.

Figure 4: Susceptibility of an antiferromagnetically coupled spin ring with N = 10 and
s = 5/2. The exchange parameter J = −9.6 cm−1 as well as the susceptibility data are
taken from Ref. [53]. The solid curve displays the result of complete matrix diagonalization
[13] whereas the dotted curve depicts the QMC result.

4. DMRG results

DMRG is a technically rather involved method. One should however keep
in mind that it is a variational method that constructs trial states in a certain
way. Being variational means that a lower energy for the trial ground state
corresponds to having obtained a better approximation since the energy is
bounded from below by the true value (Ritz’s variational principle). A maybe
helpful (mis-) conception of the idea of the method could be the following:
Assume that you want to describe an eight-membered spin chain as depicted
in Fig. 5. One starts with a small subsystem of two spins, diagonalizes the
Hamiltonian and keeps only the lowest m eigenstates. Then one adds spins
sequentially and every time sets up a new basis built of the old kept states
and the states representing the added spin, diagonalizes the Hamiltonian and
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Figure 5: Scheme of DMRG: first the system is iteratively enlarged up to its full size, then
a sweep algorithm improves the accuracy further.

again keeps the lowest m states. This idea is brilliant (and called Numerical
Renormalization Group), except that it does not work in this naive fashion.
Steve White found out, that instead of keeping the lowest m eigenstates
of the Hamiltonian it is much better to keep m eigenstates of a reduced
density matrix in order to iteratively built up the system and to represent
the Hamiltonian [23]. The density matrix is given by the target state, e.g.
the ground state |Ψ 〉, as ρ = |Ψ 〉〈Ψ | and to reduce it means to trace over a
part of the system, i.e. one of the colored parts in Fig. 5. The representation
can be further improved by running a so-called sweep algorithm in which
the system is subdivided into unequal blocks for which the Hamiltonian is
diagonalized and the density matrix calculated.

For the non-expert this seems to be rather obscure, but contrary to several
other methods, DMRG is (1) variational, (2) a controlled approximation,
i.e. with m → ∞ one approaches the exact result, and (3) offers accuracy
estimators in the form of the truncated weight or the entanglement entropy.
An extrapolation to the exact result is thus possible by using these measures.
Although DMRG is best suited for open one-dimensional chain systems it
can be applied to finite-size clusters, too. The resulting convergence, which
is exponential in m for one-dimensional chains, is somewhat slower, e.g. like
1/m for a spin cluster such as the icosidodecahedron [27].

Here we would like to demonstrate the power of the method by showing
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theoretical magnetization curves for another ferric wheel, this time an Fe18

ring ofN = 18 spins with s = 5/2 [54]. The dimension of the Hilbert space for
this system is about 1014 which again renders an exact treatment impossible.
The molecule was investigated by means of DMRG and DDMRG [33], the
later results were compared to INS data and utilized to fix the parameters
of the model.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

1 0

2 0

3 0

4 0

 

 
M/

gµ
B

B  [ T ]

 J 1  =  J 2  =  1 . 6 4  m e V
 J 1  =  1 . 4 2  m e V ,  J 2  =  4 . 5 7  m e V
 J 1  =  2 . 8 8  m e V ,  J 2  =  1 . 0 2  m e V

Figure 6: Comparison of the zero-temperature magnetization curves for three different
parameter sets as obtained by standard DMRG calculations for the N = 18, s = 5/2 spin
ring. We have kept up to 3000 density matrix eigenstates for the J1 = J2 model and up
to 1200 for the J1 6= J2 models. The truncated weights are smaller than 10−8.

In Fig. 6 we present the (T = 0) magnetization curves for the three
parameterizations discussed in [33]. The results are very interesting. The
magnetization curves are virtually identical up to 25 Tesla. The step widths
of the magnetization curve for a C18-symmetric ring (single J) are approx-
imately the same for all steps (apart from the very last steps), as would
also be the case for the rotational band approximation [55]. The magnetiza-
tion curves for the other two models (C6-symmetric: J1–J1–J2) deviate from
this behavior. Up to approximately 100 T, the two models with J1 6= J2

give very similar magnetization curves and considerable differences appear
only at even higher fields. The magnetization curve for J1 = 1.42 meV and
J2 = 4.57 meV shows two magnetization plateaus at higher fields. Plateaus
in zero-temperature magnetization curves usually emerge in geometrically
frustrated spin systems [56]. This system is, however, not geometrically frus-
trated so that the emergence of a plateau is an interesting effect.
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Figure 7: Dependence of the z-component of the local magnetization (which is proportional
to −〈szj 〉) for two different parameter sets as a function of an external magnetic field
~B = B~ez. The results were obtained using standard DMRG and T = 0. The result
for the uniform model is not shown because for this model the local moments are simply
proportional to the magnetization curve presented in Fig. 6. “Symmetric position” denotes
the local magnetization for a spin between two J1 couplings. Accordingly, “asymmetric
position” denotes a spin position between a J1 and a J2 coupling.

We have also calculated the local magnetizations for the two models with
J1 6= J2. Local moments can, e.g., be probed with NMR [57, 58] or XMCD
[59]. The local magnetizations for the J1 = J2 model would simply be pro-
portional to the total magnetization curve. The results are shown in Fig. 7.
The calculation demonstrates that the local magnetization of an interacting
spin system can deviate substantially from the average and even point into
the opposite direction.
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Newton, L. Cronin, Y. Oshima, H. Nojiri, Heat Capacity Reveals the
Physics of a Frustrated Spin Tube, Phys. Rev. Lett. 105 (2010) 037206,
doi:10.1103/PhysRevLett.105.037206.

[50] H. F. Trotter, On the product of semi-groups of operators, Proc. Amer.
Math. Soc. 10 (1959) 545–551, doi:10.1090/S0002-9939-1959-0108732-6.

[51] M. Suzuki, Generalized Trotter’s formula and systematic approximants
of exponential operators and inner derivations with applications to
many-body problems, Commun. Math. Phys. 51 (1976) 183–190, doi:
10.1007/BF01609348.

[52] M. Suzuki, On the convergence of exponential operators – the Zassen-
haus formula, BCH formula and systematic approximants, Commun.
Math. Phys. 57 (1977) 193–200, doi:10.1007/BF01614161.

[53] K. L. Taft, C. D. Delfs, G. C. Papaefthymiou, S. Foner, D. Gat-
teschi, S. J. Lippard, [Fe(OMe)2(O2CCH2Cl)]10, a molecular ferric
wheel, J. Am. Chem. Soc. 116 (1994) 823.

[54] P. King, T. C. Stamatatos, K. A. Abboud, G. Christou, Reversible
Size Modification of Iron and Gallium Molecular Wheels: A Ga10 Gallic
Wheel and Large Ga18 and Fe18 Wheels, Angew. Chem. Int. Ed. 45 (44)
(2006) 7379–7383.

[55] J. Schnack, M. Luban, Rotational modes in molecular magnets with
antiferromagnetic Heisenberg exchange, Phys. Rev. B 63 (2000) 014418,
doi:10.1103/PhysRevB.63.014418.

16



[56] A. Honecker, J. Schulenburg, J. Richter, Magnetization plateaus in frus-
trated antiferromagnetic quantum spin models, J. Phys.: Condens. Mat-
ter 16 (2004) S749.

[57] E. Micotti, Y. Furukawa, K. Kumagai, S. Carretta, A. Las-
cialfari, F. Borsa, G. A. Timco, R. E. P. Winpenny, Lo-
cal spin moment distribution in antiferromagnetic molecular rings
probed by NMR, Phys. Rev. Lett. 97 (2006) 267204, URL
http://dx.doi.org/10.1103/PhysRevLett.97.267204.

[58] Y. Furukawa, Y. Nishisaka, K.-i. Kumagai, P. Kögerler, F. Borsa, Local
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