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Abstract –In this Letter we report how thermodynamic properties of a giant frustrated magnetic
Keplerate molecule of N = 30 spins s = 1/2 can be evaluated with the help of the highly accu-
rate finite-temperature Lanczos method. The comparison to experimental data shows excellent
agreement. Since this molecule is structurally related to the archetypical kagomé lattice anti-
ferromagnet we expect new detailed insight into properties of this important class of frustrated
materials.

Introduction. – Nanometer sized polyoxometalate
molecules constitute a fascinating class of molecular mate-
rials [1–7]. The series of Keplerate molecules {Mo72Fe30},
{Mo72Cr30}, {Mo72V30}, {W72V30} is from a magnetism
point of view of special interest since in these bodies para-
magnetic ions occupy the vertices of a nearly perfect icosi-
dodecahedron – one of the Archemidean solids. These
bodies resemble some of the most interesting magnetically
frustrated spin lattices such as the kagomé lattice antifer-
romagnet [8]. Valuable insight about the physics of such
lattices can be gained by studying the finite-size bodies.
But although icosidodecahedra consist of only N = 30
spin sites, the dimension of the Hilbert space for s = 1/2
reaches a stunning 1,073,741,824.

Figure 1 shows the structure of the icosidodecahedron:
spin sites are displayed by bullets, edges are given as
straight lines – in the later used Heisenberg model they
represent the interaction pathways. If such interactions
are of antiferromagnetic nature, i.e. favour antiparallel
alignment in the ground state, a magnetic structure that
consists of triangles is said to be frustrated [9]. In this
respect the icosidodecahedron belongs to the archetypical
class of frustrated spin systems made of corner-sharing
triangles as does the two-dimensional kagomé lattice anti-
ferromagnet [8, 10–14]. Compared to other antiferromag-
netically coupled spin systems, such as spin rings for in-
stance, these structures possess unusual features generated
by the frustration: (1) many low-lying singlet states below
the first triplet excitation, (2) an extended plateau of the
magnetization at one third of the saturation magnetization

when plotted versus field at low temperatures, and (3) a
large magnetization jump to saturation again as funtion
of applied magnetic field. The last feature is intimately
connected with a huge magnetocaloric effect [15,16].

Fig. 1: The core structure of a Keplerate molecule is an icosido-
decahedron. The bullets represent the 30 spin sites, the edges
indicate the 60 exchange interactions.

For theoretical investigations the extended lattice sys-
tems such as the kagomé excape even a numerical treat-
ment since the dimension of the related Hilbert space
grows exponentially like (2s + 1)N , where s denotes the
spin quantum number of individual spins and N the num-
ber of spins treated in the model. Therefore, the exis-
tance of finite, i.e. molecular realizations of such frus-
trated structures provides an opportunity to theoretically
investigate the quantum energy spectrum and to under-
stand the related features. A major insight could already

p-1

ar
X

iv
:1

01
2.

49
80

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  2
2 

D
ec

 2
01

0



Jürgen Schnack

be achieved through the study of icosidodecahedra a cou-
ple of years ago. It turned out that the high-field behavior
is dominated by special quasi particles, so-called indepen-
dent magnons [13,17,18].

Nevertheless, the full thermodynamics, i.e. physical
observables as function of both temperature and applied
field, was so far not available for systems as large as Ke-
plerates. In this Letter we demonstrate for the first time
that by means of the finite-temperature Lanczos method
(FTLM) [19] the thermodynamic properties of the icosido-
decahedron with 30 spins s = 1/2 can indeed be evaluated.
In an investigation prior to these calculations we demon-
strated that the FTLM is a very accurate approximation
scheme that provides quasi-exact results [20]. None of the
alternative approximations – Density Matrix Renormal-
ization Group techniques (DMRG) [21, 22] or Quantum
Monte-Carlo (QMC) [23–25] – is able to deliver these re-
sults for such a molecule.

Evaluation of magnetic observables. – Our nu-
merical calculations in the Heisenberg model had to be
performed on a supercomputer. We employed the SGI Al-
tix 4700 at the German Leibniz Supercomputing Center
using openMP parallelization with up to 510 cores. The
complete calculation needed approximately a full week of
cpu time on 510 cores. The resulting magnetic observables
are shown in Figures 2, 3, and 4. In case of the magnetic
susceptibility χ we compare to experimental data that are
published for the highly symmetric molecule {W72V30}
[26].

Fig. 2: Susceptibility as function of temperature: Crosses mark
the experimental data that are published in [26]. The curve is
the result of our simulation.

Figure 2 displays the magnetic susceptibility as a func-
tion of temperature for an applied field of B = 0.5 T.
The low-temperature part demonstrates that the antifer-
romagnetically coupled (s = 1/2) icosidodecahedron is
a gapped spin system, i.e. it possesses an energy gap
between the singlet ground state and the first excited
triplet state. QMC calculations cannot resolve the low-
temperature behavior due to the negative-sign problem for
frustrated systems. Nevertheless, QMC can accurately de-
termine the high-temperature behavior as is demonstrated
in [26]. From this calculation the values of the exchange

interaction J as well as of the spectroscopic splitting factor
g were adopted.

Fig. 3: Heat capacity: the solid curve predicts the behavior
of {W72V30}. The dashed curve provides an estimate for the
phonon contribution.

The singlet-triplet gap seen in the susceptibility does
not exclude further singlet states below the triplet. In-
deed, this is one of the expected frustration hallmarks for
the icosidodecahedron [27]. In Figure 3 we predict that
for {W72V30} these singlets contribute dominantly to the
heat capacity below 10 K. The solid curve, that displays
the specific heat function at zero field, exhibits pronounced
Schottky-like peaks which originate dominantly from the
low-lying singlets. The dashed curve provides a reason-
able estimate for the additional phonon contribution. In
an experiment it should be possible to disentangle the two
below 10 K. The inset shows to full curve up to room
temperature.

Fig. 4: Magnetization for various temperatures: the steps at
low temperatures result from crossings of Zeeman split energy
levels.

Figure 4 provides the theoretical estimates for the mag-
netization curves at various temperatures. Again the
singlet-triplet gap is visible, this time as flat M = 0 be-
havior up to the first magnetization step which happens
at the level crossing of the lowest (S = 0,M = 0) and
(S = 1,M = −1) Zeman levels. In realistic static and
pulsed magnetic fields the first three steps of the magne-
tization curve could be observed.
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Summerizing, by means of the finite-temperature Lanc-
zos method (FTLM) we are able to accurately evaluate
all thermal properties of a giant magnetic molecule that
is structurely related to the kagomé lattice. We hope that
these achivements will promote further investigations in
the field of quantum magnetism.

Technical details. – The magnetic properties of the
Keplerate molecule {W72V30} are described by the follow-
ing model

H∼ = −2J
∑
<i,j>

~s∼i · ~s∼j + g µB B
∑
i

s∼
z
i . (1)

The first term (Heisenberg Hamiltonian) models the
isotropic exchange interaction between spins centered at
nearest neighbor sites i and j. J = −57.5 K is the anti-
ferromagnetic exchange parameter [26]. The second term
(Zeeman term) represents the interaction with the exter-
nal magnetic field. The spectroscopic splitting factor is
taken to be g = 1.95 [26].

In the finite-temperature Lanczos method [19] the exact
partition function

Z(T,B) =
∑

Γ

∑
ν

〈 ν,Γ | e−βH∼ | ν,Γ 〉 (2)

is approximated by

Z(T,B) ≈
∑

Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

×e−βε
(ν,Γ)
n |〈n(ν,Γ) | ν,Γ 〉|2 . (3)

For the evaluation of the right hand side of Eq. (3) | ν,Γ 〉
is taken as the initial vector of a Lanczos iteration. This
iteration consists of NL Lanczos steps, which span a re-
spective Krylow space. The Hamiltonian is diagonalized
in this Krylow space which yields the NL Lanczos eigen-
vectors |n(ν,Γ) 〉 as well as the associated Lanczos energy

eigenvalues ε
(ν,Γ)
n . The number of Lanczos steps NL is a

parameter of the approximation. NL ≈ 100 yields good
results [20]. RΓ is the number of random vectors that are
considered in the sum instead of the full basis set. Γ labels
the irreducible representations of the employed symmetry
group. The full Hilbert space is decomposed into mutually
orthogonal subspaces H(Γ). An observable would then be
calculated as

O(T,B) ≈ 1

Z(T,B)

∑
Γ

dim(H(Γ))

RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ)
n

×〈n(ν,Γ) |O∼ | ν,Γ 〉〈 ν,Γ |n(ν,Γ) 〉 . (4)

For the present calculations we employed the collective ro-
tations of the spin about the z-axis as the symmetry. The
resulting subspaces H(M) for the total magnetic quantum
numbers M = 15, 14, . . . , 0, . . . ,−14,−15 were included
exactly for |M | > 10, since these are small enough. For
all other subspaces we choose R = 20 and NL = 100.
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