Quantum Tunneling of Magnetization in Molecular Magnets

ANDREW D. KENT

Department of Physics, New York University

Tutorial T2: Molecular Magnets, March 12, 2006

4 14	
1. Int	Neuron
	-Nanomagnetism
	-Quantum Funneling of Magnetization
2. Ma	gnetic interactions, Energy Scales, Spin Hamiltonian
3. Ex	perimental Techniques
	-High Frequency EPR
4. Re	sonant Quantum Tunneling of Magnetization
	-Thermally activated, thermally assisted and pure
	-Crossover between regimes
	-Berry Phase and Landau-Zener Method
5. Hi	h Spin Superposition States
	–SMM Ni₄: microwave spectroscopy and magnetometry
	 Photon induced transitions between superposition states
	-Decoherence rate
	-Longitudinal (energy) relaxation times
6. Pe	rspectives

1

Single Molecule Magnets

- Molecules with a large spin ground state (S~10)
- Large (Ising-like) uniaxial magnetic anistropy
- Single crystals: ordered 3D arrays of weakly interacting (almost identical) molecules
- Well defined discrete set of magnetic quantum states
- Chemical control of quantum energy levels
 - •Molecule Spin
 - Molecule Symmetry
 - Magnetic Anisotropy
 - •Intermolecular Interactions

Basic Properties

- Individual molecules can be magnetized and exhibit magnetic hysteresis
- Quantum tunneling of the magnetization

7

Magnetic Interactions
 Energy scales Exchange Magnetic anisotropy Dipolar Hyperfine
 Spin-Hamiltonian

